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Abstract   

Due to climate change, deserts are expanding, water reservoirs are drying, 

soil erosion is becoming more serious, and salinity areas are expanding 

worldwide. Among these disasters, soil salinization is one of the serious 

issues that affect agricultural production, with significant effects on plant 

development. Although plants have a solid adaptation to severe 

environmental conditions, their vulnerability to some abiotic stresses is still 

preserved in the plant genome. Cotton is a salt stress-tolerant crop among 

other main cash crops. However, its tolerance is limited in overwatered soil 

conditions or water-deficient soil. Several research investigations have been 

carried out to date to better understand salinity stress responses in various 

cotton species. The accumulation of salt due to irrigation-dependent 

practices exerts an adverse impact on crop productivity. However, this 

deleterious effect can be mitigated through a comprehensive 

understanding of the mechanisms by which certain plants flourish under 

saline conditions. Over the past few decades, there has been a notable 

augmentation in mechanistic comprehension, leading to the initiation of 

discovery-oriented methodologies aimed at discerning the genetic 

determinants of salt tolerance. Recent studies are showing the results of the 

manipulation of some important genes and proteins for salt tolerance using 

modern approaches. The identification of salt-resistance genes from salt-

tolerant germplasm resources plays an essential role in improving the yield 

of cotton in saline soils. In this paper, we reviewed what has been achieved 

in cotton in terms of the development of its salt tolerance using genetic 

engineering. 
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Introduction   

The introduction of this paper provides a detailed overview of the critical 

aspects related to salinity. Salinity, characterized by elevated salt 

concentrations in soil or water, is a pivotal environmental factor with 

multifaceted implications for agricultural and ecological systems. This 

phenomenon stems from various sources, including both natural processes 

and significant human-induced factors, notably anthropogenic activities (1). 

To evaluate and monitor salinity levels accurately, various methods have 

been devised, encompassing the measurement of salt content in soil and 

water samples. One key unit for quantifying salinity is the electrical 
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conductivity, which reflects the ion concentration in a 

given medium (2). It is crucial to distinguish between 

salinity and sodicity, as they are distinct yet 

interconnected concepts, each with its unique impact on 

soil quality and plant growth. (3) Moreover, Survival in 

saline environments imposes a demand for elevated 

bioenergetic capabilities, as microflora are compelled to 

uphold osmotic equilibrium between their cytoplasm and 

the external environment. Microbial survival in saline 

conditions hinges upon the active exclusion of sodium ions 

from intracellular spaces, thus necessitating a substantial 

energy investment for optimal cellular function (4,5). 

Factors, including organic matter and cation exchange 

capacity content further modulate salinity levels, offering 

avenues for either increasing or decreasing the salt load in 

the soil, thus underscoring their significance in soil 

management and sustainability practices.  

 Due to poor agricultural practices and climate 

change, soil salinization has been one of the main abiotic 

limiting factors for plant and yield improvement. More 

than half of arable land in the World is expected to be 

salinized by 2050 (6). Many recent studies have 

demonstrated a significant drop in agricultural yields due 

to salt stress, raising worries about food security (7,8). As 

salinity stress has an increasing impact on cotton 

production, the implications are resonating in the global 

market. Recent studies on cotton provide a foundation to 

examine the intricate connections between these factors 

and offer insights into potential interventions to address 

the issues at hand.  

 Cotton plants that can tolerate high salt levels 

undergo several adjustments to adapt to salinity. These 

adjustments involve changes in their structure, functions, 

and biochemistry. They include increasing the proportion 

of roots to the aboveground canopy, enhancing the 

amount of chlorophyll, and altering the leaf structure. 

These adaptations primarily serve to prevent the harmful 

effects of excessive ions in the leaves, while also 

preserving water and safeguarding the photosynthesis 

process salinity stress has several negative consequences 

on the biochemical, physiological, and molecular 

properties of plants, as well as a reduction in output (9,10). 

The lands, prone to salinity, are continuously increasing 

worldwide (11). The salinity expansion causes many 

problems for both plants and the soil microbiome. Soil 

salinity is commonly known in more than 100 countries 

and ~20% of agricultural land is considered saline (12).  

 High salt levels in the soil hinder plant growth and 

development through various mechanisms. These include 

water stress, which is caused by reduced water availability 

due to the high salt concentration, as well as cytotoxicity 

resulting from the excessive uptake of ions like sodium 

(Na+) and chloride (Cl−). Additionally, salinity can disrupt 

the balance of essential nutrients required for plant 

growth (13). Sodium chloride (NaCl) is a widespread salt 

that inhibits plant germination and growth (14) and 

reduces plant height, fresh weight, leaf area, and dry 

weight. In addition, increases in leaf chlorophyll content 

do not affect leaf fluorescence (15). It is also known to 

affect the evapotranspiration rate in plants and these 

changes lead to decreases in dry and fresh biomass (12). 

Besides, soil porosity leads to disruption of soil water 

potential (16).  

 Different strategies have been developed to 

overcome soil salt stress so far. Several papers, devoted to 

reviewing and summarizing scientific data on combatting 

salt stress in cotton, analyzed the roles of different genes 

and metabolites in Gossypium species.  In line with 

developing genetically modified stress-tolerant plants, 

plant treatment with exogenous bioactive chemicals plays 

a significant role. These two strategies deserve more 

attention to overcome stressful conditions in plants (17). 

However, developing salt-tolerant plants using the 

methods of genetic engineering is the first step that can 

initially control various features responsible for growth 

and development along with plant tolerance to salt stress. 

In this paper, we reviewed cotton salt stress-related data 

that used genetic engineering and highlighted the main 

points around the alleviation of reactive oxygen species 

(ROS), providing osmotic pressure and ion exchange. 

Genetic Engineering 

Developing salt-tolerant plant varieties is one of the 

economically effective approaches to struggle against salt 

stress (18). Washing soil salt that helps to decrease its 

effect on plants can be helpful in some areas, but due to 

water scarcity, its effect is strongly limited (19). Thus, 

combatting salt stress requires breeding plant cultivars 

and varieties, resistant to salinity; the genes of these 

resistant cultivars can be applied to improve salt stress 

tolerance in cotton plants. Halophytes are generally used 

to find genes and can be efficiently used to develop 

salinity-resistant plant cultivars (20). Overexpression of 

genes, related to salinity and drought, is expected one of 

the few efficient strategies to struggle against salt stress 

and overcome its impact (21). These genes play pivotal 

roles in developing plant genotypes that tolerate abiotic 

stress including salt and drought stress (22). Late 

embryogenesis abundant (LEA) proteins, a large group 

that includes hydrophilic proteins, are of high interest due 

to their involvement in drought stress. In total, 136, 142, 

and 242 genes were identified in G. arboreum, G. raimondii, 

and G. hirsutum, in drought tolerance, respectively. LEA 

genes in G. hirsutum had genes with fewer introns, 

distributed in all chromosomes (23). Earlier, in cotton LEA 

transcripts were found to respond to salt and drought 

stresses (24).  

 The overexpression of bZIP transcription factor 

(GhABS2), a regulator of abscisic acid-mediated abiotic 

signaling pathways in cotton, enhanced drought and salt 

tolerance by the regulation of genes associated with salt 

stress responses and abscisic acid. Enhanced levels of 

proline and activities of catalase and superoxide 

dismutase were in correspondence with other results (25).  

 Scientists used a variety of approaches to solving 

salt stress problems in less than a century. Because the 

genetic bottleneck effect limits the availability of salt 

tolerance cotton varieties, breeders must identify 

important genes/loci and transfer them to local high-
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yielding cotton cultivars using conventional or modern 

methods. In summary, while conventional breeding has 

historically been the primary method for developing salt-

tolerant cotton varieties, modern breeding techniques 

offer significant advantages in terms of precision, speed, 

and access to genetic diversity. Contemporary techniques 

such as genetic engineering and gene editing hold the 

promise of expediting the advancement of cotton cultivars 

endowed with heightened resilience to salt-induced stress. 

However, it is essential to consider regulatory and 

environmental factors when employing these modern 

approaches. The integration of different approaches such 

as modern breeding and conventional breeding with 

genome editing and genetic analysis may allow the 

development of salt-tolerant cotton plants against the 

intensified effects of the changing environment (Fig. 1.) 

(26). 

The expression of genes from other plant species 

Dehydration-responsive element binding (DREB) 

transcription factors are means contributing to the 

regulation of stress tolerance in cotton (27). The 

overexpression of potato DREB2 in cotton led to higher 

expressions of antioxidative enzymes such as peroxidase, 

superoxide dismutase, glutathione S-transferase, and 

stress-tolerant genes. Thus, the overexpression enhanced 

cotton plant drought tolerance by augmenting the 

capacities of ROS scavenging and antioxidative enzymes 

(28). Synergistic effects of the co-expression of rice SUMO 

E3 ligase gene (OsSIZ1) and Arabidopsis thaliana vacuolar 

pyrophosphatase gene (AVP1) in cotton plants increased 

the plant crop production by 133 percent and 81 percent in 

two field experiments. The synergistic effects of AVP1/

OsSIZ1 genes in cotton were concluded as a viable strategy 

for developing abiotic stress-tolerant crops to grow in arid 

and semi-arid regions (29). MAPK cascade signaling is 

another mechanism, used by cotton plants to protect 

against salt stress. Thus, molecules of this cascade can be 

used as indicators to prognose the salt stress resistance of 

plants (30). MAPK gene isolated from G. hirsutum, termed 

GhMPK17, was found upregulated in A. thaliana when 

grown under NaCl, mannitol, and abscisic acid. The gene 

expression in A. thaliana enhanced seed germination and 

root elongation under abiotic stress conditions (31).  

 Using genome-wide analysis and RNA sequencing, 

33 single-nucleotide polymorphisms in G. hirsutum were 

identified. Besides, the authors identified 35 genes that 

were involved in salt stress responses. By qRT-PCR, 12 

genes were verified (32). Genome-wide analysis of four 

cotton species G. arboreum, G. raimondii, G. hirsutum, and 

G. barbadense enabled the identification of Tubby-like 

proteins-expressing TLP genes involved in salt stress. qRT-

PCR analysis validated the high sensitivity of GhTLP11A 

and GhTLP12A.1 genes to drought and salt stress. Other 

network elements confirmed the functional significance of 

these genes in these stress responses (33). 

 Gh3 genes, involved in homeostasis due to their 
ability to conjugate auxin and bind IAA to amino acids, are 

expected one of the key points in salt tolerance. By RNA 

expression analysis in G. hirsutum, 10 genes were identified 

as salt-stress responsive. Their silencing in G. arboreum, G. 

raimondii, and G. hirsutum caused a significant reduction 

in plant tolerance to salt and drought stress. The gene 

silencing significantly reduced the levels of chlorophyll, 

relative leaf water content, and superoxide dismutase 

activity (34). The transcriptomic analysis to defer ROS gene 

evolution under salt stress was carried out in cotton. The 

Figure 1. Using genetic engineering in combination with other approaches to develop salt-tolerant cotton genotypes with the expression of salt-resistant genes  
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authors identified 260, 261, and 515 genes, related to the 

ROS network, in G. arboreum, G. raimondii, and G. 

hirsutum, respectively. CSD1 and RBOH6, playing 

significant roles in fiber development, were involved in 

cotton plant salt stress as well (35). A group researcher 

identified 672, 379, and 374 proteins in G. hirsutum, G. 

arboreum, and G. raimondii, encoded by CYPs genes. A 

common feature of stress-related genes was that the 

protein, encoded by them, were hydrophilic. Gene-

silenced plants revealed a lower level of ascorbate 

peroxidase, proline, and glutathione under salt and 

drought stress. Silencing of CYP450 caused a high level of 

oxidative injury (36). The salt overly sensitive 1 (SOS1) gene 

is one of the salt stress-responsive genes playing a pivotal 

role in plant salt stress. Encoding plasma membrane Na+/

H+ antiporter regulates plasma Na+ under salt stress. 

Cotton plants expressing GhSOS1 and transformed with 

virus-induced gene silencing revealed increased salt 

sensitivity. Besides, plants demonstrated lowered growth 

and increased Na+ content in leaves, stems, and roots (37). 

Studying the responses of small RNA in cotton to salt 

shock and long-term salt stress revealed 88 and 75 

differentially expressed genes. The miR390/tasiRNA-ARFs/

ARF4 pathway was discovered to be altered in salt-stressed 

plants (38). Histone acetyltransferases (HATs) are a group 

of genes that play significant roles in chromatin regulation. 

Among them, the expression level of several genes 

including GhHAC-1501, -1502, -1503, GhHAG1501, -1504, and 

GhHAF-1501 enhanced in response to salt stress. HATs 

were differentially controlled in response to salt stress, 

cold, drought stress, and heavy metals in cotton plants. In 

general, these genes were concluded to be associated with 

responses to various abiotic stresses (39). Genome-wide 

analysis of callose synthases (CalSs) allowed the 

identification of these gene family members in cotton 

plants. Based on the sequences of CalSs from A. thaliana, 

27 and 28 genes were found in G. hirsutum and G. 

barbadense, respectively. Transcriptome analysis and qRT-

PCR analysis under abiotic stresses including salt, cold, 

heat, and drought enabled the prediction of their roles in 

fiber development and salt response (40). 

 

 

Conclusion   

This review has underscored a major avenue for 

combating salt stress in cotton: genetic engineering. 

Genetic engineering in cotton has shown promise in 

enhancing plant salt tolerance. The exploration of various 

genes and transcription factors, such as DREB2, GhABS2, 

and MAPK signaling cascade, has provided valuable 

insights into developing salt-resistant cotton cultivars. The 

identification of specific genes and proteins, like LEA 

proteins, TLP genes, Gh3 genes, and ROS-related genes, 

has offered potential targets for genetic manipulation to 

bolster salt stress tolerance. As technology advances, 

modern breeding methods, including gene editing and 

genetic engineering, offer precise and efficient means of 

developing salt-tolerant cotton varieties. However, it is 

essential to navigate regulatory and environmental 

considerations when deploying these cutting-edge 

techniques. 
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7. GhSOS1 G. hirsutum L. Gene silencing (37) 

Table 1. The important genes, used to obtain salt tolerance cotton lines and varieties.  
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