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Abstract

Drought stress is one of the most considerable threats to global agricultural
food security, causing yield losses worldwide. Therefore, the search for
effective genetic and molecular methods for developing cultivars that are
tolerant or resistant to harsh environments has been more intensive over the
last decades. Apart from time-consuming conventional breeding techniques,
biotechnologists are now investigating modern genome editing tools for
engineering tolerance and resistance to various biotic and abiotic stresses in
crops. Various genetic engineering techniques such as zinc finger nucleases
(ZFNs) and transcription activator-like effector nucleases (TALENs) were
developed based on the discovery of the DNA structure. However, these
methods have limitations, with ZFNs being prone to errors due to their
limited base pair recognition, and TALENs requiring a complex protein
engineering process and struggling to cleave methylated DNA. In recent
years, clustered regularly interspaced short palindromic repeats/CRISPR-
associated protein 9 (CRISPR/Cas9) and its alternatives have gained
popularity in plant biotechnology. Out of the genome editing techniques
mentioned earlier, CRISPR/Cas9 is becoming more popular because it's
faster and easier to use. Given that drought is now a significant threat to
global agriculture due to the drying of arable lands, this review focuses on
how we can use CRISPR genome editing to enhance crop tolerance to
drought stress and explores its future potential.
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Introduction

In recent years, the global scenario of drought has emerged as a pressing
concern, with its far-reaching effects rippling across various regions.
Scientists and breeders have acknowledged drought as an environmental
hazard. It is defined as a long period of precipitation decline, such as a
season or a year, and happens in practically all climatic zones, including both
high and low-rainfall places (1). This phenomenon has cast a shadow over
agricultural landscapes worldwide, leading to significant consequences for
both crop productivity and food security (1, 2). As we investigate this critical
issue, we will first investigate the extent and geographical areas affected by
drought, backed up by credible citations. Following that, we will delve into
quantitative data to shed light on how drought affects crop productivity and,
ultimately, its implications for global food security, all supported by rigorous
research and factual evidence (3).
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Plants acquired morphological and physiological
adaptations, as well as signaling pathways that evoke
biochemical and molecular processes to survive various
stress conditions, to tolerate these harsh climatic
conditions (4). Among these stresses, drought is an
unavoidable element that exists in a variety of situations
with no discernible bounds and no warning, hindering
plant biomass production, quality, and energy (5). Drought
is the climatic condition when the water level in the soil is
low or absent. In this situation, the plants are not able to
grow and develop fully and in this case, not only the profits
of farmers but also the economy of the entire country
suffer significantly. For instance, The plants confront
challenges to their full growth and development in this
scenario. As a result, both farmer profits and the national
economy suffer significant consequences. For decades, the
methods of conventional breeding have been quite
successful in creating drought-tolerant wheat, rice, maize,
soybean, and other crops, yet most of those crops did not
possess high productivity traits concurrently (6). At this
point, transgenic methods can implement and combine all
the necessary traits in one single implement and combine
all the necessary traits in one crop line.

CRISPR/Cas9 is like a genetic tool that starts by
breaking the DNA in a specific spot. Then, there are two
ways the cell can fix it: one is like gluing the broken ends
together (non-homologous end-joining), and the other is
like swapping out puzzle pieces (homologous
recombination). While the cell is fixing things, it can also
make changes to the DNA. Sometimes, when gluing things
together, some pieces are lost or added (deletions and
insertions), and when swapping pieces, it can change a few
puzzle pieces (base substitutions) (7) (Fig.1). CRISPR/Cas9
system is the most widely used in a bacterial immune
system against the invasion of foreign DNA (8). This editing
mechanism comprises a Cas9 endonuclease and a single
guide RNA (sgRNA) molecule of about 20 nucleotides
complementary to the DNA of the target gene (9). This RNA
confers target specificity, and the Cas9 enzyme makes a
double-stranded break on the target DNA. Subsequently,
these breaks are repaired by the plant DNA repair system,
leading to the emergence of new mutations, gene
knockout, or loss of protein function (10). In recent years,
this highly efficient genome editing tool has been
frequently used in different fields of life sciences - in test
systems and biosensors (11,12); in biomedicine and drug
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Fig. 1. CRISPR/Cas9 gene-editing technique and genome targeting: (a) CRISPR/Cas9-mediated DNA repair mechanism; (b) CRISPR/Cas9 targets numerous plant
genomes. The figure was re-used from (7) with the permission of MDPI.
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delivery (13,14); in plant breeding (8,10,15,16). Considering
the undeniable success of the CRISPR/Cas9 system,
several other types of Cas9 enzymes from other bacteria
were introduced, such as SaCas9 (Staphylococcus aureus
Cas9), StCas9 (Streptococcus thermophiles Cas9), and
NmCas9 (Neisseria meningitidis Cas9) (17, 15, 16). The
implementation of the CRISPR/Cas9 genome editing
technique has significantly advanced global plant
breeding (19). Based on the CRISPR system, monocot and
dicot crop varieties were genetically engineered with
improved vyield traits, resistance to viral and bacterial
diseases, salinity, heavy metals, extreme temperatures,
drought, and other agronomically important traits (17).
Application of the CRISPR/Cas9 method in agriculture
opens new opportunities to provide global agriculture
with transgene-free crops resistant/tolerant to different
stresses (16); this review describes the application of this
technology for engineering various crops tolerant to
drought stress, investigation of the role of some genes in
drought stress response; as well as our outlook on its
future perspectives.

CRISPR-mediated
tolerance

improvement of crop drought

Several genetic engineering strategies targeting drought
tolerance have been demonstrated thus far. These
strategies represent the insertion of drought-resistance
genes (14); alteration (12), gene silencing, and
overexpression (of transcription factors, genes, and
hormone pathways responsible for plant adaptation to
drought (16, 19). Overexpression of genes and
transcription factors participating in drought signaling
may enhance plant drought tolerance (20). Drought
tolerance can also be performed by silencing drought-
sensitive genes and negatively regulated genes. For
example, the CRISPR system was used to generate
mutants in OPEN STOMATA 2 (0ST2) gene coding a plasma
membrane H+ ATPase enzyme responsible for stomatal
activity in Arabidopsis. In the condition of dehydration,
abscisic acid suppresses ATPase-mediated stomatal
conductance (21). Using the CRISPR/Cas9 system
combined with a truncated sgRNA, two mutations at the
OST2 locus with high efficiency (>32%) and no off-target
mutations were created. The evaluation of ost2 mutants
revealed an enhanced rate of stomatal closure and a lower
rate of water loss compared with wild-type (19).

Several molecular studies have revealed that ABA
functions as a central regulator of drought stress tolerance
among abscisic acid (ABA), auxin, and brassinosteroid
phytohormone signaling pathways (16, 22, 23, 24 ).
Considering that Arabidopsis thaliana ENHANCED
RESPONSE TO ABA1 (ERAI) gene regulates ABA signaling
pathway and response to dehydration stress, Ogata and
colleagues created frameshift mutations to explore ERAI
gene function in rice plants using CRISPR/Cas9 system
(25). oseral mutant plants illustrated enhanced drought
stress response, suggesting using this gene to improve
drought tolerance in rice. Sucrose non-fermenting
1-related kinase 2 (SnRK2) is a family of plant-specific
kinases regulating abscisic acid (ABA)-dependent abiotic
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stress signaling pathway. Particularly, the SAPK9 gene, one
of the rice SnRK2s, has been considered to be a key
drought stress regulator in rice (26). Hence, the CRISPR/
Cas9 system was applied to develop SAPK9 loss-of-
function rice phenotypes. The results revealed that sapk2
mutants showed higher sensitivity to dehydration stress
than wild-type plants, indicating that the SAPK2 gene is
one of rice's genes responsible for drought tolerance (27).
These results suggest that all the genes participating in
ABA signaling pathways are attractive candidates to
improve plant tolerance to drought.

It is known that ethylene hormone plays an
important role in various plant development mechanisms
as well as in plant drought and heat tolerance. Under
drought stress, the suppression of ABA induces the
expression of ethylene-responsive factors (ERFs), and their
overexpression has been associated with plant abiotic
stress tolerance (16). The studies report that the family of
auxin-regulated genes involved in organ size (ARGOS)
genes negatively regulates the ethylene signaling pathway
and confers higher yield under drought conditions (28, 29).
Particularly, the maize ARGOS8 gene negatively regulates
ethylene response, which is one of the most important
phytohormones regulating plant abiotic stress response
(30). However, the wild-type ARGOS8 gene expression is
relatively low; researchers used CRISPR/Cas technology to
either replace the native ARGOS8 promoter with the GOS2
promoter, which gives the ARGOS8 gene higher expression,
or to insert the GOS2 promoter. The evaluation showed
mutant lines had higher yields than wild-type ones under
drought conditions (29). Kim et al. identified the
upregulation of two genes related to drought stress
response: wheat dehydration-responsive element binding
protein 2 (TaDREB2) and wheat ethylene-responsive factor
3 (TaERF3) (31). It has been previously reported that
overexpression of these genes in Arabidopsis, wheat, and
barley increases plant drought tolerance (32, 33). The
expression of CRISPR/Cas9 edited genes in wheat
protoplast was evaluated under dehydration stress by qRT
-PCR, and the analysis revealed that both TaDREB2 and
TaERF3 are positive regulators of the drought stress
response. These findings indicate that state-of-the-art
technology could not only allow the creation of drought-
resistant cultivars effectively but also provide higher yields
to global agriculture.

Some studies were conducted to examine the role
of several genes that do not directly regulate drought
stress signaling pathways (34, 35, 36). For instance, the
CRISPR/Cas9 system was applied to create tomato non-
expressers of pathogenesis-related gene 1 (nprl) mutant
lines (16). Although this gene participates in the plant
defense system, its alteration induced changes in plant
drought response (34). The mutants with CRISPR/Cas9
mediated NPR1 loss of function demonstrated reduced
tolerance to dehydration stress compared to wild-type
tomato plants. The lateral organ boundaries domain (LBD)
gene family plays a crucial role in plant organ
development. To reveal the function of the tomato LBD40
gene in drought stress response, Liu and his colleagues
knocked out it using CRISPR/Cas9. Evaluation tests
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revealed that LBD40 knockout mutants had lower water
loss rates under dehydration stress compared to wild-type
tomato plants (35). Same with auxin response factors
(ARFs) - proteins responsible for various processes in plant
development; however, their function in water deficit
conditions was not clear. Thus, ARF genes were knocked
out in tomato using CRISPR/Cas9. Mutant plants with loss
of SIARF4 function were more resistant to dehydration
stress and had better rehydration ability (36). Therefore,
down-regulation of such genes as NPR, LBD40 or ARFs, and
many others, which, apart from their main functions, are
also responsible for drought response, could be capable of
producing drought-tolerant crop varieties.

Moreover, a significant feature in drought stress
management is creating plants with wider or rolled leaves,
with reduced stomatal density and other morphological
traits contributing to lower water loss rates and higher
yields in water-deficit areas. Thus, semi-rolled leaf 1 (SRLI)
and SRL2 genes, which control various leaf phenotypes in
rice, were modified using CRISPR/Cas9 technology to
produce rice plants with rolled leaves (37). Mutant plants
had several improved leaf traits including semi-rolled
leaves, resulting in higher survival rates under dehydration
conditions than wild-type plants. Another experiment was
conducted to explore the function of drought and salt
tolerance gene (OsDST) encoding a zinc finger
transcription factor in indica rice cultivar (38). CRISPR/
Cas9 mediated deletion of 184-305 region of OsDST gene
led to wider leaves and lower density of stomas, which, in
turn, improved plant tolerance to dehydration stress.

Conclusion and Future Prospects

Drought, being one of the other environmental stress
factors, is threatening the world's food production. The
condition of dehydration affects all stages of plant
development at biochemical, morphological, and
physiological levels significantly decreasing crop
productivity. Considering that millions of people suffer
from food deficiency, scientists all over the world are
striving to create crops resistant to manifold biotic and
abiotic stress. Since transgenic plants are not widely
accepted, new effective genome editing techniques have
been developed, with the most popular of them being
CRISPR/Cas9. To date, this genomic tool has proven to be
rapid and accurate. Particularly, it has been found very
effective in identifying, modifying, and delivering drought
stress-related genes to plants. Over the past decade, many
crops such as maize, wheat, rice, soybean, tomato, and
others were CRISPR/Cas9 genome edited on several
agronomically important traits. There are still some
limitations to its wunlimited application in plant
improvement, with one of them being the cultivation and
regeneration of genome-edited plants and the second one
the control of off-target mutations. However, taking the
opportunities of modern genomics and plant breeding into
account, we consider those problems can now be
overcome.
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