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Abstract   

Biofertilizers are gaining widespread acceptance in agriculture due to their 

numerous advantages over chemical fertilizers. These environmentally 

friendly alternatives play a crucial role in enhancing soil health and fertility 

through various mechanisms. Biofertilizers consist of diverse microorgan-

isms that can effectively promote plant growth and development, even   

under abiotic stress conditions. As a result, the utilization of biofertilizers is 

steadily increasing, especially with the escalating costs of chemical           

fertilizers and their adverse effects on soil health and crop yields. Certain 

microorganisms, such as Azotobacter, Azospirillum, Arbuscular Mycorrhizal 

Fungi (AMF) Gigaspora rosea, Pseudomonas, and Funneliformis geosporus, 

hold substantial potential for commercial use as biofertilizers to improve 

the growth and development of fruit crops. In-depth research has demon-

strated that biofertilizers can significantly augment the biomass and 

productivity of various fruit crops. Their application in fruit crop production 

is particularly beneficial as they not only enhance growth but also confer 

improved resistance to abiotic stress factors like high temperatures, 

drought, salinity, and metal toxicity. This comprehensive review highlights 

the substantial promise of biofertilizers in mitigating abiotic stress and   

fostering sustainable practices in fruit crop cultivation.   
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Introduction   

Fruit crops encounter various challenging conditions throughout their life 

cycle, starting from seed germination to maturity. Abiotic stresses, such as 

drought, salinity, high temperatures, and metal toxicity, significantly impact 

global productivity. These stressors pose major obstacles to horticultural 

success, particularly in developing nations where farming is crucial for rural 

livelihoods. Drought and salt stress are prevalent issues that hinder agricul-

tural productivity. Environmental stressors like drought, soil salinity, and 

extreme temperatures lead to substantial reductions in agricultural and 

horticultural yields globally, causing average losses of over 50% for major 

crops (1). To address these challenges, biofertilizers have emerged as a cost-

effective and sustainable solution to reduce reliance on chemical fertilizers 

and enhance the quality of natural land resources while managing stress 

effectively (2). The use of nitrogen-fixing microorganisms, such as  bioferti-

lizers like Azotobacter, and phosphate-solubilizing bacteria (PSB) to         en-
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hance plant nutrition in agricultural crops, has been widely 

established (3). Biofertilizers containing beneficial micro-

organisms offer several advantages in the rhizosphere 

compared to synthetic chemicals. These advantages in-

clude enhancing nutrient fixation, producing plant growth 

stimulants, improving soil stability, providing biological 

control, facilitating biodegradation, promoting nutrient 

recycling, encouraging mycorrhiza symbiosis, and devel-

oping bioremediation methods for soils contaminated 

with toxic, foreign, and persistent substances (4). There-

fore, the adoption of more sustainable approaches like 

biofertilization becomes imperative to mitigate environ-

mental harm (5). Several biofertilizers have been      suc-

cessfully utilized to support plant growth and develop-

ment in challenging environments, including mycorrhizal 

helpful bacteria (MHB), AMF, plant growth-promoting   

rhizobacteria (PGPR), and consortia of other beneficial 

microorganisms. With this background in mind, the        

present study was initiated to investigate the effects of 

biofertilizers under abiotic stress conditions such as 

drought, salinity, temperature, etc., in fruit crops. 

Impact of Abiotic stress on fruit crops        

Fruit crops are vulnerable to various abiotic stresses, such 

as high temperatures, excessive or insufficient moisture, 

salinity, metal toxicity, and others (6, 7, 8, 9). The conse-

quences of global warming are expected to exacerbate the 

frequency, intensity, and duration of stress related to      

water scarcity, excess water, and elevated temperatures. 

Drought stress can have several detrimental effects on 

plants, including reduced vegetative growth, decreased 

net photosynthetic area, and increased transpiration rate, 

all of which can affect water use efficiency. Consequently, 

these factors can impact the overall production of dry  

matter in fruit crops (10). In addition to moisture stress, 

fruit crops also face challenges from other environmental 

factors like high temperatures, flooding, salinity, radiation 

stress, etc. For instance, salinity stress significantly affects 

banana plants, resulting in a reduction of pseudo stem 

thickness, delayed blooming, smaller fingers, and poor 

quality bunches (11, 12). Similarly, salinity stress in    

strawberries can lead to nutrient absorption imbalances, 

osmotic or ionic effects, leaf burning, and fruit deformities 

(13). The detrimental impacts of salinity on plants mainly 

arise from the reduction in soil osmotic potential, which 

induces water stress, and the specific effects of ions that 

cause salt stress. These factors can lead to nutritional   

imbalances or a combination of these mechanisms       

( Fig. 1).(Table. 1.) 

Biofertilizers to mitigate abiotic stress       

Bio-fertilizers, composed of naturally occurring living    
microorganisms, exhibit no adverse effects on plants, soil 

health, or the environment (14, 15). These microorganisms 

play a pivotal role in facilitating nitrogen and phosphorus 

nutrition in plants, either by their presence in the soil or 

through symbiotic associations with plants. Such associa-

tions directly or indirectly contribute to the nutrient      

supply for plants. Notably, bio-fertilizers have demonstrat-

ed their potential to augment the development and pro-

duction of horticultural crops. Research findings suggest 

that the utilization of bio-fertilizers can significantly in-

crease crop yields, with strawberry crops exhibiting im-

provements ranging from 15% to 30% (16). Additionally, 

Fig. 1: Effects of bio-fertilizers under abiotic stresses in fruit crops  
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bio-fertilizers actively synthesize essential substances 

such as hormones, vitamins, and other growth-promoting 

elements, thereby fostering enhanced growth and overall 

development in strawberries (17). Moreover, biofertilizers, 

comprising beneficial microorganisms, have shown    

promising results in enabling horticultural crops to effec-

tively combat abiotic stress through diverse mechanisms. 

Mycorrhizal symbiosis has been widely observed in nearly 

all fruit tree species grown in nurseries or cultivated in 

fields (18). Arbuscular mycorrhizal (AM) symbiosis, in     

particular, has been extensively studied and is known to 

promote plant growth, enhance nutrient uptake, improve 

fruit quality, and increase resilience to various abiotic  

challenges, including cold temperatures, dehydration, and 

salinity (19). Among the Azospirillium species, A. brasilense 

stands out due to its exceptional resistance to multiple 

abiotic stresses and is considered of great significance. 

These bacteria have been found to promote plant growth 

even in adverse conditions such as drought (20). 

 It has been observed that when Citrus tangerine 

seedlings were inoculated with AMF at a temperature of 

25°C, a significant increase in root volume was noted (21). 

Furthermore, under a lower temperature condition of     

15°C, seedlings treated with AMF exhibited considerable 

enhancement in root length, surface area, and volume, 

indicating substantial growth stimulation. PGPR possess 

the capability to produce ACC-deaminase within the      

rhizosphere of plants. They achieve this by metabolizing 

ethylene, which is a precursor known as 1-amino cyclopro-

pane-1-carboxylic acid (ACC), converting it into                       

α-ketobutyrate and ammonium. This process leads to   

decreased ethylene levels in plants (22), resulting in       

improved plant growth. Numerous studies have indicated 

that AMF contribute to the enhancement of root systems, 

leading to stronger, healthier plants with increased nutri-

ent uptake (23). AMF also have the capacity to alleviate 

water stress levels (24). Approximately 80% of plant roots 

can establish mutualistic connections with AMF, which are 

microscopic organisms living in the rhizosphere. Addition-

ally, AMF can increase the host plants' tolerance to the 

heavy metal cadmium (Cd) and facilitate the absorption of 

mineral elements by plants (19). Moreover, AMF possess 

the ability to immobilize Cadmium (Cd) by colonizing host 

plants. They achieve this by forming external hyphae and 

producing glomalin. Furthermore, they can enhance the 

physicochemical properties of the rhizosphere soil and 

enrich the composition of the microbial community. As a 

result, the accessibility of heavy metals is reduced, miti-

gating the negative effects of cadmium stress on plants. 

Impact of biofertilizers on drought stress        

During drought conditions, water availability is limited, 

leading to adverse effects on plant growth, metabolism, 

stomatal conductance, and tissue water content.          

However, plants possess a remarkable ability to sense  

variations in soil water content through their roots. When 

the soil becomes drier, root-sourced signals are transmit-

ted to the leaves through the xylem, triggering responses 

that reduce water loss and slow down leaf growth (24). 

Drought-induced stress induces numerous morphological, 

physiological, and biochemical alterations in all plant   

organs. Berry crops, in particular, have shown significant 

impacts during drought, as indicated by various reviews. In 

the context of this research, three species of arbuscular 

mycorrhizal fungi (AMF) were studied: Glomus                   

S.No Name of crop Type of stress Impact of stress Amendment and concentration References 

1 Avocado Drought, Salinity Decreases aerial and root length, Low 
chlorophyll content. Bacterial consortia @ 108 CFU mL-1. (50) 

2 Jack fruit Drought Rate of Survival % decreases. MF - BIOVAM @ ± 2g. (51) 

3 Muskmelon Drought  Reduces production efficiency. Pseudomonas, Azotobacter and (108 
CFU/ mL). (52) 

4 Passion fruit Salinity Limit the availability of water and nutri-
ents, physiological. 

Bovine biofertilizer diluted in water at 
0, 33.3, 66.6 and 100 % in soil. (53) 

5 Banana Drought, Salinity 
Survival rate drops, limits growth leads 
to death of plant, imbalance of nutrient 
uptake. 

AMF sp 35 - 50 cm-3 spores. (54) 

6 Plum Drought Salinity 
Reduced growth (root and shoot dry 
weight, total phosphate contents), sto-
matal imbalance. 

AMF (250 g/plant), Funneliformis 
mosseae (FM) @10g. (55,56) 

7 Date Palm Metal Toxicity 
Inhibition of growth and photosynthesis, 
altered water balance and nutrient as-
similation 

algae-based bio fertilizers @0.5g/
plant  (57) 

8 Papaya Metal Stress Decreasing the capability of roots to 
extract nutrients MYKOVAM@5 g/plastic bag  (58) 

9 Musk Melon Metal Cadmium Stress Low biomass accumulation, chlorosis 
B. fortis IAGS 223 and ZnO-NPs 

(20 mg kg−1) 
 (59) 

10 Trifoliate orange 
(Poncirus trifoliata) Temperature Stress Inhibits growth and leads to death 

15 g inocula of Glomus mosseae (495 
spores, hyphae and infected roots of 
Sorghum vulgare) 

(60) 

Table.1: Impact of several stress on fruit crops and its mitigation using biofertilizers  

CFU: colony forming unit, g/plant: grams/plant  
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intraradices, Glomus mosseae, and Glomus etunicatum.     

These AMF species were either applied individually or as a 

mixed inoculum to micro-propagated strawberries trans-

planted in the field. The results revealed a remarkable in-

crease of more than 10% in root length (25). In the case of 

high-bush blueberry plants subjected to drought stress, 

Funneliformis mosseae exhibited the most beneficial 

effects on plant growth. Plants inoculated with AMF 

demonstrated an enhanced ability to photosynthesize 

compared to non-inoculated plants under drought condi-

tions. The observed growth improvement can be predomi-

nantly attributed to non-stomatal factors, specifically   

advancements in energy absorption by the chloroplasts 

and the photochemical capacity of photosystems in blue-

berry plants (26). 

 The study involved inoculating pomegranate plants 

with two strains of the AMF, Rhizophagus intraradices, and 

subjecting them to varying irrigation regimes. The results 

indicated that mycorrhizal plants exhibited enhanced anti-

oxidant defenses, including superoxide dismutase,          

catalase, and ascorbate peroxidase, under both irrigation 

conditions (27). Similarly, in mango, the application of 

Azospirillum and Azotobacter significantly alleviated 

drought stress. However, with increasing drought severity, 

membrane stability and photosynthetic pigments           

declined, while electrolyte leakage, soluble sugars, total 

carbohydrates, and proline content increased in the man-

go cv. Owais (28). In citrus orchards facing drought stress, 

mycorrhizal inoculation, specifically with Funneliformis 

mosseae (formerly Glomus mosseae), significantly          

increased root concentrations of abscisic acid (ABA),     

indole-3-acetic acid (IAA), methyl jasmonate, and brassino-

steroids (BRs) (29). Utilizing F. mosseae as a biofertilizer in 

citrus orchards holds the potential to enhance both sus-

tainable agriculture and environmental conservation. 

When seedlings were treated with bio-fertilizers, particu-

larly 100 g of mycorrhiza per pot, there was a noteworthy 

increase in leaf fresh Relative Water Content, enzyme    

activity, chlorophyll a and b, and a decrease in ion leakage 

(30). In pistachio, studies have demonstrated the benefi-

cial outcomes of the interaction between plants and AMF 

on plant growth, nutrient levels, and the accumulation of 

osmoprotectants. These investigations were carried out on 

different rootstocks such as Abareghi, Bane Baghi,           

Sarakhs, and Badami-Rize-Zarand, all of which were sub-

jected to drought stress conditions (31). 

Impact of biofertilizers on salinity stress       

Under salt stress conditions, the mycorrhizal citrus plant 

species Citrus tangerina Hort. ex-Tanaka exhibited height-

ened rates of stomatal conductance, net photosynthesis, 

and transpiration. These improvements were attributed to 

elevated values of photosynthetic rate (Pn), transpiration 

rate (E), and stomatal conductance in mycorrhizal seed-

lings (32). In salt stress experiments, researchers qualita-

tively and quantitatively examined the root H+ effluxes of 

trifoliate orange (Citrus trifoliata) seedlings. Upon the   

introduction of Funneliformis mosseae (Glomus mosseae), 

the amount of H+ efflux from the roots to the rhizosphere 

increased. This phenomenon is attributed to the mutualis-

tic relationship between mycorrhizal fungi and host plants, 

which promotes the enhanced release of hydrogen ions 

(H+) from the roots into the immediate soil environment, 

leading to increased acidity in the rhizosphere. Conse-

quently, the mycorrhizal roots' ability to acidify the sur-

rounding area is augmented, resulting in a more acidic 

environment that enhances the salt tolerance of              

AMF (arbuscular mycorrhizal fungi) seedling rhizospheres 

(33). Date palms (Phoenix dactylifera) have shown the  ca-

pacity to improve their resistance and adaptability to sa-

line  environments, particularly when subjected to     vari-

ous abiotic stressors in the presence of putrescine (34). 

Treatments with Glomus fasciculatum, an AMF species, 

have been observed to boost date palm productivity,    

reduce salt-induced oxidative damage, and enhance fruit 

quality in these conditions. Conversely, salt has been 

found to have adverse effects on the root colonization of 

grape (Vitis spp.) rootstocks (35). 

 Salinity stress can have detrimental effects on  
pomegranate (Punica granatum) growth, but the presence 

of AMF, specifically Funneliformis mosseae, has been 

shown to alleviate some of these negative impacts. When 

pomegranate plants were exposed to salinity stress, the 

application of AMF resulted in noteworthy improvements, 

including a 23% increase in shoot dry weight, a 9%         

increase in root colonization, a 53% increase in leaf area, 

and a 17.25% increase in root and shoot phosphorus (P) 

concentration (36). In contrast, increasing water salinity 

levels from 0.3 to 4.0 dS m-1 led to a decrease in the     

number of jackfruit (Artocarpus heterophyllus) seedlings. 

However, the negative effects of salinity stress were miti-

gated when biofertilizers were introduced to the growing 

medium. As a result, the jackfruit seedlings exhibited    

enhanced stem diameters and overall root length (37). The 

growth of papaya (Carica papaya) seedlings was adversely 

affected by escalating soil salinity and irrigation water  

salinity. Nevertheless, the negative impacts were partially 

alleviated in the presence of bovine biofertilizers (38). AMF 

has proven beneficial in facilitating nutrient uptake and 

seedling development in various plant species. For         

instance, melon (Cucumis melo) seedlings demonstrated 

increased tolerance to salinity levels of up to 150 mM when 

assisted by AMF. Furthermore, AMF played a crucial role in 

reducing both mechanical and metabolic damage caused 

by stress in melon seedlings (39). 

Impact of biofertilizers on temperature stress      

High temperatures have been shown to have detrimental 

effects on the physiological and physical characteristics of 

strawberry plants. However, when strawberry plants are 

associated with AMF, they exhibit improved traits such as 

increased leaf and root numbers, larger leaf area, and 

higher dry weights of leaves and roots. Notably, the       

species Glomus aggregatum demonstrated particularly 

higher dry weights for both leaves and roots. The symbi-

otic relationship between strawberry plants and AMF has 

been found to enhance overall strawberry growth. Addi-

tionally, AMF pre-infection significantly reduced the       

frequency and severity of leaf and root browning caused 

by recurrent high-temperature stress on the roots (42).      
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In the case of Azotobacter and Phosphate-Solubilizing      

Bacteria (PSB) isolates, their capacity to thrive at elevated 

temperatures of 30°C and 35°C has been observed.        

Conversely, the growth of papaya plants was negatively 

affected as temperatures increased from 35°C to 40°C. 

However, under stressful conditions, the PSB isolate 

demonstrated the ability to multiply and effectively         

solubilize phosphorus. This finding suggests that these 

isolates have a high tolerance to stress and can efficiently 

solubilize phosphates even under conditions of high      

temperatures (43). 

 Trifoliate orange (Poncirus trifoliata) seedlings   ex-

posed to high-temperature stress exhibit a significant in-

crease in the activities of Superoxide Dismutase (SOD) and 

Catalase (CAT) enzymes, along with an elevation in soluble 

protein content, when inoculated with the arbuscular my-

corrhizal fungus Glomus mosseae. Moreover,   Glomus 

mosseae positively influences root morphological charac-

teristics, thereby ameliorating the deleterious effects of 

high-temperature stress (44). The enhanced root morphol-

ogy in mycorrhizal plants enables more efficient uptake of 

water and nutrients from the soil, ultimately alleviating 

temperature stress (45). By facilitating water and nutrient 

absorption, mycorrhizal associations are        instrumental 

in mitigating the impact of high temperatures on plants. In 

contrast, blueberry (Vaccinium           corymbosum) plants 

exposed to low temperatures experience a decline in solu-

ble sugars, phosphate, and potassium leaf concentrations. 

However, the application of the arbuscular mycorrhizal 

fungus Glomus mosseae has demonstrated the potential to 

enhance blueberry plant resilience to low-temperature 

stress (46). Through          improvements in antioxidant con-

tent, osmotic adjustment, and nutrient availability, Glomus 

mosseae enhances the tolerance of 'Britewell' blueberry 

plants to low-temperature stress. 

Impact of biofertilizers on metal toxicity stress      

In the cultivation of date palm (Phoenix dactylifera L.) on 

soil contaminated with heavy metals, the presence of   

rhizobia and arbuscular mycorrhizal fungi (AMF) isolates 

has been found to positively impact both the growth of 

date palm and the uptake of lead (Pb). Consequently, 

there is a noteworthy increase in the occurrence of AMF 

colonization in date palm, reaching a frequency of 86.67% 

(47). Even under low-temperature conditions, heavy     

metals exhibit reduced growth due to photosynthesis inhi-

bition, chlorophyll biosynthesis, and mineral assimilation 

(48). In the case of Cucumis melo seedlings, the application 

of bio-fertilizer containing Bacillus fortis has shown re-

markable improvements in the activity of catalase (CAT), 

peroxidase, and superoxide dismutase (SOD) enzymes, 

leading to enhanced growth and improved physiochemical 

features under both normal and cadmium-contaminated 

conditions (49).   

 

Prospects and Conclusion   

It is evident from various studies that the application of a 

batch of biofertilizers can significantly enhance the        

tolerance of different fruit crops to abiotic stresses, partic-

ularly when utilizing organisms such as Azotobacter,             

Azospirillum, AMF, Glomus mosseae, Pseudomonas,      Fun-

neliformis geosporus, among others, which have great 

commercial potential. Abiotic stresses like drought, salt, 

waterlogging, and high temperatures adversely affect fruit 

crops, but their negative effects can be alleviated through 

the use of biofertilizers. Biofertilizers play a crucial role in 

stimulating plant growth and root development, while also 

enhancing water and nutrient uptake through extraradical 

hyphae. Additionally, they contribute to the regulation of 

phytohormones and signaling substances, reinforce anti-

oxidant defense systems, promote the accumulation of 

osmolytes, increase chlorophyll levels, and improve soil 

structure and fertility within the mycorrhizosphere of fruit 

crops that have been inoculated with microbial agents. It 

is worth noting that biofertilizer extracts, derived from a 

diverse range of beneficial microorganisms, have the     

capacity to increase abiotic stress tolerance, improve fruit 

quality, and enhance nutrient uptake from the soil. Conse-

quently, the application of biofertilizer extracts is recom-

mended not only as a means to enhance morphological 

and physiological aspects but also as a strategy to mitigate 

stressful conditions that can impede crop growth and   

development, with minimal environmental impact. The 

utilization of bio-fertilizers offers numerous advantages, 

including their organic and eco-friendly nature, which 

safeguards soil quality and health. Therefore, it is advisa-

ble for farmers to opt for bio-fertilizers over excessive use 

of chemical fertilizers, especially urea. Emphasizing the 

potential of bio-fertilizers in fruit crop development is   

crucial due to their cost-effectiveness and potential to  

increase the overall revenue for growers.   
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