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Abstract 

The genus Salvia, a member of the Lamiaceae family, exhibits a rich array of 

secondary metabolites, including di- and triterpenoids, polyphenols, and 

essential oil compounds. These constituents contribute to valuable 

pharmacological activities such as antibacterial, antiviral, anti-inflammatory, 

and antioxidant properties. Among these metabolites, rosmarinic acid 

stands out as a particularly promising compound, deriving from the 

precursors phenylalanine and tyrosine. It belongs to the phenolic compound 

class and acts as an ester of caffeic acid, showcasing diverse therapeutic 

potentials like antifungal, antibacterial, antiviral, antioxidant, anticancer, 

anti-ageing, anti-inflammatory, and anti-diabetic effects. To facilitate the 

production of such secondary metabolites, plant tissue culture techniques 

have played a pivotal role, with hairy root cultures being one of the preferred 

methods. This review provides an extensive examination of the biosynthetic 

pathway of rosmarinic acid and its successful generation using hairy root 

cultures. Additionally, the review highlights the utilization of genetic 

modification tools and various biotic and abiotic elicitors, including yeast 

extract, methyl jasmonate, and silver ion (Ag+), in hairy root cultures of 

diverse Salvia species to enhance the production of rosmarinic acid. 
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Agrobacterium rhizogenes; genetic engineering; elicitors  

 

Introduction 

Salvia is the largest genus in the Lamiaceae family, comprising around 1000 

species of herbs and shrubs distributed globally (1,2). Lamiaceae is 

commonly known as the mint or sage family, and its plants are valued for 

their aromatic properties, easy cultivation via stem cuttings, edible leaves, 

and ornamental foliage (3). Some well-known ornamental members include 

Coleus, Stachys, Thymus, and Salvia (4,5). These plants have been used 

medicinally since ancient times due to the presence of various beneficial 

compounds such as alkaloids, terpenes, glycosides, phenols, and 

polyphenols (6–8). Salvia, in particular, contains diverse secondary 

metabolites like polyphenols, diterpenoids, triterpenoids, and essential oils 

with notable anti-viral, anti-microbial, anti-inflammatory, and antioxidant 

activities (9–11). Additionally, it contains phenolic compounds like 

rosmarinic acid and salvianolic acids (13–15). Rosmarinic acid is a phenolic 

compound first identified in Salvia rosmarinus (Rosemary) and found in over 

35 plant families, from primitive hornworts to advanced monocotyledons 

and dicotyledons, but not in gymnosperms (16,21). It is stored in the 

vacuoles and cytoplasm as an anion within plant cells (17,18). 

 Tissue culture techniques, particularly hairy root culture, are widely 
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utilized for enhancing the production of secondary 

metabolites like rosmarinic acid (22–24). Hairy root 

cultures have been found to yield higher amounts of 

metabolites compared to callus and cell suspension 

cultures, which may exhibit variation in cell growth and 

erratic secondary metabolite yield due to genetic and 

epigenetic changes (25,26). Conversely, hairy root cultures 

grown rapidly without exogenous plant growth regulators, 

display genetic and biosynthetic stability, and accumulate 

equivalent or greater amounts of secondary metabolites 

(30–32). Hairy root cultures have proven successful in 

producing various phytochemicals, including artemisinin 

from Artemisia, forskolin from Coleus, indole alkaloids from 

Catharanthus and Cinchona, shikonin from Lithospermum, 

withanolides from Withania, verbascoside from Gmelina 

arborea (33), diosgenin from Trigonella, ajmaline, 

ajmalicine from Rauvolfia micrantha (34), and sanguinarine 

and coniferin from Linum flavum (35,36). Hairy roots result 

from infection by Agrobacterium rhizogenes bacteria, 

which transfer their root-inducing Ri plasmid into the 

plant, encoding enzymes capable of modifying hormonal 

metabolism (37). Additionally, hairy root cultures are 

employed in biotransformation to produce valuable 

biochemicals for pharmaceutical purposes, exhibiting 

improved solubility in biological systems, enhanced 

pharmacokinetics, and cost-effectiveness (35,38).  

 This review focuses on rosmarinic acid production 

using hairy root cultures of Salvia, its biosynthesis, genetic 

engineering, and metabolic engineering of genes involved 

in rosmarinic acid production, as well as elicitation 

strategies using various biotic and abiotic components.  

 

Methodology  

Multiple academic databases, including Google Scholar, 

Scopus, and Web of Science, were utilized to retrieve 

scholarly papers and research articles. The search strategy 

employed specific keywords such as "salvia," "secondary 

metabolites," "hairy roots," "rosmarinic acid," "metabolic 

engineering," and "elicitors. 

Physicochemical Properties of Rosmarinic acid: 

Rosmarinic acid, a caffeic acid ester with a molecular weight 

of 360 Da, belongs to the hydroxyl cinnamic acids family. It is 

formed by the esterification of 3,4-dihydroxycinnamic acid 

(caffeic acid) and 3,4-dihydroxyphenyllactic acid (DHPL) (39–

41). This compound possesses a hydroxylated cinnamic acid 

moiety at the ortho-, meta-, or para- position of the benzene 

ring. The IUPAC name of rosmarinic acid is (2R)-3-(3,4-

dihydroxyphenyl)-2-[(E)-3-(3,4-dihydroxyphenyl)prop-2-

enoyl]oxypropanoic acid (42).  Structure of the compound 

rosmarinic acid is shown in Fig. 1.  

 It exhibits antioxidant properties by donating 

hydrogen to acceptors and preventing reactions with 

dioxygen and peroxides, thereby trapping free radicals (43). 

While being soluble in organic solvents such as ethanol, 

dimethyl sulfoxide, and dimethyl formamide at 

approximately 25mg/mL, it only shows limited solubility in 

water (42,44). This crystalline solid compound has a red-

orange color, a melting point of -171 to -175℃, a boiling point 

of 694.71℃ at 760 mm Hg, a density of 1.547 g/cm3, a vapor 

pressure of 1.1x10-13 mmHg at 25℃, and a polarity 

represented by log P=1.82 (42,44,45).  

Biosynthetic Pathway of Rosmarinic acid Synthesis:  

Phenylalanine serves as a precursor to rosmarinic acid (RA) 
(46,47). Phenylpropanoid pathway enzymes convert 

phenylalanine to an activated hydroxycinnamic acid (48). 

Phenylalanine ammonia-lyase (PAL) facilitates the 

deamination of l-phenylalanine to t-cinnamic acid (49). 

Cinnamate 4-hydroxylase (C4H), a cytochrome P450 

monooxygenase, hydroxylates t-cinnamic acid at position 

4 to produce 4-coumaric acid (50,51).                                            

4-coumaroyl:coenzyme ligase (4CL) then activates 

hydroxycinnamic acid through a two-step process, forming 

hydroxycinnamoyl-AMP and subsequently 

hydroxycinnamoyl-CoA (51,52). The other precursor,            

L-tyrosine, undergoes transamination using 2-oxoglutarate 

as a second substrate, catalyzed by tyrosine 

aminotransferase (TAT) (21,47). This reaction leads to the 

formation of 4-hydroxyphenylpyruvate and glutamate. 

Hydroxyphenylpyruvate reductase (HPPR) reduces                

4-hydroxyphenylpyruvate to D-4-hydroxyphenyllactate, 

accepting both NADH and NADPH as cosubstrates 

(47,51,53,54). 

 Rosmarinic acid synthase (RAS), also known as           

4-hydroxycinnamoyl-CoA:4-hydroxyphenyllactate 

hydroxycinnamoyltransferase, transfers the 4-coumaroyl 

moiety from 4-coumaroyl-CoA to the aliphatic hydroxyl 

group of hydroxyphenyllactate, releasing coenzyme A and 

forming 4-coumaroyl-4’-hydroxyphenyllactate (pC-pHPL) 

(21,53,55). Subsequently, two cytochrome P450 

monooxygenases (50) hydroxylate pC-pHPL at either 

position 3 or 3' of the aromatic rings. One of these enzymes 

(3-H or hydroxycinnamoyl-hydroxyphenyllactate                    

3-hydroxylase) catalyzes the 3-hydroxylation of pC-pHPL to 

form caffeoyl-4’-hydroxyphenyllactic acid, while the other 

enzyme (3’-H or hydroxycinnamoyl-hydroxyphenyllactate 

3’-hydroxylase) hydroxylates pC-pHPL at 4-coumaric acid 

or a 4-coumaroyl moiety, yielding 4-coumaroyl-3’,4’-

dihydroxyphenyllactic acid (50,56). Further hydroxylation 

of caffeoyl-4’-hydroxyphenyllactic acid and 4-coumaroyl-

3’,4’-dihydroxyphenyllactic acid by 3’-H and 3-H, 

respectively, results in the formation of rosmarinic acid 

(Fig. 1) (46). The complete biosynthetic pathway is 

depicted in Figure 2 (46). 

Fig. 1. Rosmarinic Acid (C18H16O8) drawn using ChemDraw Ultra 
version 12.0.2 
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Fig. 2. Biosynthetic pathway of rosmarinic acid production (ChemDraw Ultra version 12.0.2). (The involved enzymes are abbreviated: PAL: 
Phenylalanine ammonia lyase; C4H: Cinnamate 4-hydroxylase; 4CL: 4-coumaroyl: coenzyme ligase; RAS: Rosmarinic acid synthase; 3-H: 

Hydroxycinnamoyl-hydroxyphenyllactate 3-hydroxylase; 3’-H: Hydroxycinnamoyl-hydroxyphenyllactate 3’-hydroxylase; TAT: Tyrosine 
aminotransferase; HPPR: Hydroxyphenylpyruvate reductase) 
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Pharmacological Significance of Rosmarinic acid: 

Rosmarinic acid exhibits diverse pharmacological 

properties, including antiviral, anticancer, anti-aging, anti-

inflammatory, antimicrobial, antifungal, antioxidant 

(57,58), antidiabetic, neuroprotective (59), and 

hepatoprotective activities (46,60,61). These effects are 

attributed to its modulation of cell signaling pathways and 

gene expression (62).  

Anti-inflammatory activity 

Rosmarinic acid exhibits anti-inflammatory properties, 

protecting the skin from UVB-induced DNA damage (63). 

Moreover, it inhibits the overproduction of high mobility 

group box 1 (HMGB1) nuclear protein, known to contribute 

to tissue damage in certain diseases (64). Furthermore, it 

displays strong anti-inflammatory effects in cases of 

lipopolysaccharide-induced acute lung injury (65).  

Anti-microbial activity 

Rosmarinic acid has demonstrated inhibitory and 

bactericidal effects against several pathogenic bacteria, 

such as Staphylococcus epidermidis 5001, Pseudomonas 

aeruginosa ATCC 27583, Mycobacterium smegmatis 5003, 

Stenotrophomonas maltophilia, Enterococcus faecalis C159

-6, Corynebacterium T25-17, and Staphylococcus warneri 

T12A12, as well as Pantoea agglomerans, Klebsiella sp., 

and Streptomyces sp (66,67). 

Anti-fungal activity 

Rosmarinic acid shows strong inhibitory effects on the 

growth of several fungi such as Alternaria kikuchiana, 

Pestalotiopsis mangiferae, Botrytis cinerea, and Penicillium 

citrinum (68). 

Anti-cancer activity 

Rosmarinic acid treatment has demonstrated apoptosis 

induction in human leukemia U937 cells and growth 

inhibition of breast cancer cell line MCF7 by activating 

hypermethylated tumor suppressor genes (69,70). 

Moreover, it exhibits anti-metastatic and tumor weight-

reducing effects (71), as well as impedes cell proliferation 

in human ovarian cancer cells (72). 

Anti-viral activity 

Rosmarinic acid exhibits antiviral activity against virus 

replication in human lymphocyte MT-4 cells. Additionally, 

it reacts with nitrite ions, forming nitrorosmarinic acid, 

which also possesses antiviral properties. Furthermore, 

nitrorosmarinic acid specifically inhibits HIV-1 integrase 

activity, thereby preventing the integration of viral DNA 

into the host genome (73).  
Anti-oxidant activity 

Rosmarinic acid exerts its antioxidant properties by 

scavenging free radicals and safeguarding cellular 

membranes against lipid peroxidation (74). Furthermore, it 

effectively mitigates oxidative stress by inhibiting nitric 

oxide synthase activity (75) and decreasing intracellular 

reactive oxygen species (ROS) generation (76). 

Anti-proliferative activity 

Rosmarinic acid exhibits antiproliferative and 

proapoptotic properties in human colon carcinoma-

derived cell lines (77). Moreover, it demonstrates efficacy 

in treating glomerular sclerosis by impeding mesangial cell 

proliferation (78). 

Neuroprotective activity 

Rosmarinic acid, an effective inhibitor of ciguatoxin (CTX), 

a cytotoxin from microalgae, shows promise in treating 

CTX-induced neurological impairment (79). Furthermore, 

rosmarinic acid and its derivatives exhibit cognitive-

enhancing properties and potential for Alzheimer's disease 

prevention (80). 

Rosmarinic acid in food industry 

Rosmarinic acid and its derivatives are extensively utilized 

for their antioxidant properties in preserving fried food 

products, delaying oxidation, and preventing the 

formation of undesirable compounds, thereby extending 

shelf life (81,82). Additionally, these compounds serve as 

co-pigments in beverages such as juices and wines, aiding 

in the stabilization and enhancement of color due to the 

presence of unstable natural colorants (83,84). 

Production of rosmarinic acid using tissue culture 

studies 

The implementation of in vitro methodologies has resulted 

in the synthesis and accumulation of valuable plant 

secondary metabolites through cell, tissue, and organ 

culture. Techniques like callus, cell suspension, and organ 

cultures (shoot, root, somatic embryos) are employed for 

phytochemical production. Undifferentiated cultures 

generally exhibit lower yields (85). However, certain 

secondary metabolites can only be synthesized in 

organized structures, leading to higher yields in 

differentiated tissues. The economic feasibility of scaling 

up such techniques remains a challenge (86). Genetic 

transformation, especially the production of hairy roots 

through Agrobacterium rhizogenes and optimization of 

cultural conditions, has significantly boosted secondary 

metabolite yield (22, 23, 27, 37).  

 Sterile shoots of Salvia officinalis at 5 weeks of age 

were used as explants and cultured on Murashige and 

Skoog (MS) medium supplemented with 2.22μM                     

6-Benzylaminopurine (BAP) and 0.57μM Indole-3-acetic 

acid (IAA). Hairy roots were induced by wounding the 

second node of stems and midvein of leaves with a sterile 

needle dipped in a bacterial culture of ATCC 15834 

Agrobacterium rhizogenes strain. The hairy roots were 

transferred to Woody Plant (WP) liquid medium containing 

500mg/L ampicillin and incubated in the dark. Ampicillin 

concentration was gradually reduced until it was 

eliminated. Higher rosmarinic acid production (45 mg/g 

DW) was observed compared to A4-induced lines (87). 

 In another study, 3-week-old Salvia officinalis 

seedlings were used as explants and maintained on MS 

medium with 0.45mg/L BAP and 0.1mg/L IAA, sub-cultured 

every 3 weeks. Hairy roots were induced by infecting shoot 

tips with ATCC 15834 Agrobacterium rhizogenes strain. The 

good cultures were sub-cultured every 40 days in hormone

-free WP medium in 300mL flasks (80mL medium). 

Rosmarinic acid accumulation was 34.7 ± 1.07mg/g DW 

(88). 

 For Salvia wagneriana, 4-week-old aseptic shoots 

on MS medium were used as explants. Hairy roots were 
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induced by infecting leaf lamina or petiole fragments with 

ATCC 15834 and NCPPB 1855 Agrobacterium rhizogenes 

strains. Rosmarinic acid accumulation was 173μg/g FW 

(89). 

 Similarly, 5-week-old aseptic shoots of Salvia viridis 

on MS medium with 0.1mg/L IAA and 0.5mg/L BAP were 

used as explants. Hairy roots were induced by infecting 

leaves and shoots with a needle dipped in A4 

Agrobacterium rhizogenes strain. After infection, explants 

were transferred to hormone-free MS medium and then to 

liquid WP medium with 500mg/L ampicillin. Rosmarinic 

acid accumulation was 35.8mg/g DW (90). In Salvia 

bulleyana, 5-week-old aseptic shoots on MS medium with 

0.1mg/L IAA and 0.5mg/L BAP were used as explants. Hairy 

roots were induced by infecting shoots and leaves with a 

needle dipped in A4 Agrobacterium rhizogenes strain. After 

infection, explants were transferred to hormone-free MS 

medium and then to liquid WP medium with 500mg/L 

ampicillin. Rosmarinic acid accumulation ranged from 31.2 

to 39.6mg/g DW (91). 

Genetic Engineering/Metabolic Engineering Studies for 

Rosmarinic acid Production 

Genetic engineering allows alteration of an organism's 

DNA to manipulate cellular metabolism for desired traits 

(92). Gene transfer techniques are being developed to 

understand and regulate genes responsible for secondary 

metabolite synthesis in different plants (93). 

Consequently, genetic engineering enables manipulation 

of plant secondary metabolism to enhance production of 

rosmarinic acid, a valuable compound used across various 

industries. Altered genes in specific pathways have been 

employed to modify rosmarinic acid production. 

Modification in phenylpropanoid pathway and tyrosine

-derived pathway 

Genetic engineering of phenylpropanoid and tyrosine-

derived pathways was performed to modulate rosmarinic 

acid production in S. miltiorrhiza hairy root cultures (94, 

95). Intermediate plasmid p1304+ was constructed by 

integrating c4h, tat, hppr, and hppd DNA sequences 

between P35S and TNOS in p1304+. Subcloning of hppr in 

p1304+-tat resulted in p1304+-tat-hppr plasmid for the tat-

hppr binary expression vector. Transformation of                  

S. miltiorrhiza leaf disc explants with positive clones was 

carried out. Culturing hairy root clones in dark at 25°C, 

using half strength liquid B5 medium with hygromycin and 

cefotaxime. Metabolite analysis at day 45 showed wild 

type produced 211mg/L rosmarinic acid, the vector control 

56.1mg/L. c4h transformed roots had 201mg/L, tat-

transformed comparable to wild type, hppr transformed 

produced 616mg/L, and antisense-hppd transformed 

produced 542mg/L. Co-expression of tat and hppr resulted 

in 906mg/L rosmarinic acid, indicating their synergistic 

effect. Tyrosine-derived pathway genes (tat, hppr, and 

hppd) had more impact on rosmarinic acid biosynthesis 

than phenylpropanoid pathway gene c4h (95). 

 In Antirrhinum majus, the DEL/ROS1 protein 

complex (Delila and Rosea1 transcription factors) triggers 

the expression of essential genes, including PAL, involved 

in the phenylpropanoid pathway (96). A control vector, 

pBI121-CAMBIA1302 (pBC), and a coexpression vector, pBC

-AmDEL-AmROS1 (pDR), were constructed and introduced 

into Agrobacterium tumefaciens strain EHA105 using the 

heat-shock method. S. miltiorrhiza leaves were infected 

with A. tumefaciens and placed on MS selection medium. 

Upon shoot development, they were transferred to half 

strength MS medium with hygromycin B (10mg/L) and 

cefotaxime (200mg/L). The root system developed within 2 

weeks, and the plantlets were multiplied in MS basal 

medium. Rosmarinic acid content was measured at three 

stages, showing a significant increase after 60 days 

compared to the wild type and vector-transformed control 

(pBC). Increased rosmarinic acid content was also 

observed after 210 days (97, Table 1). 

 In the tyrosine-derived pathway for rosmarinic acid, 

4-coumaroyl-CoA acts as a precursor for both flavonoids 

and rosmarinic acid synthesis. Chalcone synthase (CHS) 

and RAS enzymes utilize 4-coumaroyl-CoA as substrates 

for flavonoid and rosmarinic acid production, respectively. 

Decreasing flavonoid synthesis in S. miltiorrhiza impacts 

rosmarinic acid and related phenolic acids' production. 

CHS is a key enzyme in flavonoid synthesis (98). Silencing 

the CHS transcript through RNAi-mediated silencing in       

S. miltiorrhiza hairy root cultures, followed by treatment 

with salicylic acid (SA), increased phenolic acid production 

efficiently. The CHS cDNA sequence was cloned into the 

pKANNIBAL vector in both sense and antisense directions. 

Fragments with the CaMV 35S promoter, octopine 

synthase (OCS) terminator, and PDK intron were ligated 

into the pART27 vector. Agrobacterium tumefaciens 

ATCC15834 was electroporated to introduce the 

recombinant plasmid into hairy root lines. Transformant 

root lines displaying kanamycin resistance were cultured 

in modified Gamborg's medium (67-V liquid medium) (99) 

at 25°C in darkness. On day 18 after inoculation, SA elicitor 

(50μM) was applied to the transgenic hairy root cultures 

and controls. In SA-treated wild-type lines, rosmarinic acid 

production was 20.42mg/g DW, 1.87 times higher than wild

-type lines. CHS-silenced lines produced 21.09mg/g DW 

rosmarinic acid, 1.93 times that of wild-type lines. SA-

treated CHS silencing lines showed the highest rosmarinic 

acid content (42.45mg/g DW). These findings suggest that 

combining both techniques is more effective for enhancing 

phenolic acid yield in S. miltiorrhiza hairy root cultures 

compared to genetic alteration or elicitor therapy (100).  
 Through RAS catalysis, 4-coumaric acid CoA and 3,4

-dihydroxyphenyllactic acid were converted into                            

4-coumaroyl-4'-hydroxyphenyllactic acid, which was 

further converted into rosmarinic acid by CYP98A14 (21). 

To enhance phenolic acid accumulation, RAS and 

CYP98A14 genes were individually duplicated into 

pCAMBIA1304+ vector with CaMV35S promoter using SpeI 

and BstEII restriction sites. The resulting constructs, 

pCAMBIA2300+-RAS and pCAMBIA2300+-CYP98A14, were 

ligated into pCAMBIA2300 vector at PstI, and transformed 

into A. tumefaciens strain C58C1 for infecting S. miltiorrhiza 

explants. Hairy roots were grown on decreasing 

carbenicillin levels and then on half strength MS liquid 

medium. Transgenic lines overexpressing RAS and 

CYP98A14 showed higher rosmarinic acid production 
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(22.57-26.07mg/g DW and 30.35-48.72mg/g DW, 

respectively) compared to control (15.97mg/g) (101). 

Overexpression of SmMYB2 gene in S. miltiorrhiza hairy 

roots also increased rosmarinic acid production by driving 

CYP98A14 expression (102). Similarly, overexpression of 

SmMYB98 gene increased total salvianolic acid 

production, including rosmarinic acid, while SmMYB98-KO 

(kaurene oxidase) gene decreased total salvianolic acid 

production (103).  
Modification in jasmonate biosynthesis pathway 

MeJA application boosts rosmarinic acid production in       

S. miltiorrhiza hairy root cultures (104). AOC gene targeting 

for internal JA overexpression was compared to 

exogenous JA treatment (105). AOC's specificity influences 

the stereochemical composition of jasmonates, making it 

a potential regulator of plant metabolite biosynthesis 

(106). The AOC cDNA from S. miltiorrhiza was cloned into 

the pCAMBIA1304 vector (p1304-SmAOC) with the 

hygromycin phosphotransferase gene (hpt) (105). 

Transgenic hairy roots were established using                         

A. rhizogenes strain C58C1, showed a 2.1-fold increase in 

rosmarinic acid (2.3mg/g DW) compared to wild type 

(1.3mg/g DW) when transferred to half strength B5 liquid 

media at 25°C in the dark (105). 

Modulation of transcription factors 

SmMYC2 was overexpressed in S. miltiorrhiza through the 

construction of pMD19T–SmMYC2 I construct, which, upon 

transfer to the destination vector, yielded pEarleyGate201-

SmMYC2 (97). The vector was then introduced into 

Agrobacterium tumefaciens strain GV3101, and explants 

were co-cultured and subsequently transferred to MS 

selection medium. Shoots were developed and subjected 

to root induction on half strength MS medium containing 

10mg/L glufosinate-ammonium and 200 mg/L cefotaxime, 

followed by propagation on half strength MS basal 

medium. After 2 months, the rosmarinic acid content in 

the roots was assessed, revealing a 2.46-fold increase in 

the overexpressed SmMYC2 roots (6.36 ± 0.21mg/g) 

compared to the vector transformed control (2.59 ± 

0.04mg/g) (107). 

 The basic helix-loop-helix (bHLH) superfamily 

constitutes the second-largest family of transcription 

factors in plants. In the context of secondary metabolism 

regulation in plants, these bHLH transcription factors have 

shown significant efficacy (108). Notably, the isolation and 

functional characterization of SmbHLH148 from S. 

miltiorrhiza revealed its role in the accumulation of 

phenolic acids and tanshinones in hairy roots. To achieve 

S. No. Name of species Media used + PGR Control yield 
Vector + Gene of 

interest Elicited yield Reference 

1. S. miltiorrhiza 

Half-strength B5 
medium + 100mg/L 

hygromycin and 
500mg/L cefotaxime 

Wild type (211mg/L) 
  

Vector transformed 
control- ck (56.1mg/

L) 

p1304+ -c4h 201mg/L 

(95) 

p1304+ -tat 
similar levels to 

those of wild type 

p1304+ -hppr 616mg/L 

p1304+ - antisense-
hppd 542mg/L 

P1304+- tat-hppr 906mg/L 

2. S. miltiorrhiza 

Half strength MS 
medium + 10mg/L 

hygromycin B + 200 
mg/L cefotaxime 

Wild type (1.58 ± 0.64 
mg) 

Vector transformed 
control- pBC (2.32 ± 

0.47 mg) 

pBC-DEL-ROS1 4.92 ± 1.34 mg (97) 

3. S. miltiorrhiza 67-V liquid medium 

SA treated wild-type 
lines (20.42mg/g DW) 
(1.87-fold of the wild-

type lines) 

CHS silencing lines 
21.09mg/g DW (in 

line RNAi-23) 
(100) 

SA treated CHS 
silencing lines 

42.45mg/g DW (in 
line RNAi-2) 

4. S. miltiorrhiza Half-strength MS 
medium + carbenicillin 

pCAMBIA2300 empty 
vector (15.971mg/g) 

pCAMBIA2300+-RAS 
22.573 to 26.072mg/

g DW 
(101) 

pCAMBIA2300+-
CYP98A14 

30.351 to 48.720mg/
g DW 

5. S. miltiorrhiza 
Half-strength B5 

medium + 10mg/L 
hygromycin 

Wild type (1.3mg/g 
DW) p1304-SmAOC 2.8mg/g DW (105) 

6. S. miltiorrhiza 

Half strength MS 
medium + 10mg/L 

glufosinate-
ammonium + 200 mg/L 

cefotaxime 

2.59 ± 0.04mg/g 
pEarleyGate201-

SmMYC2 6.36 ± 0.21mg/g (107) 

7. S. miltiorrhiza 67-V liquid medium 4.00- fold of the 
control 

SmbHLH148-1300 
(SmbHLH148 + 

pCAMBIA1300 binary 
vector) 

5.28mg/g DW (109) 

Table. 1. Genetic engineering /metabolic engineering studies for rosmarinic acid production from genus Salvia 

https://plantsciencetoday.online
https://sciwheel.com/work/citation?ids=13882102&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=14790406&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=5203479&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=13882105&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=13882103&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=14790498&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=14040016&pre=&suf=&sa=0&dbf=0
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this, SmbHLH148 was amplified, cloned into the 

pCAMBIA1300 binary vector harboring the CaMV35S 

promoter and NOS terminator using Xba I and Sac I 

restriction sites, and introduced into A. rhizogenes (ATCC 

15834). Subsequent infection of S. miltiorrhiza leaves with 

this construct led to the growth of hairy roots on 67-V 

liquid medium. The overexpression of SmbHLH148 

demonstrated a substantial increase of 300% (5.28 mg/g 

DW) in rosmarinic acid content compared to the control. 

Moreover, this overexpression induced activation of 

phenylpropanoid pathway genes (109). 

Elicitation Strategies for Rosmarinic acid Production 

Plants display morphological and physiological alterations 
in response to microbiological, physical, and chemical 

stimuli termed "elicitors." To enhance competitiveness, 

persistence, and survival, plants elevate the synthesis of 

secondary metabolites through elicitation. Elicitors, 

whether biotic or abiotic, act as signals recognized by 

specific receptors on the plant cell membrane, triggering 

defense and stress-induced responses that induce and 

enhance the production and storage of secondary 

metabolites (110). Elicitation serves as a promising 

approach to address challenges associated with large-

scale production of secondary metabolites, such as low 

productivity. Table 2 and Table 3 provide a list of elicitors 

employed in obtaining rosmarinic acid from hairy root 

culture of Salvia species. 

Biotic elicitors 

Biotic elicitors can originate from pathogens (fungi, 

bacteria, or yeast) or the host plant itself, existing as 

unprocessed extracts or partially purified substances like 

polysaccharides, glycoproteins, inactivated enzymes, and 

purified chitosan (CHI), among others (111). In a study with 

Salvia miltiorrhiza hairy root cultures grown in 67-V liquid 

medium, the addition of 0.2mL yeast elicitor led to a 

significant increase in rosmarinic acid accumulation, 

reaching 3.23±0.15% DW after 21 days, compared to the 

control with only 1.90±0.18% DW. When exposed to yeast 

along with 500μM H2O2, the rosmarinic acid content further 

increased to 3.65±0.26% DW (112). Similarly, in another 

experiment, S. miltiorrhiza hairy roots elicited with 1mL 

yeast extract (YE) on the 7th day of cultivation exhibited an 

elevated rosmarinic acid content of 2.97% DW, compared 

to 1.24% DW in the control (113). Furthermore, it was 

found that yeast extract was more effective than Ag+ in 

promoting rosmarinic acid accumulation. Hairy roots 

treated with 200mg/L yeast extract in MS medium showed 

a rosmarinic acid content of 74.1mg/g DW on day 8 after 

elicitation, 1.6 times higher than the control (46.1mg/g 

DW) (114). 

 The impact of Sclerotium rolfsii Sacc. strains on 

rosmarinic acid accumulation has been documented. In a 

study involving S. miltiorrhiza hairy root culture, treatment 

with 280μg/mL fungal extract of S. rolfsii Sacc. in MS media 

resulted in a significant reduction in rosmarinic acid levels. 

Specifically, there was a decrease of 35.8%, 42.4%, and 

28.8% on days 5, 7, and 9 after treatment, respectively 

(115). Furthermore, Rhizobium radiobacter (endophytic 

bacteria) derived from S. miltiorrhiza roots were utilized as 

an elicitor. Hairy roots were cultured on solid MS media 

supplemented with 0.5g/L casein hydrolysate and 0.025% 

bacterial suspension, which caused a significant reduction 

in rosmarinic acid content. The highest decrease, 

amounting to 94.5%, was observed on day 9 (116). Another 

investigation demonstrated that S. virgata hairy roots 

elicited with 50ppm yeast extract produced the highest 

amount of rosmarinic acid after 5 days of treatment 

(15.58±0.01mg/g DW), which was 1.44 times higher than 

the control. This was achieved in half-strength MS liquid 

medium (117). In the context of S. bulleyana hairy root 

cultures maintained on hormone-free WP medium, the 

addition of yeast extract at 250mg/L resulted in 

approximately a twofold increase in rosmarinic acid levels, 

elevating it from 12.5mg/g DW to 29.0mg/g DW (118). Table 

2 provides a summary of the biotic elicitors used in the 

production of rosmarinic acid in hairy root cultures and 

S. No. Name of species 
Media used+ PGR+ 

parameters for biotic 
elicitors 

Yield of metabolite 
Reference 

Control yield Elicited yield 

1. S. miltiorrhiza 
67-V medium + 0.2mL yeast 

extract (day 6) 1.90±0.18 % DW 3.23±0.15 % DW (112) 

2. S. miltiorrhiza 67-V medium + 1mL YE (day 7) 1.24 % DW 2.97% DW (113) 

3. S. miltiorrhiza 
MS Medium + 200mg/L YE (day 

8) Not applicable (NA) 
74.1mg/g DW 

(1.6-fold of control) (114) 

4. S. miltorrhiza 
67-V liquid medium + 280μg/
mL Sclerotium rolfsii extract 

(day 7) 
NA Reduced by 42.4% (115) 

5. S. miltiorrhiza 
MS medium + 0.5g/L casein 

hydrolysate + Rhizobium 
radiobacter (day 9) 

NA Reduced by 94.5% (116) 

6. S. virgata 
Half strength MS medium + 

50ppm YE NA 
15.58±0.01mg/g DW 

(1.44- fold of control) (117) 

7. S. bulleyana 
Half strength SH medium + 

250mg YE 12.5mg/g DW 29mg/g DW (118) 

Table 2. Effect of various biotic elicitors in the production of rosmarinic acid from various species of Salvia 

*NA - not applicable 

https://sciwheel.com/work/citation?ids=14155588&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=13892034&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=13892035&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=13882107&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=13892043&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=14790388&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=13902472&pre=&suf=&sa=0&dbf=0
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their corresponding yields (115, 116, 117, 118). 

Abiotic elicitors 

Abiotic elicitors are comprised of physical elements and 

chemical substances that do not have a biological origin, 

such as, heavy metal salts, intercellular signaling 

molecules (methyl jasmonate [MeJa], jasmonic acid, 

salicylic acid), temperature shift, UV irradiation (111). 

Further, abiotic elicitors can be divided into organic and 

inorganic elicitors. 

 MeJA, a well-known organic elicitor, was employed 

to stimulate rosmarinic acid production in S. miltiorrhiza 

hairy roots cultured in half strength B5 medium. After 18 

days of cultivation, MeJA treatment resulted in a 

significant 1.9-fold increase in rosmarinic acid content, 

rising from 3.25% to 6.02% of dry weight (DW) (104). In a 

similar fashion, the application of 50μM ABA to 67-V liquid 

media-grown hairy root cultures of S. miltiorrhiza led to a 

remarkable elevation in rosmarinic acid content from 

3.66mg/g to 7.45mg/g (119). Interestingly, treatments 

involving fluridone or paclobutrazol alone exhibited 

minimal influence on rosmarinic acid levels in the hairy 

roots. However, when combined with abscisic acid (ABA), 

paclobutrazol resulted in a drastic reduction of rosmarinic 

acid content, reaching only 15% of the control levels (119). 

Moreover, treatment with 150mM CoCl2 yielded the lowest 

rosmarinic acid levels compared to the effect of 50mM 

ethylene, causing an 83% decrease (119). Another study 

focusing on S. wagneriana HRD3 line demonstrated that 

treatment with 3.3mg/L JA led to a significant 

enhancement in rosmarinic acid production, reaching 

213μg/g fresh weight (FW) compared to the control's 

173μg/g FW (89). Additionally, the use of casein 

hydrolysate, a rich source of organic carbon, nitrogen, 

phosphate, and other amino acids, as an elicitor, resulted 

in a remarkable twofold increase in rosmarinic acid 

production (89,120). In liquid media containing 67-V 

supplemented with 100μM MeJA, rosmarinic acid levels 

significantly increased at day 3, reaching 20.3mg/g DW, 

which was 1.5-fold higher than the control (121). Salvia 

przewalskii hairy root growth responded positively to low 

SA concentrations but was inhibited at high SA levels. 

MeJA stimulated hairy root growth from 0 to 400μM, but at 

600μM, growth inhibition occurred. Treatment with 50μM 

SA elevated rosmarinic acid content by 1.41 times, while 

400μM MeJA increased it by 1.27 times (122). Among            

S. virgata hairy roots induced by ATCC15834 strain, the 

highest rosmarinic acid content, 18.45±0.8mg/g DW, was 

observed after elicitation with 22.4ppm MeJA (117). Post 

MeJA treatment, converted roots showed a rosmarinic 

acid level of 110.2mg/g DW (118), which was 13 times 

higher than in roots from 2-year-old plants cultivated in 

field conditions (123). Abiotic elicitors used for rosmarinic 

acid production in Salvia hairy root cultures are presented 

S. No. Name of species 
Media used+ PGR+ parame-

ters for abiotic elicitors 

Yield of metabolite 
Reference 

Control yield Elicited yield 

Organic abiotic elicitors 

1. S. miltiorrhiza 
Half-strength B5 medium + 
100μM methyl jasmonate 

(day 6) 
3.25% of DW 6.02% of DW (104) 

2. S. miltiorrhiza 
67-V 

medium + 50μM ABA 
3.66mg/g 7.45mg/g (119) 

3. S. wagneriana 
Hormone-free liquid MS me-

dium + 
3.3mg/L JA 

173μg/g FW 213μg/g FW (89) 

4. S. miltiorrhiza 67-V liquid medium + 100µM 
MeJA (day 3) NA 20.3mg/g DW 

(1.5-fold of control) (121) 

5. S. przewalskii 67-V medium + 400μM MeJA 
(day 3) 

NA 67.1273 ± 0.41mg/g DW 
(1.27- fold increase) 

(122) 

6. S. przewalskii 67-V medium + 50μM SA (day 
3) 

NA 44.0306 ± 0.08 mg/g DW 
(1.41- fold increase) 

(122) 

7. S. bulleyana 
Half strength SH medium + 

100μM MeJA 
8.34 ± 0.14mg/g DW 110.2mg/g DW (118,123) 

Inorganic abiotic elicitors 

8. S. miltiorrhiza 67-V medium with 0.0124mM 
phosphate (day 6) NA 2.283-fold of control (124) 

9. S. virgata Half strength MS medium + 
2.5ppm Ag+ (day 5) NA 16.01±0.09mg/g DW 

(1.54- fold of control) (117) 

10. S. miltiorrhiza 1: 500 Smoke-water (day 3) NA 32.99-folds of the con-
trol (125) 

Table 3. Effect of various abiotic elicitors in the production of rosmarinic acid from various species of Salvia 

*NA - not applicable 

https://plantsciencetoday.online
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in Table 3. S. miltiorrhiza biomass and phenolic acid 

content responded to phosphate levels in inorganic 

abiotic elicitation. Hairy roots were exposed to 67-V 

medium with varied phosphate concentrations for 6 days. 

Optimal rosmarinic acid accumulation occurred at 

0.0124mM phosphate, showing a 2.283-fold increase over 

the control (124). S. virgata hairy roots, induced by the 

ATCC15834 strain, exhibited enhanced rosmarinic acid 

production (16.01±0.09mg/g dry weight) when cultivated 

in half-strength MS liquid medium with 2.5ppm Ag+ as an 

elicitor (117). Utilizing smoke water derived from the 

combustion of Crataegus pinnatifida and Magnolia 

denudata plant materials, a 1:500 dilution treatment on 18

-day-old S. miltiorrhiza hairy roots resulted in a significant 

32.99-fold increase in rosmarinic acid accumulation 

compared to the control (125). 

Large scale production or bioreactor studies for 

rosmarinic acid production 

Bioreactors are specialized vessels, typically made of glass 

or stainless-steel, employed for the large-scale 

propagation of cells or tissues to yield significant 

metabolites (126). Various bioreactor types exist, such as 

stirred-tank reactors, bubble-column reactors, and trickle-

bed reactors. In a previous study, a nutrient sprinkle 

bioreactor was utilized to scale up the production of 

rosmarinic acid. The hairy root culture of Salvia officinalis 

was established through infection with Agrobacterium 

rhizogenes ATCC 15834. Regular subculturing every 40 days 

in hormone-free WP liquid medium was conducted, with 

maintenance under cool white fluorescent lamps at a 

temperature of 26±2°C. Upon reaching 40 days of growth, 

the hairy root culture was inoculated into a 5L nutrient 

sprinkle bioreactor composed of glass, consisting of two 

vessels: one for plant material growth (internal volume: 5L) 

and the other for nutrient medium storage (volume: 1.5L). 

The bioreactor operated by spraying liquid MS or WP 

media through a nozzle onto the plant material, with 

unused media returning to the reservoir. The transformed 

roots demonstrated substantial levels of rosmarinic acid in 

the sprinkling bioreactor culture, achieving an average 

yield of 477.13±14.73 mg/L (126). This concentration was 

higher (4-5 times) than those found in the roots of 

organically grown plants and the samples of dried S. 

officinalis leaves that were sold commercially (88).  

 

Conclusion and Prospects  

Rosmarinic acid is a promising plant secondary metabolite 

known for its significant anti-oxidant, anti-cancer, anti-

aging, anti-inflammatory, and anti-diabetic properties. 

While various plant species, including Salvia genus, 

produce it, field harvesting is impractical due to 

continuous processing, low content, and potential harm to 

native plant populations. Therefore, precise selection of in

-vitro systems and cultivation conditions is crucial for 

mass-producing rosmarinic acid. Among tissue culture 

methods, hairy roots show great potential, being involved 

in synthesizing essential commercial metabolites. 

Biosynthetically, rosmarinic acid originates from tyrosine 

and phenylalanine, and leveraging biotechnological 

approaches such as metabolic engineering can boost its 

production. Manipulating genes in the tyrosine-derived 

pathway and suppressing the competing biosynthetic 

route of flavonoids facilitate enhanced rosmarinic acid 

synthesis. Combining genetic engineering and elicitation 

strategies involving biotic and abiotic components can 

enhance rosmarinic acid production. Among biotic 

elicitors, only YE has demonstrated a yield increase, while 

abiotic elicitors like MeJa and smoke-water generate 

elevated levels of rosmarinic acid. Employing both 

approaches in hairy root cultures of Salvia holds promise 

for high yield. Utilizing biotechnological tools like 

metabolomics and hetero-host technology in other Salvia 

species can yield significant outcomes, fostering extensive 

research on rosmarinic acid production. Employing 

bioreactors under carefully chosen cultivation conditions 

and operational modes offers potential for large-scale, 

sustainable production of this vital biomolecule.  
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