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Abstract  

Fungal infections affect over 1 billion people worldwide each year, including 

superficial infections like athlete's foot and more severe systemic infec-

tions. Fungal diseases are responsible for an estimated 1.5 million deaths 

annually, a figure comparable to or exceeding the mortality rate of diseases 

like malaria or tuberculosis. The limited arsenal of available antifungal 

drugs, coupled with the emergence of drug-resistant fungal strains, has in-

creased this concern. Therefore, there is a significant need to explore alter-

native therapeutics to overcome fungal pathogens. Carvacrol, phenolic 

monoterpenoids, is present in essential oils of many plants and is known for 

its biological and pharmacological properties. In the present study, the effi-

cacy of carvacrol was investigated against four Candida glabrata strains 

isolated from patients of vulvovaginal candidiasis, which have shown vary-

ing extents of susceptibility against fluconazole. Carvacrol, a phytoactive 

monoterpene phenol, has shown a minimum inhibitory concentration 

(MIC50) ranging from 75 µg/mL to 125 µg/mL and minimum fungicidal con-

centration from 150 µg/mL and 175 µg/mL for all clinical isolates, including 

wild-type strains. Carvacrol, in combination with fluconazole, has shown a 

strong synergism against wild type C. glabrata with a FIC index value of 

0.156. Preliminary mechanistic investigations unveiled that exposure to 

carvacrol significantly reduced cell surface hydrophobicity and ergosterol 

content in all strains. In conclusion, carvacrol holds promising potential as 

an effective antifungal agent against C. glabrata, which is categorized as 

high priority in the first fungal pathogen priority list of the World Health Or-

ganisation released in 2022 for highlighting priority areas for action, includ-

ing the development of effective therapeutic solution.   
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Introduction  

Fungal infections have emerged as a significant global health concern influ-

enced by a complex interplay of individual, geographical, and global factors 

(1-4). In the year 2022, the World Health Organization (WHO) introduced a 

fungal priority pathogens catalog, WHO FPPL (fungal priority pathogen list), 

listing the fungal pathogens associated with a high risk of morbidity and 

mortality (5). In the list, Candida albicans has been categorized as the criti-

cal priority group, followed by Candida glabrata (Nakaseomyces glabrata) in 
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the high-priority group. Candida species are responsible 

for diverse kinds of fungal infections, including superficial, 

invasive, and systemic. One of the most common forms of 

candidiasis is vulvovaginal candidiasis (VVC), which results 

primarily from C. albicans along with other non-albicans 

Candida (NAC) species. VVC is a remarkably common condi-

tion, with an estimated 75 % of women experiencing at 

least one episode in their lifetime and approximately 40 % 

to 45 % enduring recurrent occurrences (6). Azoles are the 

mainstay antifungals in the treatment of vulvovaginal can-

didiasis. However, it is important to acknowledge that cer-

tain non-albicans Candida strains, predominantly C. glabra-

ta, exhibit inherent resistance to azoles, posing challenges 

in disease management (7). Notably, C. glabrata, with oth-

er NAC species, is found in 10 % to 20 % of women experi-

encing recurrent VVC. This underscores the significance of 

recognizing and effectively managing NAC species, espe-

cially in cases of recurrent VVC, to ensure the best possible 

clinical outcomes and alleviate the associated healthcare 

costs. Candida pathogenesis is attributed to known viru-

lence factors such as cell surface hydrophobicity, yeast to 

hyphae transition, adhesion and biofilm formation etc. (8). 

Sterol is another key component in maintaining cell wall 

integrity and virulence of Candida species (9). Antifungal 

resistance carries significant implications for human 

health, typically resulting in extended treatment durations 

and hospitalization as well as an elevated demand for 

costly and frequently highly toxic secondary antifungal 

medications. Unfortunately, these secondary treatments 

are often inaccessible in low- and middle-income coun-

tries, potentially contributing to a higher mortality rate 

(10). Natural products have served as a rich and enduring 

source of medicinal compounds from prehistoric times to 

the present era. Phenolic monoterpenes, a class of organic 

compounds found abundantly in various plants and their 

essential oils, show significant potential for medicinal use 

due to their diverse pharmacological properties (11).  Car-

vacrol, a monoterpene predominantly found in essential 

oils of plants like oregano, thyme and other herbs, repre-

sents a potent bioactive agent renowned for its diverse 

biological properties and it has demonstrated promising 

anti-Candida properties in various studies (12-15). Moreo-

ver, the use of carvacrol against Candida sp. is appealing 

due to its natural origin, relatively low toxicity to human 

cells at effective concentrations and its potential to com-

bat drug-resistant strains of Candida.  

 This work is an attempt to examine the efficacy of 

carvacrol against C. glabrata isolates of VVC. The antifun-

gal properties of carvacrol have also been investigated in 

combination with fluconazole. Carvacrol has proven its 

potential as a promising antifungal agent against VVC clini-

cal isolates, offering plant-based therapeutics against po-

tential fungal pathogens.   

 

Materials and Methods 

Strains, Reagents and Culture Condition          

The study included clinical isolates and wild type strains of 

C. glabrata, as delineated in Table 1. Wild type strain 

(MTCC3019) was procured from CSIR-IMTECH Chandigarh, 

India and clinical isolates of vulvovaginal candidiasis were 

obtained from Shri Guru Ram Rai Institute of Medical and 

Health Science (SGRRIMHS), Dehradun, Uttarakhand,    

India. The reference strain of C. glabrata (MTCC3019) is 

denoted as CG, while the clinical isolates (VVC) are denot-

ed as CG1, CG2, CG3 and CG4 in figures and text. Strains 

were consistently maintained in YPD medium, consisting 

of 1 % yeast extract, 2 % Bacto-peptone and 2 % dextrose 

(HiMedia), at 37 °C (CLSI, M27-A2). RPMI-1640 medium 

(with L-glutamine and sodium bicarbonate) (HiMedia), 

Sabouraud dextrose broth and YPD were used for antifun-

gal assays. YPD broth was used for the growth curve and 

time-kill assay. Carvacrol with a purity of over 98 % was 

procured from Sigma-Aldrich (Cat. no. 282197-10G). Stock 

solutions were prepared using 100 % dimethyl sulfoxide 

(DMSO) from Sigma Aldrich and then diluted in RPMI be-

fore utilization. The fluconazole susceptibility of the           

C. glabrata strains listed in Table 1 had been determined 

previously (16). 

Antifungal susceptibility test        

The minimum inhibitory concentrations (MIC50) of car-

vacrol against wild-type strain and clinical isolates were 

determined through broth microdilution assay following 

CLSI guidelines (M27-A2) (9). Briefly, a log-phase cell sus-

pension of 2.5 × 103 cells/ml in RPMI-1640 medium was 

prepared and subsequently, 100 µL of this cell suspension 

(2.5 × 103 CFU/ml) was added to each well of microtiter 

plate (MTP). Following this, 100 µL of RPMI media contain-

ing varying concentrations of carvacrol (0, 25, 50, 75, 100, 

125 and 150 µg/mL) was added to the wells. The MTP was 

then incubated at   37 °C for 48 h and the optical density 

(OD) at 600 nm was measured using an ELISA plate reader 

(Bio-Rad). The minimum inhibitory concentration was con-

firmed as the lowest drug concentration that inhibited 

over 50 % of cell growth. The untreated control group was 

Sl. No Strain Type Strain Description Susceptibility to Source 

1 C. glabrata wild-type strain MTCC3019(CG) R CSIR-IMTECH (INDIA) 

2 

Vulvovaginal C. glabrata     
Clinical isolate (VVC).  

CG1 R 

Shri Guru Ram Rai Institute of Medical and Health Science, 
(SGRRIMHS), Dehradun, Uttarakhand, India.  

3 CG2 SDD 

4 CG3 R 

5 CG4 S 

Table 1. Details of the C. glabrata strains used in the study.  

R- Resistance, SDD- Susceptible for dose dependent, S- Sensitive. *Fluconazole susceptibility was confirmed (16).  
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included in the assay and each concentration point of car-

vacrol was set up in triplicate. The average values of the 

triplicates were used for graph plotting and data analysis. 

The minimum fungicidal concentration (MFC) of carvacrol 

was investigated by spotting 5 µL cell suspension from 

each well of the above MTP plate onto the YPD agar plate, 

followed by incubation at 37 °C for 16 h before being pho-

tographed. The concentration point of no growth was ob-

served as the MFC (9). 

Growth curve analysis          

The effect of carvacrol on the growth of the fungi was stud-
ied using growth curve analysis (17). Briefly, log phase cul-

tures of the wild type and clinical isolate were analyzed for 

growth kinetics in YPD medium with and without carvacrol 

at MIC50 concentration for 7 h. The readings of the culture 

at OD600 nm were recorded at an interval of 1h. Each exper-

iment was performed in triplicate and the average values 

were used to generate graphs and draw conclusions. 

Time-kill assay          

A time kill assay was performed to analyze the time de-

pendent fungicidal effect of carvacrol on the C. glabrata 

wild-type strain, as previously defined (18). Briefly, log 

phase cultures were exposed to carvacrol at MIC50 (1X, 2X 

and 4X) for different time points (0.5, 1, 2, 3, 4, 5 and 24 h) 

in YPD broth at 3 places for each.  Cultures were washed to 

remove carvacrol before resuspension in YPD broth and 5 

µL culture from each tube was spotted onto YPD agar 

plates. The plates were incubated at 37 °C for 16 h before 

being photographed (18). 

Checkerboard Assay          

The assays were conducted in RPMI medium using 96-well 

round-bottom plates, as in previous studies, with slight 

modification (4). Carvacrol and fluconazole stock solutions 

were prepared in DMSO and further diluted in RPMI medi-

um. Dilutions were made for each drug so that the final 

concentration ranged from 512 to 0.5 µg/mL for flucona-

zole (A) and from 75 to 6.25 µg/mL for carvacrol (B). 1640 

medium (with L-glutamine and sodium bicarbonate)        

2.5 × 103 cells/mL in RPMI-1640 medium (with L-glutamine 

and sodium bicarbonate) was prepared. Subsequently, 

100 µL of the cell suspension was added to each well of 

MTP, followed by the addition of 50 µL of different concen-

trations of each drug in each well as per the plan of the 

MTP (Fig. 1.). The minimum inhibitory concentration of 

drug A or B was defined as the lowest drug concentration 

that inhibited over 50 % of cell growth, determined by 

measuring OD600 nm. 

 The fractional inhibitory concentration (FIC) index 

was calculated using the formula:  

     ........(Eqn.1) 

Effect of carvacrol on cell surface hydrophobicity        

The effect of carvacrol on cell surface hydrophobicity 
(CSH) of wild type strains and clinical isolates was deter-
mined following a previous study (9). Overnight cultures 

were diluted at 0.1 OD600 nm after being exposed to MIC50 of 
carvacrol followed by incubation for 24 h at 37 °C. After the 
cells were cultured, they were collected, washed using 
sterile PBS and then suspended in 3 mL of 50 mM sodium 
phosphate buffer at a pH of 7.2, resulting in a concentra-

tion of 2 × 106 cells/mL. Subsequently, 500 μL of octane 

was introduced to this cell suspension and vigorously 
mixed for 1 min by vortexing. The CSH was calculated by 
comparing the % decrease in optical density to the control 
suspension. A larger variance in absorbance values indi-
cated a higher hydrophobic nature of the yeast cells. Each 
strain was evaluated 3 times independently in triplicates. 
The hydrophobic index (HI) was calculated using the fol-
lowing equation: 

 

                                       

Where A1 is the absorbance of the inoculum and A2 is the 
absorbance of the aqueous phase.  

Quantification of ergosterol of planktonic cells         

Ergosterol levels in C. glabrata were measured by exposing 
mid-log phase cells in Sabouraud dextrose broth to the 
MIC50 of carvacrol for 24 hours at 37 °C (9). After centrifuga-
tion at 6000 rpm for 5 min, the cells were collected and 
washed with sterile water and the wet weight of the pellet 
was measured before being resuspended in 3 mL of a lys-
ing agent (25 % alcoholic KOH). Subsequently, the cell sus-
pension underwent an hour-long incubation at 85 °C in a 
water bath to aid in sterol extraction. Sterols were then 
extracted by vigorous mixing with a 1:3 mixture of distilled 
water and n-heptane and the heptane layer was meticu-
lously collected and stored at -20 °C for 24 h. Finally, the 

sterol extracts were analyzed by scanning a 20 μL sample 

mixed with 100 μL of absolute ethanol, scanning the spec-

trum from 230 to 300 nm using a UV-visible spectropho-
tometer (SHIMADZU, UV-1900). 

 The amount of ergosterol was quantified  using the 
following equation: 

MIC of drug A in combination      MIC of drug B in combination 
FIC index =                                                         + 

MIC of drug A alone                          MIC of drug B alone 

Checker-

board assay 

Fluconazole concentration (µg/ml) 
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 Fig. 1. Plan of MTP for setting checkerboard assay.  

A1-A2 
HI =                 X 100     

A1                  …………(Eqn. 2)      
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 ....(Eqn. 3) 

where F is the dilution factor; 290 and 518 are the E values 

for crystalline ergosterol and 24 (28) dehydroergosterol 

respectively. 

Statistical Analysis         

All experiments were conducted in triplicate and the re-
sults are presented as mean ± standard deviation. The 

data were subjected to student’s t-test analysis using the 

Microsoft Excel program. Statistical significance was con-

sidered when p<0.05 or p<0.01.   

 

Results   

Antifungal susceptibility test of carvacrol         

Minimum inhibitory concentration of carvacrol           

The MIC50 and MIC90 values of carvacrol against C. glabrata 
wild type (CG) and its clinical isolates (CG1, CG2, CG3 and 

CG4) have been given in Table 2. It has been observed that 

clinical isolates have shown higher MIC values than the 

wild type C. glabrata. Analysis of OD600 nm at different con-

centrations of carvacrol has indicated that CG3 is slightly 

more resistant than the other isolates used in the assay 

(Fig. 2).  

Minimum fungicidal concentration of carvacrol          

Further investigation into the effects of higher drug con-

centrations as shown in Fig. 3, allowed the determination 

of the minimum fungicidal concentrations (MFC) for these 

antifungal agents. Carvacrol, on the other hand, showed 

MFC values of 150 µg/mL for CG1, CG2 and CG4 and 175 µg/

mL for CG3 (Table 2).  

Growth curve analyses of carvacrol-treated strains        

Growth curve analysis was performed to check the cellular 
fitness and growth rate of the wild-type and clinical isolate 
of C. glabrata. The growth kinetics of all tested strains ex-
hibited a sigmoidal growth curve, clearly indicating the 
presence of distinct lag, log and stationary phases. More 
cellular fitness was found in CG1 and CG3 when compared 
to wild type strain (Fig. 4A). In general, about 1.30 to 2 h 
was required by the cells to adapt to the normal growth 
environment before they were ready to proliferate and 

Strains 
Carvacrol (µg/mL) 

MIC50 MIC90 MFC 

CG 75-100 100-125 150 

CG1 100-125 125-150 150 

CG2 100-125 125-150 150 

CG3 100-125 125-150 175 

CG4 100-125 125-150 150 

Table 2. Minimum inhibitory and minimum fungicidal concentrations of 
carvacrol.  

µg - microgram, mL- milli liter, MIC50- minimum inhibitory concentration for 
50 % cells inhibition, MIC90- minimum inhibitory concentration for 90 % cells 
inhibition, MFC- minimum fungicidal concentration.  

Fig. 2. Broth microdilution assay was performed on planktonic cells of C. 
glabrata and its clinical isolate in RPMI media upon exposure to carvacrol. The 
mean values of OD600 nm ± SD of three replicates is taken at the y-axis.  

Fig. 3. Minimum fungicidal concentration of carvacrol by  spotting assay. 
C. glabrata and the clinical isolate were exposed to different doses of carvacrol 
in a microtiter plate for 48 h followed by incubation on YPD agar plate for 18 
h.  

Fig. 4. The growth curve analysis of the C. glabrata and its clinical isolate 
on exposure to carvacrol for 7 h. A- Untreated cells. B- Cells treated with a 
sublethal concentration of carvacrol. CG-Wild type cells CG1, CG2, CG3 and 
CG4-clinical isolates.  
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enter the log phase. Upon exposure to MIC50 of carvacrol, 
the strains showed significant reduction after 7 h of expo-
sure i.e., CG (72 %), CG1 (69 %), CG2 (25 %), CG3 (53 %) and 
CG4 (72 %), when compared to their untreated controls 
(Fig. 4). In YPD media, CG2 has shown better growth poten-
tial in presence of carvacrol than that of others including 
wild type strain.  

Time Kills Assay        

The fungicidal potential of carvacrol depends on the dos-

age and duration of the exposure. In YPD broth, carvacrol 

exhibited fungicidal activity at concentrations of               

200 µg/mL  and 400 µg/mL.  Carvacrol has shown fungicid-

al activity at concentrations of 400 µg/mL for 0.5 h expo-

sure and at 200 µg/mL for 2 h exposure (Fig. 5) 

Checkerboard assay: Synergism of carvacrol and flucon-

azole against C. glabrata            

The interaction between carvacrol and fluconazole was 

meticulously scrutinized through the checkerboard assay 

as detailed in the methodology. Effective concentrations 

of fluconazole (drug-A) and carvacrol (drug-B) ranged from 

512 to 0.5 µg/mL and from 75 to 6.25 µg/mL respectively. 

The minimum inhibitory concentrations of drugs A and B 

were found to be 256 and 100 µg/mL respectively. Car-

vacrol showed a 16-fold reduction in the MICA when incor-

porated at concentrations starting from 12.5 µg/mL as 

shown in Table 3. This demonstrated a consistent and sig-

nificant enhancement in the antifungal activity of car-

vacrol when combined with fluconazole. 

Carvacrol effectively reduced the CSH in clinical isolates          

 The ability of C. glabrata to survive and cause disease 

within a host is greatly influenced by the CSH, which is a 

crucial virulence characteristic. The major role of cell sur-

face hydrophobicity is facilitating cell adhesion and bio-

film formation, leading to drug resistance (19). The un-

treated clinical isolates have shown higher CSH than the 

wild type strain except for the CG1 isolate, as shown in    

Fig. 5.  Upon treatment with MIC50 of carvacrol, all tested 

strains showed a significant reduction of CSH.  Upon expo-

sure to carvacrol, each one showed a reduction in the CSH 

values, but the reduced values of CSH for all isolates were 

higher than that of the reduced value of wild type strain 

(Fig. 6).   

Carvacrol reduced ergosterol content in clinical isolates        

Ergosterol is a critical component of fungal cell mem-

branes and a primary target of azole drugs. Except CG2, all 

other untreated clinical isolates have shown ergosterol 

content lower than wild type strain of C. glabrata (Fig. 6). 

Reductions in ergosterol content when compared with 

that of wild type strain were 31 % in CG4, 23 % in CG3 and 

16.5 % in CG1 (Fig. 6).  Upon treatment with MIC50 of car-

vacrol, all tested strains showed a significant reduction in 

membrane ergosterol content in comparison to respective 

untreated control. CG4 showed the highest reduction of 

ergosterol content (61 %), while CG3 showed in the lowest 

ergosterol content (23 %), as shown in the Fig. 6.  

Discussion 

Carvacrol is well-documented in the scientific literature for 

its anti-Candida properties. Studies have shown that it can 

effectively inhibit the growth and biofilm formation of vari-

ous Candida species, including Candida albicans and Can-

dida glabrata. Its mechanism of action involves disrupting 

the fungal cell membrane and interfering with essential 

metabolic processes. This makes carvacrol a promising 

candidate for developing natural antifungal treatments, 

particularly in an era of increasing antifungal resistance 

(14, 15).  Numerous studies have shown their effectiveness 

in inhibiting the growth of various fungal species. These 

compounds are found in essential oils such as oregano 

(Origanum vulgare) and thyme (Thymus vulgaris) and have 

been explored for their potential applications in both tra-

ditional and modern medicine as natural antifungal 

agents (20, 21). Candida infections can occur in different 

parts of the body, including the mouth, throat, gut, vagina 

and bloodstream. Azoles are a primary class of antifungal 

agents commonly used to treat most of the Candida infec-

tions. The development of resistance in C. albicans and 

NAC species for azole is an adaptation of many paths, such 

as mutations in the target enzyme, overexpression of 

Fig. 5. Time kill assay of the carvacrol in wild type C. glabrata strain (CG).  

Strain Drug 

MIC50 (µg/mL) 

FIC FICI 
Alone 

In com-
bination 

C. glabrata 
Wild type 

Fluconazole (A) 256 8 0.031 
0.156 

Carvacrol (B) 100 12.5 0.125 

Table 3. MIC, FIC and FIC index of carvacrol with fluconazole.  

FIC- frictional inhibitory concentration, FICI- frictional inhibitory concentra-
tion index.  

Fig. 6. Carvacrol significantly reduced the relative CSH of C.  glabrata  
and their clinical isolates. The results represent mean ± standard deviation 
(**p<0.01 and *p<0.05).  
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efflux pumps, and the genetic variability of Candida spe-

cies (22, 23). Naturally active compounds show alternate 

anti-Candida potential in pursuit of antifungal therapeutic 

(24, 25). The present investigation reveals the effectiveness 

of carvacrol as a potent antifungal agent against VVC clini-

cal isolates of a model NAC species, C. glabrata. The iso-

lates used in the present study have shown varying levels 

of susceptibility to fluconazole, demonstrating the intri-

cate nature of these fungal strains listed in Table 1 (16). 

The conventional treatment of VVC is occasionally restrict-

ed by limitations of emerging resistance to available drugs 

in NAC species, especially against C. glabrata (22, 26). VVC 

isolates have different levels of fluconazole sensitivity. CG3 

is more resistant than other clinical isolates. In the present 

study, carvacrol is found to be more effective than flucona-

zole against clinical isolates of C. glabrata (Table 2). Also, 

carvacrol has shown promising synergistic potential with 

azole against NAC species (Table 3). 

 The monoterpenes have already been reported as 
an antifungal agent against C. albicans and C. glabrata (14, 

15, 27). However, reliable evidence of their potential use in 

antifungal therapy is scarce. Our primary objective was to 

assess the efficacy of carvacrol against VVC clinical isolates 

of C. glabrata. As shown in Fig. 1, unlike fluconazole sus-

ceptibility (16), all isolates have shown similar MIC values 

for carvacrol, which were slightly higher than the MIC of 

wild type (MTCC3019).  This shows multiple modes of ac-

tion of the carvacrol other than targeting ergosterol syn-

thesis. The MIC values of the carvacrol in this study are in 

the range of the MIC reported earlier (15). In this study, 

carvacrol is reported to be fungicidal in the range of 150-

175 µg/mL for all isolates, including wild type (Table 2). 

Like fluconazole susceptibility data (Table 1), CG2 and CG3 

have shown more tolerance to carvacrol in growth curve 

assay and fungicidal assay (CG3) (Fig. 3 and Table 2).  In 

the rich media YPD, carvacrol exhibited fungicidal activity 

against C. glabrata in dose and time dependent manner 

(Fig. 5).  

 Furthermore, the interaction between carvacrol 

and fluconazole was investigated against wild strain using 

a checkerboard method. These findings suggest that car-

vacrol potentiates the activity of fluconazole remarkably 

in a synergistic manner with an FIC index of 0.156 (Table 

3). Such an amazing synergistic activity gives a strong ba-

sis for developing combinatorial drug modules based on 

phytoactive and synthetic molecules. A similar kind of syn-

ergistic effect has been observed between an isomeric 

monoterpene (thymol) and fluconazole in a previous study 

(28).  

 There are some reports on the anti-Candida mode of 
action of carvacrol against members of Candida sp., which 

involves disrupting endoplasmic reticulum and inducing 

unfolded protein response inhibiting ergosterol biosynthe-

sis and altering membrane potential, affecting membrane 

structure and permeability and inducing apoptosis 

through elevated cytoplasmic and mitochondrial Ca2+ lev-

els (29-33). In most of the published reports, antifungal 

properties and mode of action of the carvacrol have been 

investigated in C. albicans, leaving a gap to study in non-

albicans Candida. Therefore, we tried to analyze the mode 

of action of carvacrol in C. glabrata, a model NAC species.  

 The hydrophobic nature of the cell surface allows 

Candida cells to interact with host tissues and contribute to 

the establishment of infection (19). Carvacrol, an essential 

oil, significantly reduced cell surface hydrophobicity in C. 

albicans with an unknown mechanism (34, 35). We have 

shown in this study that carvacrol has reduced cell surface 

hydrophobicity in wild type as well as in clinical isolates of 

C. glabrata (Fig. 6). These findings underscore the poten-

tial of carvacrol as an antifungal agent that can effectively 

modulate the cell surface hydrophobicity to reduce adhe-

sion and biofilm formation properties. Carvacrol has the 

potential to inhibit ergosterol biosynthesis and the disrup-

tion of membrane integrity (30). Carvacrol exposure to the 

wild type and VVC clinical isolates has resulted in a signifi-

cant reduction of membrane ergosterol, strengthening the 

fact that carvacrol affects ergosterol biosynthesis (Fig. 7). 

This study unveils that carvacrol may be explored and de-

veloped further for topical application in case of vulvovagi-

nal candidiasis.  

Conclusion  

Carvacrol, a phenolic monoterpene of plant origin, has 

been reported to have strong fungicidal potential against 

a model NAC species, C. glabrata and its clinical isolate 

from patients of vulvovaginal candidiasis. Carvacrol has 

the potential to reduce planktonic growth of the clinical 

isolates as well as wild type C. glabrata strains. The phyto-

active compound behaved alike for clinical isolates irre-

spective of resistance or susceptibility of isolates to flu-

conazole. Carvacrol potentiated fluconazole in a synergis-

tic manner to reduce its MIC 16-fold. Carvacrol exposure 

reduced cell surface hydrophobicity and membrane ergos-

terol in clinical isolates and wild type strains. This study 

suggests that a naturally occurring phytoactive com-

pound, carvacrol, holds promise as a potential drug 

against non albicans Candida species.  
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