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Abstract 

Research on the natural resources found in medicinal plants and endophytes 

makes important contributions to a wide variety of fields, including drug 

development, agribusiness, biotechnology, and sustainable development. 

Endophytes are a group of microorganisms that can be discovered in the 

rhizosphere of plants being used in medical treatment. These 

microorganisms have the capability of producing a wide range of primary 

and secondary metabolites by utilizing a variety of distinct biosynthetic 

pathways. Several different technologies, such as genetic modification and 

artificial intelligence (AI), play a significant role in the acceleration of 

endophytic research. These methods aid in the discovery and synthesis of 

novel compounds with medicinal promise, the predictive analysis of 

bioactive compounds, the identification and classification of endophytes, 

and the optimization of potential bioactive compounds. In light of this, the 

current review focuses on providing a concise comprehension of the 

influence of bioactive compounds secreted by specific endophytes on 

medicinal plants through the application of significant technologies in the 

field of endophytic research. 
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Introduction 

Microbes residing in plant roots tend to be beneficial for plants, showing 

plant-microbe interaction. Microbes acquire good nutritional values from 

plants and serve to produce various bioactive compounds (1). In return, they 

provide essential nutrients to plants and help them survive in extreme 

climatic conditions, as well as perform a crucial role in a sustainable 

environment (2). 

 Bioactive compounds such as quinols, phenols, steroids, alkaloids, 
peptides, flavonoids, polyketones, and terpenoids (3) are produced by the 

endophytes, including bacteria, actinobacteria, and fungi, that reside in 

symbiotic association with plants and are in great demand (4, 5, 6). Additionally, 

endophytes, which are found in the roots of plants used for medicinal purposes, 

are a crucial source of nutrients for plant growth and development. According to 

reports, three main kinds of exchanges that are advantageous exist between 

endophytes and host plants: (i) enhancement of the growth of the medicinal 

plant, (ii) enhancement of the medicinal plant’s resistance to stress, and (iii) high
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-value secondary metabolites (2). There is various advanced 

development against pathogenic species inhibiting their 

growth and modulating the nutrient balance in pathogens 

and providing benefits to existing endophytes (7). Various 

species of medicinal plants and endophytes produce similar 

groups of bioactive compounds Table 1 such as alkaloids, 

terpenoids, flavonoids, steroids, phenolics, etc. example from 

Catharanthus roseus, Alternaria sp. was isolated and found to 

produce vinblastine (also called vinca alkaloid), It was 

discovered that Fusarium oxysporum, another endophytic 

fungus, produces vincristine (vinca alkaloids) when it is 

isolated from Catharanthus roseus (1) possessing numerous 

advantages (3) as shown in Fig. 1. These secondary 

metabolites possess beneficial, multifunctional activity which 

promotes human health and wellness, and also used for drug 

development (1, 3) shown in Fig. 2. 

 However, research showed that genome sequencing 

of numerous endophytes exhibits the absence of 

comprehensive biosynthetic pathways for the production 

of phytochemicals (4). In addition, plant secondary 

metabolites (PSMs) themselves perform several types of 

roles in plant development and growth, including defence 

response signalling (8), innate immunity (9), and response 

to environmental stress (10). They also provide resistance 

to certain pathogens and pesticides, have significance over 

plant-microbe relations, and transform the microbial 

communities with plants (11). Rhizobacteria has been 

reported to encourage plant development by improving 

root hair branching, promoting early nodulation, 

improving nodule function, increasing leaf surface area 

and biomass, and most importantly, increasing nutrient 

use efficiency (12), however, decreasing the application of 

chemical fertilizers and pesticides (13). Furthermore, the 

secondary metabolites from fungal and bacterial 

endophytes contribute to the enhancement of the growth 

of medicinal plants. Additionally, these endophytes have 

antibacterial, anticancer, antioxidant, and anti-

inflammatory properties as well (14) (Fig. 2). Moreover, 

there are certain biotechnological techniques such as 

CRISPR-Cas9, TALEN, and ZFN for the genetic improvement 

in endophytes which helps to enhance the production of 

targeted bioactive compounds and also helps to enhance 

the immune memory in the medicinal plants (15, 16, 17). 

The genetically modified endophytes provide the capacity 

to survive adverse situations and tolerate drought, which 

enhances the durability, yield, fertility, and health of to 

host plant (8) Fig. 3 depicts all phases of endophytic 

research on medicinal plants, from the identification of 

potential endophytic species to the commercialization of 

endophytic-derived medications. 

S.No. Bioactive Compound Endophyte Plant Species References 

1 Galanthamine Paenibacillus lautus Leucojum aestivum (18) 

2 Vinblastine Curvularia verruculosa Catharanthus roseus (19) 

3 Taxol (paclitaxel) 
Annulohypoxylon sp. 

MUS1 
Taxus wallichiana (20) 

4 Saikosaponin 
Fusarium acuminatum 

Fusarium oxysporum 
Bupleurum scorzonerifolium 

(21) 

  

5 Resveratrol 
Aspergillus stellifer AB4 

Quambalaria cyanescens 
Vitis vinifera (22, 26) 

6 Ginsenoside Rg3 Chaetomium sp. Panax ginseng (24) 

7 Emodin Epicoccum nigrum Hypericum perforatum (25) 

8 Dendrobine 
Trichoderma 

Longibrachiatum MD33 
Dendrobium nobile (26) 

9 Colchicine Diaporthe perseae Glorosa superb (27) 

10 Asiaticoside 
Colletotrichum 

Gloeosporioides 
Centella asiactica (28) 

Table 1. Enodpytes produce various bioactive compounds by using medicinal host plants. 

Fig. 1. Various secondary metabolites present in medicinal plants. Fig. 2. The Schematic diagram of AI with its relation to ML and DL. 
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 To analyze and interpret the vast amounts of data 
produced by such studies, artificial intelligence (AI) can be 
extremely important. Artificial intelligence could identify 
and classify endophytic microbes using their genetic and 
biochemical profiles (29). Machine learning algorithms can 
detect specific endophytes and their medicinal properties 
from large DNA and RNA sequence datasets (30). Artificial 
intelligence can help facilitate the discovery of promising 
medicinal substances (31). To predict the activity of newly 
identified endophytic bioactive compounds, machine 
learning algorithms can be trained on large databases of 
chemical compounds and their properties. This can aid in 
the discovery of novel agents and medications (32). 
Endophytic microorganism growth can also be optimized 
with AI. Machine learning algorithms can maximize 
endophytic growth by analyzing environmental factors like 
temperature, pH, and nutrient availability (33). 

Role of endophytes on medicinal plants 

Fungal endophytes 

Endophytic fungi are responsible for the production of 
growth-promoting plant hormones (4), for example; 
Azospirillum spp. enhances the growth of Triticum aestivum 
L., and they also produce bioactive compounds which 
increase the stress resistance in host plants (34, 35). By 
secreting indole acetic acid, Mycena dendrobii could 

encourage seed germination in addition to the growth of the 
host plant Gastrodia elata (36). Furthermore, it has been 
reported that by promoting the production of nitrate 
reductase and the starch-degrading enzymes, 
Piriformospora indica accelerated the growth in the roots of 
tobacco (37). The host plants of endophytic fungus 
belonging to the genus Neotyphodium may benefit from 
alkaloids produced by these organisms boosting their 
resistance to insect attacks (9). Table 2 shows the influence 
of fungal endophytes on various medicinal plants. 

Bacterial endophytes 

Bacterial endophytes are found in various plant 
components, including the seed, root, stem, leaves, and 
flowers (43-45). Endophytic bacteria enhance the biomass 
and seed germination in the host plants, they present at the 
different stages of plant development (46). Through a 
variety of methods, including the production of 
phytohormones, nitrogen fixation, and phosphorus 
solubilization, endophytes aid in the growth of plants (47, 
48). Bacteria such as Streptomyces, Bacillus, Paenibacillus, 
and Pseudomonas (49-51) reported to promote the growth 
of plants, induce stress resistance, and enhance the 
metabolism of the medicinal plant (14). Actinomycetes 
support the ecology due to their environmentally 
favourable nature. They have been recognized to generate a 
range of antibiotics, biocontrol agents, and compounds that 
encourage plant growth (52-55). Actinomycetes enhance 
the soil fertility and production of the plant and also 
increase the nitrogen level (15). Table 3 shows the effect of 
bacterial endophytes on various medicinal plants. 

Artificial intelligence and its subsets 

Artificial intelligence (AI) refers to the mimicking of human 
intelligence processes by machines, particularly computer 
systems. It trains machines how to mimic human 
characteristics including learning, judging, and making 
decisions (61). Artificial intelligence (AI) seeks to replicate 
human intellectual activity by using knowledge as the 
object, obtaining knowledge, researching and analyzing the 
various ways in which knowledge is expressed, and then 
using these expressions (62). 

Fig. 3. Influence of bioactive compounds from entophytes in 
medicinal plants. (Bio Render software). 

S.No. Medicinal Plant Fungal Endophyte Impact on Plants References 

1 Cymbidium sinese Mycena archdicola Increase hormones in the host plant. (38) 

2 
Dendrobium nobile, 

D. chrysanthum 

Epulorhiza sp., Mycena sp., 
Tulasnellales, 

Sebacinales,Cantharellales 

Improve absorption of nutrients and 
promote seed germination in medicinal 

plants. 
(39) 

3 Dendrobium candidum Mycena dendrobii Increase hormones in the host plant. (38) 

4 Sesbaniasesban 
Funneliformis mosseae, 

Claroideoglomus etunicatum Secret the plant hormones (40) 

5 Cucumis sativus Phoma glomerata, Penicillium sp. Secret phytohormones (41) 

Table 2. Effects of Fungal endophytes on medicinal plants. 

S.No. Host Plant Bacterial Endophytes Impact on Host Plant References 

1 Coriandrum Sativum Bacillus siamensis Enhance the growth of stem and roots. (56) 

2 Teucrium polium Bacillus subtilis Improve the area, weight, and length of 
the root. (57) 

3 Panax ginseng Micrococcus luteus Enhanced biomass of seeds. (58) 

4 Atractylodes 
Macrocephala Pseudomonas fluorescens Increase yield of metabolites. (59) 

5 Lonicera japonica Paenibacillus Length of shoot, root, and fresh and dry 
weight increased. (60) 

Table 3. Effects of bacterial endophytes on medicinal plants.  
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 The ability of a machine to learn by itself from data, 

improve its efficiency depending on prior experiences, and 

make predictions is known as machine learning, which is a 

subset of artificial intelligence (AI). The four basic 

categories of machine learning i.e., supervised, 

unsupervised, semi-supervised, and reinforcement 

learning are determined by the learning processes and 

methods (63). Deep learning (DL) is a member of a larger 

group of machine learning techniques built on artificial 

neural networks and representation learning (64). The 

Schematic diagram of AI and its relation to ML and DL is 

represented in Fig. 2. 

AI and its functioning 

The field of artificial intelligence is vast and includes 

numerous approaches and methodologies. Below is a 

general summary of how AI works and some of the 

important principles involved: 

Data Collection: AI systems learn and make choices using 

massive volumes of data. The initial stage is to collect 

appropriate information from multiple data sources, such 

as images, text, audio, video, or numerical data (64). 

Data Pre-processing: After gathering the data, it is 

frequently necessary to pre-process it, which involves 

cleaning, converting, and arranging it to make it 

appropriate for AI algorithms (64). 

Machine learning: The procedure for ML modelling is to 

input data for training, use a machine learning algorithm 

for learning; and fine-tune the learning algorithm's 

parameters to improve accuracy. After the learning is 

completed, the model is now formed (63). 

Neural networks: Modern AI and machine learning rely 

heavily on neural networks. They are inspired by the 

organization of the human brain and are made up of 

interconnected nodes or artificial neurons. Because neural 

networks can understand complex patterns and 

connections within data, they are highly effective for 

difficult jobs (65). 

Deep learning: It emphasizes the application of multi-

layered deep neural networks. These deep networks may 

automatically learn hierarchical data representations, 

allowing them to solve more complex problems (66). 

Inference and decision-making: Following training, the AI 

model can make predictions or judgments on previously 

unknown data. This is referred to as inference. (67). For 

example, an AI system trained on diseased or healthy 

plants may be used to categorize newly acquired images 

as diseased or healthy. 

Natural language processing: The field of artificial 

intelligence known as "natural language processing" (NLP) 

is concerned with designing algorithms to understand and 

interact with human language (68). Techniques such as 

language translation, digit recognition, 

handwriting recognition, and chatbots fall under this 

category. 

Computer vision: Another important field of AI is computer 
vision, which enables intelligent machines to evaluate and 

comprehend visual data from images or videos (69). It is 

used in domains such as object detection, facial 

identification, autonomous vehicles, medicinal plant 

recognition, plant disease detection, and so on. 

Role of AI in plant-based endophytic research 

In endophytic research on medicinal plants, artificial 
intelligence (AI) has assumed an increasingly significant 

role. Here, are some examples of AI applications in this 

field shown in Fig. 4. 

Prediction of bioactive compounds 

Artificial intelligence can help to predict the bioactive 

compounds developed via endophytic microorganisms in 

medicinal plants. Predicting the production of bioactive 

metabolites by endophytic fungi in the medicinal plant 

Panax ginseng using machine learning algorithms is 

studied (70). Transcriptomics and artificial intelligence 

techniques for bioactive compound prediction and 

selection are also studied (71). On the extraction of 

bioactive chemicals from unripe M. acuminata peel using 

microwave-assisted extraction (MAE), the association 

between response surface methodology (RSM) and an 

artificial neural network prediction model was examined 

(72). 

Discovery of new endophytes and natural products 

Artificial Intelligence can aid in the discovery of novel 
endophytes and natural products with potential medical 
applications. AI is utilized to analyze the genome of the 
endophytic fungus Aspergillus terreus isolated from the 
medicinal plant Huperzia serrata to identify new natural 
products with anti-inflammatory and anti-tumor 
properties (73). In a review, emerging methods for 
discovering natural products from plant microbiomes 
were examined, with a focus on the potential of deep 
learning as a tool for bioprospecting, biochemical novelty 
prediction, and regulatory control of endophytes (74). For 
in-depth data analysis and forecasting in the search for 
anticancer leads, machine learning has provided potent 

Fig. 4. AI assists in Endophytic research phases. 
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approaches to identify anticancer lead compounds with an 
emphasis on natural products from plants and their 
related microbes (75). Bioprospecting different species 
and running laboratory screening techniques are 
traditionally employed to identify natural compounds, 
producing complex data. This strategy, meanwhile, 
frequently confronts difficulties and high rates of loss. To 
solve these issues, machine learning (ML) and artificial 
intelligence (AI) are being used. The area of natural 
product-based drug discovery algorithms has undergone a 
revolution as a result of recent advances in AI, notably in 
ML. AI tools have shown success in classifying things, 
finding hidden patterns, and grouping compounds 
according to their properties (76, 77). 

Optimization of endophyte-based production 

Artificial Intelligence can improve medicinal plant 
endophytic microorganism bioactive compound 
production. Artificial Intelligence optimized bioactive 
compound synthesis by the endophytic fungus Fusarium 
solani isolated from the medicinal plant Lithospermum 
erythrorhizon (78). Response surface methodology (RSM) 
and an artificial neural network-genetic algorithm (ANN-
GA) were investigated using a single-factor analysis of the 
efficacy of culture situations upon the quantity of cellulase 
produced by endophytic fungi of T. cuspidata to obtain 
factors for improving the enzyme activity process of 
production (79). For optimizing and predicting the 6-
gingerol concentration in Zingiber officinale samples from 
60 distinct locations around the state with varying 
agricultural and climatic circumstances, two deep learning 
algorithms of the Artificial Neural Network (ANN) model 
were used (80). 

Identification of endophyte-host interactions 

Artificial intelligence can be used to identify the 
associations between endophytic microorganisms and 
their host plants. It is used to examine the transcriptomes 
of the host plant Camellia sinensis and the endophytic 
fungus Colletotrichum tofieldiae and discover genes 
involved in their interaction (81). 

 Using genetic, morphological, and biochemical 
traits, artificial intelligence (AI) can analyze large datasets 
of plant samples to pinpoint possible endophytic species 
(73). It can assist in standardizing the process of isolation 
and maintaining culture conditions for endophytes to 
ensure their viability and growth (82). It is capable of 
assessing the metabolic profiles of endophytes to find 
bioactive substances with potential medicinal applications 
(75). Artificial Intelligence can aid in the analysis of genetic 
and biochemical data generated by endophytic research 
to identify novel drug development targets (83). Artificial 
Intelligence can be used in the design and optimization of 
drugs based on endophytic compounds, resulting in the 
creation of novel medicines (84). In addition, AI also 
analyses clinical trials for endophyte-derived 
pharmaceuticals, thereby enhancing their efficacy and 
safety. Apart from this, AI can assist in the 
commercialization of endophytic research by identifying 
potential markets, developing marketing strategies, and 
optimizing supply chains (85). 

Conclusion 

Endophytes existing as eco-friendly bioagents help to 

achieve a sustainable environment in the future. Bacterial 

and fungal endophytes aid in the greater development of 

medicinal plants by increasing the rate of plant hormones. 

Correspondingly, they increase medicinal properties by 

improving the seed germination stage and nutrient 

content. Besides, focus can be given to various techniques 

like regeneration, genetic modification, and 

electroporation which give a high yield of targeted 

bioactive compounds which gives numerous benefits to 

medicinal plants. Furthermore, the advancement of 

technologies such as AI has been incorporated to 

revolutionize the field of endophytic research in medicinal 

plants. The capability of AI to analyze large datasets of 

genomic and metabolomic data can help identify suitable 

endophytes with pharmaceutical potential and aid in the 

development of new drugs. 

 Indeed, the research of endophytes on medicinal 

plants has shown AI to be of enormous value to human 

society. Overall, the study of endophytes on medicinal 

plants in conjunction with artificial intelligence has 

enormous potential to advance drug discovery, develop 

more potent therapies, and advance human health. 

Researchers can speed up the discovery and development 

of novel medicinal compounds from these natural sources 

by utilizing AI. 
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