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Abstract   

Seed priming is a pre-sowing seed treatment method that has gained signi-

ficant attention in recent years due to its potential to improve seed germi-

nation and early seedling growth. This review article provides a comprehen-

sive overview of seed priming techniques, their underlying mechanisms, 

and diverse applications in crop production during the recent years. The 

article introduces the concept of seed priming and its importance in opti-

mizing seed performance, discussing various seed priming techniques in-

cluding osmotic priming, hydro-priming, hormonal priming, and microbial 

priming. Each technique is described in detail, outlining the specific proce-

dures and conditions involved, and their advantages and limitations are 

discussed. The underlying mechanisms of seed priming are explored, eluci-

dating the biochemical, physiological, and molecular changes that occur 

during seed priming, and the interactions between priming substances and 

seeds. The article also provides an in-depth analysis of the applications of 

seed priming, discussing its positive effects on seed germination, seedling 

vigour, stress tolerance, and its potential for sustainable agriculture. This 

review article serves as a valuable resource for researchers, scientists and 

faculties working in the field of seed technological research and progressive 

farmers who can adopt this technology for enhancing crop yield. This article 

provides insights into the techniques, mechanisms, and applications of 

seed priming for optimizing seed performance and enhancing crop produc-

tivity in diverse agricultural systems.   
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Introduction   

Efficient crop production relies on successful plant stand establishment and 

high seedling vigour. These factors play a crucial role in determining uni-

form growth, maturity, and high productivity (1). However, adverse climate 

conditions and less vigorous seeds can lead to slow and non-uniform seed 

germination under field conditions. Seed priming is a physiological tech-

nique that involves the controlled hydration and dehydration of seeds to 

enhance pre-germinative metabolism for speedy germination (2). Primed 

seeds are known to emerge faster, grow more vigorously, and result in   

higher yields, which is especially  important in unfavourable environmental 

conditions such as drought (3). 
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 Seed priming is an essential tool for enhancing field 

emergence and crop stand establishment, which ulti-

mately leads to higher productivity. Various physiological 

and non-physiological methodologies have been devel-

oped to enhance seed performance and withstand envi-

ronmental stress (1). Seed invigoration through priming 

before sowing is critical for activating seed resources for 

efficient plant growth and high yield in combination with 

external ingredients. The main benefit of priming is the 

increase in the rate of germination at any temperature, 

and the uniform emergence of seedlings from primed 

seeds at a faster rate than non-primed seeds due to limited 

adverse environmental exposure. This is due to the short-

ening of the lag phase or metabolic phase of the germina-

tion process. Seed priming has been commercially used to 

eliminate or greatly reduce the effect of abiotic and biotic 

stresses, making it an effective approach for the successful 

production of field crops. Different seed priming tech-

niques and their effects on crop plants are discussed in 

this study. 

Objective of the review     

The objective of this review is to examine recent advance-

ments in seed priming technology for enhancing seed       

germination and seedling growth under abiotic stresses in 

agricultural crops.  

Review methodology        

A rigorous and comprehensive search for relevant litera-

ture on seed priming and its effects on different agricul-

tural crops was conducted. Several research papers and 

review articles available on various databases, including 

ResearchGate, ScienceDirect, Google Scholar, and          

Academia, were analysed to compile this review. 

 

Seed Priming          

Seed priming is a technique that involves hydrating seeds 

to initiate metabolic processes prior to germination and 

then drying them back to their original moisture content 

to prevent actual emergence of the radicle. This method 

was proposed as a means of seed invigoration prior to 

sowing (4). The process involves immersing seeds in water 

or various solutions for a specified period under controlled 

conditions, followed by drying back to the original       

moisture content. Seed priming has been shown to stimu-

late various metabolic processes that improve germina-

tion and emergence of many seed species, especially those 

of vegetables, small seeded grasses, and ornamental    

species. This technique has been found to enhance the 

germination process and the rate of seedling emergence  

and production of vigorous seedlings even under unfa-

vourable environmental conditions, such as drought, heat 

stress, salinity, nutrient stress, and several other environ-

mental stresses resulting in better crop stand and higher 

crop yield (Fig. 1). Therefore, seed priming is a promising 

technique for dealing with unfavourable conditions in frag-

ile lands. 

Mechanism of Seed Priming         

Seed germination is a complex process that involves sever-

al metabolic events leading to the activation of stored 

food reserves and emergence of radicles and plumules (5). 

Priming constitutes a pivotal seed pre-treatment method 

that effectively triggers the process of seed germination 

through a complex cascade of biochemical alterations 

within the seed. This intricate process encompasses the 

activation of enzymes, synthesis of growth-inducing sub-

stances, metabolic breakdown of germination-inhibiting 

compounds, and the repair of cellular impairments (6, 7). 

Fig. 1. Impact of seed priming on crop growth and yield.  
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 The seed priming process involves three stages  

(Fig. 2) with the first phase being the imbibition phase, 

where the seed absorbs water rapidly due to its low water 

potential. Subsequent to the uptake of water, a sequence 

of cellular-level metabolic and reparative occurrences en-

sues in phase II, which is commonly referred to as the acti-

vation phase or lag phase. During this particular stage, 

there is an observable reduction in the level of moisture 

and a notable decrease in the synthesis of proteins. Fur-

thermore, there is a concurrent development of fresh mi-

tochondria, which are responsible for cellular respiration, 

activation of enzymes, and mending of DNA (8–10). 

 Throughout the activation phase, rehydration     
initiates a range of alterations in the seed's cellular com-

position, which encompasses cellular division, nucleic acid 

synthesis, protein synthesis, ATP production, heightened 

cellular energy, ATP/ADP ratio modulation to meet energy 

demands, essential lipid accumulation, antioxidant gener-

ation, and DNA repair mechanism activation. (9, 11, 12). 

The mending of DNA holds paramount significance in the 

restoration of cellular damage, as suboptimal repair       

processes may instigate oxidative damage, thereby induc-

ing cell death in the course of germination. (12). 

 Research investigations have revealed that seed 

priming instigates the activation of proteins, carbohy-

drates, and enzymes that are intricately linked to lipid  

mobilization processes. One such enzyme is alpha-

amylase, which catalyzes the hydrolysis of starch reserves 

into simpler sugar units, consequently increasing the over-

all concentration of soluble sugars (11, 13–15). Seed prim-

ing augments the process of protein synthesis through the 

elevation of ribosomal RNA synthesis and enhancement of 

ribosomal integrity. Additionally, seed priming prompts 

the production of antioxidant enzymes, such as super-

oxide dismutase, catalase, and peroxidase, which assists in 

maintaining a balance between the generation and break-

down of reactive oxygen species (ROS), including hydro-

gen peroxide, superoxide, and hydroxyl radicals, during 

stressful environmental conditions (16, 17). 

 

 

 In the course of stage III, there is a resurgence in 

water absorption by the seed, and the emergence of the 

radicle signifies the ingress of the germination process into 

the phase of cellular elongation and growth (10). Although 

the first and second phases occur during seed priming, the 

third phase does not occur (18). Seeds that undergo    

priming exhibit completion of both phase I and II of the 

germination process. Such primed seeds demonstrate an 

enhanced ability to swiftly finalize the imbibition process 

upon sowing, leading to a notable reduction in the        

temporal requirement for cellular metabolic and bioche-

mical activities. Due to the activation of enzymes of nucleic 

acid, the quantity of DNA increases, leading to an increase 

in the amount of RNA and proteins (19). 

Different Methods of Seed Priming         

Different methods of seed priming include hydro-priming, 

which involves soaking seeds in water, osmo-priming     

Fig. 2. Flow chart showing the mechanism of seed priming.  
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using osmotic solutions, chemical priming with various 

compounds, bio-priming with beneficial microorganisms, 

solid matrix priming in controlled environments, and  

hardening priming with mild stressors (Fig. 3). These  

methods are chosen based on crop needs and environ-

mental conditions, resulting in improved germination, 

seedling vigour, and overall crop yield in challenging  

growing situations. 

Conventional Techniques of Seed Priming        

Hydro-Priming         

Hydro-priming is an inexpensive, low-risk method in which 

seeds are soaked in distilled water at an appropriate        

temperature for a specific period of time and then dried 

again to approximate their original moisture content     

before sowing (20). This priming method is particularly 

useful in regions with unfavourable climatic conditions 

such as high temperatures and water stress, as it increases 

the efficiency of water uptake and seed hydration (21). 

 Hydro-priming has demonstrated a multitude of 

advantageous effects on crop production. Specifically, the 

submersion of paddy seeds in water for a duration of         

24 hrs resulted in a complete germination rate of 100%, 

accompanied by the maximization of shoot fresh weight, 

root length, α-amylase activity, and total and reducing 

sugar content. These results are indicative of heightened 

physiological potential, manifested as improved germina-

tion and vigour (22, 23). Hydro-priming, a pre-sowing tech-

nique, has demonstrated a notable augmentation in both 

germination and seedling vigour in fine and coarse rice 

seeds. Furthermore, hydro-primed Malaysian Indica rice 

seeds exhibited superior germination percentage and ger-

mination index, along with a decreased mean germination 

time, compared to their non-primed counterparts when 

subjected to drought stress (23, 24). Furthermore, it has 

been ascertained that hydro-priming confers an augment-

ed capacity to endure CO2 stress and ameliorate oxidative 

damage in rice (25).  

 Maize is another crop that benefits from hydro-
priming. The immersion of maize seeds in water for a dura-

tion of 18 hrs, succeeded by a subsequent period of        

surface drying lasting 2 hrs, has been shown to elicit a 

range of crucial physiological responses. These responses 

have been linked with the optimal emergence perfor-

mance of the maize crop, including germination percent-

ages of 85% and 95% at 30% and 60% moisture levels,  

respectively. Furthermore, hydro-priming has been associ-

ated with higher germination indices and mean germina-

tion times, indicating a marked improvement in overall 

seed viability and germination success (26). Optimal seed 

revitalization of maize inbred lines was observed subse-

quent to 36 hrs of hydro-priming, which resulted in a 

heightened germination rate, radical length, and vigour 

index (27). An alteration in the protein composition of the 

maize embryonic tissue accompanied by a hastened onset 

of germination in maize seeds was observed subsequent 

to a 12-hour hydro-priming treatment of said seeds (28). 

The application of hydro-priming has been demonstrated 

to enhance both the water usage efficiency and grain yield 

of maize under conditions of water stress (29). 

 Hydro-priming confers beneficial effects on the  

early emergence, total germination count, number of    

tillers, grain weight, as well as the biological and economic 

yield of late-sown wheat across varying moisture condi-

tions (29). It leads to an elevation in the water utilization 

proficiency amid water-deprived circumstances which 

results in a higher and more uniform germination rate, 

consequently culminating in a noteworthy reduction in 

water consumption required for cultivating an equivalent 

quantity of wheat and reduces the cost of irrigation (30). 

Hydro-priming for a duration of 16 hrs culminated in the 

most optimal outcomes in terms of wheat germination, 

growth, yield parameters, and economic profitability (31). 

Furthermore, hydro-priming has been discovered to      

enhance the quality of mature wheat seeds, stimulate an 

increase in enzymatic activity, and ameliorate both germi-

nation and seedling traits (32). 

 Hydro-priming of barley seeds elevate the process 
of germination, augment the growth of seedlings, promote 

optimal stand establishment thereby culminating in a 

higher yield, and mitigate seed infection caused by the 

fungal pathogen Fusarium culmorum (33). It also exhibited 

significant enhancement in key morphological parameters 

Fig. 3. Different types of seed priming technologies.  
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of barley, including root length, root dry weight, plant 

height, and shoot dry weight per area (SPDA). 

Halo-Priming         

It denotes a pre-sowing seed priming methodology that 

entails immersing seeds in aqueous solutions of inorganic 

salts like KNO3, CaCl2 and CaSO4 (34). This pre-treatment of 

seeds with inorganic substances has been found to        

enhance crop growth and enhance resistance to diverse 

abiotic stressors, ultimately leading to ameliorated germi-

nation, establishment, and yield of crops grown in saline 

soils (35). 

 Research has shown that priming wheat seeds with 

CaSO4 (50mM) for 12 hrs at 25°C enhances germination 

percentage, root length, and seedlings’ fresh and dry 

weight in both salinity stress and non-saline conditions 

compared to control. The seedlings also showed maxi-

mum potassium concentration, total sugars, and reducing 

sugars (36). Nutrient priming with zinc using 0.5M ZnSO4 

for 12 hrs under zinc-deficient soil conditions has been 

reported to increase the final yield by 27.1%, which is the 

highest improvement in comparison to other treatments 

(37). Additionally, application of a chitosan solution has 

been shown to stimulate resistance to various crop         

diseases and improve seed quality (38). Sorghum seeds 

treated with CaCl2 or KNO3 were found to enhance the     

activity of proteases and total amylase during germination 

under salinity stress (39). 

 For barley, nutrient priming with ZnSO4 (10mM of 

Zn; KH2PO4; 50mM of P; 12 h) has been shown to enhance 

root growth and root biomass, uptake of P and Zn and  

water use efficiency in P and Zn- deficient soil and low  

water stress conditions (40). In pigeon pea, priming with 

CaCl2 or KNO3 was found to improve soluble sugars free 

amino acids and during germination under saline condi-

tion (41). Maize seed priming with NaCl has been shown to 

improve the growth of maize plants under both laboratory 

as well as field conditions (42). 

Osmo-Priming         

Priming with osmotic solutions is a seed invigoration tech-
nique of immersing seeds in the solution of osmolytes like 

PEG, glycerol, mannitol, or sorbitol for a specific duration 

and then air drying. This method restricts the entry of   

excess water into the seed during imbibition, reducing 

ROS accumulation and protecting the cells from oxidative 

injury. Seed invigoration through osmolyte priming results 

in higher and more uniform field emergence, greater     

vigour and better crop stand (43). 

 Numerous priming techniques have been studied 

for their effects on different crops. For example,               

osmo-priming with CaCl2 was found to provide resistance 

against drought stress in wheat (44). Another study 

showed that PEG 6000ml or KH2PO4 osmo-priming          

increased germination percentage and seed vigour in 

wheat (45). Treatment with GA3 and IAA improved onion 

seed attributes such as germination, seedling length, root 

length, and seedling dry weight (45) while treatment with 

GA3 (1000ppm) resulted in the highest germination, seed 

yield, and weight of a thousand seeds (46). Osmo-priming 

with aerated CaCl2 (1.5%, 12 hrs) was found to increase 

leaf area and tissue water content, enhance accumulation 

of osmolytes, reduce lipid peroxidation, activate transcrip-

tion factors associated with antioxidant enzymes, and  

increase crop performance under drought stress in wheat 

(47). Chickpeas osmo-primed with CaCl2 for 18 hrs showed 

positive effects, including increased specific leaf area, CO2 

net assimilation rate and relative water content, improved 

accumulation of leaf total soluble phenolics, free proline 

and ascorbic acid, increased activities of CAT, SOD, and 

APX, and enhanced chilling tolerance (17). Sesame seeds 

that were osmo-primed in 1% KNO3 salt solution for 6 hrs 

showed greater seed germination and seedling height than 

those that were hydro-primed (48). Rape seedlings showed 

significantly increased seedling height, radicle length, leaf 

number, and dry weight under salinity conditions,          

although a specific priming technique was not reported 

(49).  

Solid Matrix Priming           

Solid matrix priming is a seed priming technique that    

involves mixing seeds with water and solid materials at 

specific proportions (50). Common solid carriers in this 

method include vermiculite, charcoal, clay, and sand. In 

solid matrix priming, the seeds are mixed with a medium 

that slowly wets them, making them ready for germina-

tion. Solid matrix priming has been found to be an effec-

tive method for improving seed vigour and germination in 

various crops. For instance, solid matrix priming of maize 

seeds using sand was shown to increase α-amylase acti-

vity, membrane system integrity, and speed ofemergence 

(51). 

 Studies have also demonstrated the effectiveness of 

solid matrix priming using other materials. For example, 

solid matrix priming has been found to enhance seed vig-

our and germination of soybean (52) and improve seed 

germination growth and emergence of onion seeds under 

sub-optimal and optimal conditions (53). These findings 

suggest that solid matrix priming is a promising technique 

for improving seed quality and promoting the growth and 

development of crops. 

Hormonal Seed Priming          

Hormonal seed priming is a technique that involves       
immersing seeds in a solution containing optimal concen-

trations of phytohormones, which enhances their metabo-

lism (54). The process is known to improve germination, 

seedling growth, and yield by promoting nutrient uptake 

through increased physiological activities and root pro-

duction (55, 56). This method is particularly useful in     

establishing crops under heat and drought stress condi-

tions (57). 

 Studies have shown that hormonal seed priming 

induces various physiological processes such as growth, 

development, respiration, and transpiration in many crop 

species (58, 59). Phytohormones, including IAAs, cytokin-

ins, gibberellic acid, ABA, salicylic acid, and ethylene, are 

commonly used in seed priming (54). 
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Bio-Priming      

Several studies have shown the potential benefits of seed 

priming with different agents on crop growth and yield. 

Bio-priming with Trichoderma harzianum for 30 min signifi-

cantly enhanced effective tillers by 59–153%, chlorophyll 

content by 174–189%, and root length by 27% in wheat 

when compared to control (60). Pearl millet treated with 

Pseudomonas fluorescens for 6 hrs at a concentration of 1 × 

108 CFU mL−1 resulted in increased leaf surface area, Rhizo-

bacteria-mediated induced systemic resistance, and re-

duced downy mildew severity caused by Sclerospora 

graminicola (61). In rice, T. harzianum priming for 24 hrs 

reduced the deteriorating effect of salinity and significant-

ly increased proline, phenol content, and membrane      

stability compared to non-primed seeds. It also significant-

ly enhanced the number of leaves, leaf area, and            

chlorophyll content (62). Bio-priming with Bacillus          

amyloliquefaciens and Serratia marcescens at a concentra-

tion of 1 × 107 CFU mL−1 significantly enhanced the    activi-

ties of peroxidase (APX) and polyphenol oxidase (PPO) in 

rice seedlings, and reduced rice blast severity caused by 

Magnaporthe oryzae (63). 

 Azospirillum brasilense priming for 12 hrs resulted in 

significantly higher field emergence (96.3%), crop growth, 

performance, and yield in maize compared to control (64). 

Priming maize seeds with T. lixii for 24 hrs         resulted in 

increasing the length of fresh and dry weight of root/shoot 

and a decrease in lipid peroxidation (65). The priming of 

maize with Rhizophagus irregularis and               P. fluo-

rescens resulted in shoot nutrient concentration incre-

ments for nitrogen, phosphorus, potassium, zinc, magnesi-

um, and manganese (66). 

 Bio-priming of chickpea with T. harzianum for         

12 hrs suppressed Fusarium wilt by 53.38–57.99% suppres-

sion and also increased the germination and plant growth 

parameters as compared with those of chemical fungi-

cides and control (67). Priming of peas with Trichoderma 

asperellum for 24 hrs resulted in significant increases in 

shoot length, root length, number of leaves, shoot fresh 

weight, root fresh weight, shoot dry weight, and root dry 

weight by 35.29%, 96.49%, 28.13%, 36.10%, 146.26%, 

30.17%, and 77.2%, respectively (68).  

 Bio-priming of rape seed with a hypovirulent      

Sclerotinia sclerotiorum strain DT-8 carrying a DNA virus 

SsHADV-1 for 18 hrs at 10 mL 5 g seed−1 reduced stem rot 

severity caused by S. sclerotiorum and induced systemic 

resistance, influenced the composition and structure of 

the plant microbiome, and secreted oxalic acid (69).  

Modern Technologies in Seed Priming         

Nutri-Priming         

Nutri-priming is a pre-sowing seed treatment technique 

that involves soaking seeds in a nutrient solution to im-

prove their quality and enhance their nutrient content. 

Micronutrients play a crucial role in respiration and photo-

synthesis, which are essential for plant growth and deve-

lopment. Any disturbance in these processes can cause 

reduced growth and yield (70). To overcome this             

challenge, micronutrients can be directly applied to the 

seeds through nutri-priming. 

Numerous studies have investigated the effects of nutri-

priming on different crops, with promising results. For  

instance, paddy seeds soaked in solutions containing 

0.001% and 0.1% boron showed improved stand establish-

ment compared to non-treated seeds (71). Similarly, nutri-

priming barley seeds with a zinc solution resulted in im-

proved germination and seedling development, as well as 

increased mineral uptake, dry matter accumulation, and 

water use efficiency by 44% in drought-stressed plants 

(40). 

 Nutri-priming maize seeds with a 1% solution of 

ZnSO4 for 16 hrs led to improved crop growth, higher grain 

yield, and increased grain zinc content (72). In another 

study, nutri-priming chickpea seeds with a 0.5 g/L solution 

of sodium molybdate resulted in an increase in yield by up 

to 27% (73). Additionally, a 0.05% solution of ZnSO4.7H2O 

was found to increase seed yield by 19% and increase seed 

zinc content by 29% (74). Cobalt nitrate was used for nutri-

priming pigeon pea and peanut seeds in a study that 

showed enhanced number of leaves, plant height, total 

yield and dry matter, nodule number, and leghaemoglobin 

content (75). The nutri-priming of mungbean seeds with 

sodium molybdate dehydrate at 0.02% and 0.04% for 5 hrs 

improved yield (76). These findings demonstrate the      

potential benefits of nutri-priming for crop production, 

highlighting the importance of nutrient uptake and the 

potential for enhancing crop yield and quality. The reviews 

suggest that nutri-priming can be an effective seed           

pre-treatment technique for enhancing seedling growth 

and improving crop yield, particularly under stress condi-

tions. However, the optimal duration and concentration of 

nutrient solution may vary depending on the crop and 

growing conditions, and careful attention should be paid 

to avoid over-soaking and nutrient toxicity. 

Nano-Priming        

Seed nano-priming technology involves the use of nano-

materials to improve the quality and performance of 

seeds. Nano-priming involves treating seeds with a solu-

tion containing nanoparticles, which are typically between 

1 and 100 nm in size. The nanoparticles are designed to 

interact with the seed surface, enhancing seed germina-

tion, growth, and productivity. 

 Nano-priming technology represents an innovative 

and cutting-edge approach that harnesses the potential of 

nanoparticles to augment the germination, seedling      

vigour, and growth of seeds. By utilizing nano-

formulations as a media, nanoparticles like silver nanopar-

ticles (AgNPs), gold nanoparticles (AuNPs), and multi-

walled carbon nanotubes (MWCNTs) are employed for 

seed priming (77). While the uptake of nanoparticles by the 

seed during nano-priming may be variable, it has been 

observed that a considerable amount of nanoparticles 

remain as a coating on the seed surface. This coating facili-

tates a myriad of benefits that augment seed performance, 

including the enhancement of α-amylase enzyme activity, 

an increase in soluble sugar content to promote seedling 
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growth, and the stimulation of aquaporin genes in germi-

nating seeds. Furthermore, nano-priming improves the 

seed's tolerance to stress by mitigating reactive oxygen 

species (ROS) production, creating nanopores for            

enhanced water uptake, activating the seed's antioxidant 

systems, generating hydroxyl radicals for cell wall loosen-

ing, and catalyzing the hydrolysis of starch (78). Ongoing 

research into the potential applications of nano-priming is 

promising and could have significant implications for the 

optimization of agricultural productivity.  

 The utilization of nanoparticles has emerged as a 

promising strategy to enhance crop growth and develop-

ment. Among different nanoparticles, silver nanoparticles 

(AgNPs) applied at a concentration of 5ppm and 10ppm 

significantly improved the germination parameters and 

seedling vigour of paddy (78). Similarly, the application of 

zero valent iron (nZVI) nanoparticles at a concentration of 

25 mg/L improved the germination and seedling growth of 

aromatic rice cultivar Gobindabhog (79). In addition, the 

application of chiston nanoparticles (20-170nm) at             

0.5-20 mg/L improved plant morphology and biomass in 

paddy (80). 

 In wheat, silicon nanoparticles (90nm) applied at a 
concentration of 300-1200 mg/L improved the growth, 

yield, and chlorophyll contents while alleviating oxidative 

stress through increased activity of antioxidant enzymes 

(81). Moreover, seed treatment with metal nanoparticles, 

including Zn, Ag, Fe, Mn, and Cu, improved the tolerance 

against eyespot of wheat (82). Application of TiO2, ZnO, 

and chitosan nanoparticles at a concentration of 50ppm 

enhanced the seed germination and seedling growth of 

wheat (83). Additionally, the application of Cu (15-30nm) 

and Fe (20-30nm) nanoparticles at 20-40 ppm increased 

the enzymatic, biochemical, and antioxidant activities, as 

well as the abiotic stress resistance in wheat (84). 

 In sorghum, the application of Fe nanoparticles 

(<50nm) at 10-500 mg/L significantly increased the seed 

and seedling vigour, biomass, and biochemical activity 

(85). Furthermore, seed coating with Fe NPs at a concen-

tration of 25ppm improved the germination parameters 

such as germination percent, speed of germination, seed-

ling growth, and vigour index of pigeon pea (86). In moong 

bean, seed priming with TiO2 nanoparticles at a concentra-

tion of 0.02% improved seed germination and seedling 

growth (87). 

 In conclusion, nano-priming technology has 

emerged as a promising approach to enhance crop growth 

and development by improving germination, seedling vig-

our, and stress tolerance. However, further studies are 

needed to elucidate the underlying mechanisms and      

potential risks associated with the use of nanoparticles in 

agriculture.  

Magneto-Priming       

Magneto-priming, which involves exposing dry seeds to a 

magnetic field, has been shown to enhance crop germina-

tion, seedling vigour, yield, and stress tolerance (88, 89). 

This pre-sowing treatment can effectively mitigate the  

adverse effects of environmental stressors, such as 

drought, salinity, disease, and pests, during early crop 

growth and germination (89). In the course of                  

magneto-priming, the seeds are subjected to a non-

intrusive magnetic field stimulus for a predetermined 

timeframe, thereby instigating physiological alterations 

within the seed. The augmented properties of magnetical-

ly-primed seeds encompass elevated germination kinetics, 

augmented root and shoot development, amplified bio-

mass yield, in addition to superior water absorption char-

acteristics that expedite the hydration of enzymes, namely 

amylase, protease, and dehydrogenase. This leads to    

accelerated germination and heightened seedling robust-

ness even under water deficit and salinity stress circum-

stances. The utilization of magneto-priming has been dis-

covered to confer a statistically significant improvement in 

the overall germination and growth outcomes of maize, 

wheat, and chickpea seeds (89). 

 Various scientific investigations have examined the 

impact of the application of magnetic fields on the agricul-

tural yield and productivity of crops. The application of a 

magnetic field with an intensity of 30 mT to wheat seeds 

results in the amplification of their antioxidative machi-

nery in the context of flooding-induced stress, while show-

ing no ameliorative effects on germination and seedling 

development (90). Chickpea seeds subjected to a magnetic 

field of 100 mT displayed augmented root volume and  

surface area, thereby affording the crop with an enhanced 

capacity to exploit elevated moisture levels during the 

active growth phase in conditions of moisture stress (91). 

The application of magnetic fields with strengths of 75, 

150, and 300 mT elicited a significant improvement in the 

germination rate, seedling development, and overall chlo-

rophyll content of lentil seeds (92). 

 The utilization of a magnetic field with an intensity 

of 5 mT in the treatment of Vigna radiata seeds resulted in 

a notable enhancement in both germination rates and        

α-amylase enzyme activity, indicating a potential influence 

on seed physiology that may be leveraged for agricultural 

applications (93). Sunflower seeds exposed to magnetic 

fields of 50 and 200 mT exhibited increased germination 

and seedling vigour, growth, and biomass production.  

Additionally, membrane integrity of the seed coat was  

improved, and the activity of enzymes such as alpha-

amylase, dehydrogenase, and protease in germinating 

seeds was increased (94). In soybean, exposure to magnet-

ic fields of 150 and 200 mT improved germination, seedling 

vigour, growth parameters, biomass accumulation, leaf 

area, photosynthetic efficiency, protein content of the leaf, 

and performance index of Photosystem II in leaves. This 

led to increased light harvesting efficiency of leaves and 

biomass accumulation (95, 96). 

 Pulsed magnetic fields (PMFs) have also been     

studied for their effects on crop performance. Exposure to 

PMFs with a frequency of 10 and 100 Hz and intensity of 

1500 mT resulted in increased germination, fresh weight of 

shoots and roots, leaf area, plant height, total soluble          

sugar, total protein, and phenol content (97). 



AMIR  ET AL   8     

https://plantsciencetoday.online 

 

 Overall, these studies suggest that exposure to 

magnetic fields, including PMFs, can have positive effects 

on crop performance in terms of germination, seedling 

growth, water use efficiency, and other growth parame-

ters. However, the effects of magnetic fields on different 

crops may vary depending on the specific conditions of the 

experiment.   

 

Conclusion   

With increasing global warming, crop production in        

sustainable manner can be achieved through proper crop 

stand in the field. For this purpose, seed invigoration 

methods like different seed priming techniques which   

includes hydro-priming, halo-priming, osmo-priming, bio-

priming, nutri-priming, nano-priming, magneto-priming 

etc., can play important role in modern agriculture. Seed 

priming is not only helpful in enhancing crop stands via 

better and uniform germination and seedling vigour but 

also shows better growth and development through      

improved metabolism which results in better yield under 

different stress conditions. Seed priming has emerged as a 

promising technology for mitigating stresses in crops to 

alleviate the undesirable effects of stress. Numerous      

experiments by researchers had revealed that enhanced 

germination and vigorous seedling growth in primed seeds 

occur due to mobilization of food reserves and gene acti-

vation responsible for synthesis enzymes. Priming of seed 

also repairs the damage that occurs in seed. There is need 

to standardize effective priming technique in different 

crops to overcome abiotic stress in sustainable manner. 

With the development of new and innovative seed priming 

methods, targeted seed priming, eco-friendly priming 

agents, and integration with precision agriculture, the   

potential benefits of this technology are expected to      

expand even further. As we continue to face the challenges 

of food security and environmental sustainability, seed 

priming can be a better solution.  
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