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Abstract  

The predominant sexual system in the plant kingdom is hermaphroditism, 
where both female and male reproductive organs coexist within a single 

flower. The major parameters that influence the sexual systems are genetic 
variation, pollinator availability and type, mating system, ecological factors, 
geographical isolation, selective pressures, evolutionary history, polyploidy, 

hybridization and sexual conflict. These factors all play significant roles. 
Plants may evolve self-fertilization or outcrossing mechanisms based on 
their specific environmental conditions, reproductive strategies and evolu-

tionary history. The interplay of these factors shapes the diverse range of 
sexual systems observed in plant species worldwide. The Cucurbitaceae 
family exhibits a highly specialized sex chromosome differentiation scheme 
with three major sexual patterns (monoecy, dioecy and hermaphroditism).  
In the present review, we focus on the evolution of gender in flowering 
plants of the Cucurbitaceae family, exploring the various paths and drivers 

involved in the evolution of dioecy. We also shed light on the sex chromo-
somes and phytohormones that contribute to gender diversification. Sever-
al molecular and genomic approaches have been recently applied to uncov-

er the genetic basis of gender differentiation in different flowering plant 
species.   
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Introduction  

Understanding the complexities of sexual expression is vital for both theo-
retical and classical research. Hermaphroditism, the most common sexual 

system in plants, is characterized by the coexistence of male and female 
sexual structures in a single flower. In contrast to animals, which frequently 
exhibit the XY or WZ sex determination systems, plants have rarely devel-

oped such mechanisms and these systems are recognized in only a few gen-
era of flowering plants (1). Furthermore, only about 7 % of all angiosperms 
possess separate sexes, or dioecy, which are usually thought to evolve from 

complete-flowered or monoecious progenitors (2, 3). However, plants that 
have distinct sexual systems often rely on outcrossing, which is essential for 
improving the species' innate variability and adaptability. It is not yet 

known if all dioecious organisms have a distinctive sexual morphology (4). 
However, theoretical data indicates that sex-linked genes typically cluster 

 

PLANT SCIENCE TODAY 
ISSN 2348-1900 (online) 
Vol 12(1): 1-10 
https://doi.org/10.14719/pst.3176 

HORIZON  
e-Publishing Group 

Sex evolution path involved in flowering plant family Cucurbi-
taceae:  A review    
 

Animesh Pattnaik1, Pradip Kumar Prusty2, Madhusmita Barik1, Rukmini Mishra1, Jatindra Nath Mohanty1*    

 

1Department of Botany, School of Applied Sciences, Centurion University of Technology and Management, Jatni, Bhubaneswar 752 050, India 

2Department of Zoology, School of Applied Sciences, Centurion University of Technology and Management, Jatni, Bhubaneswar 752 050, India   

 

*Email: jatindranathmohanty@gmail.com    

REVIEW   ARTICLE 

http://horizonepublishing.com/journals/index.php/PST/open_access_policy
https://horizonepublishing.com/journals/index.php/PST/open_access_policy
https://horizonepublishing.com/journals/index.php/PST/open_access_policy
https://horizonepublishing.com/journals/index.php/PST/indexing_abstracting
https://horizonepublishing.com/journals/index.php/PST/indexing_abstracting
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.14719/pst.3176
https://doi.org/10.14719/pst.3176
http://horizonepublishing.com/journals/index.php/PST/open_access_policy
https://crossmark.crossref.org/dialog/?doi=10.14719/pst.3176&domain=horizonepublishing.com
http://www.horizonepublishing.com/
https://doi.org/10.14719/pst.3176
mailto:jatindranathmohanty@gmail.com


PATTNAIK  ET AL   2  

https://plantsciencetoday.online 

in gonosome regions where recombination is reduced. The 
differentiation of male and female sex chromosomes is 

thought to be resulted from the accumulation of these 
gonosome-specific genes (5, 6). In particular, the activa-
tion of sex-linked genes in the recombination-suppressed 

loci of a chromosome is believed to be marked the begin-
ning of the evolution of sexual patterns (7). The primary 
factors influencing sexual systems include genetic varia-

tion, pollinator availability and type, mating system, eco-
logical factors, geographical isolation, selective pressures, 
evolutionary history, polyploidy, hybridization and sexual 

conflict (8-10). Plants may evolve mechanisms for self-
fertilization or outcrossing based on their specific environ-
mental conditions, reproductive strategies, and evolution-

ary history (11, 12). The interaction of these factors shapes 
the diverse range of sexual systems observed in plant spe-
cies worldwide. 

 Members of the Cucurbitaceae family have played a 

significant role in the food economies of tropical countries 
since the dawn of human civilization. After the Solanaceae 
family, Cucurbitaceae contributes the second highest 

amount of vegetables in our country. The Cucurbitaceae 
family consists of about 800 species spread within 120 
genera, such as the watermelon (Citrullus melo L.), pump-

kin, squash and cucumber (Cucumis sativus L.), etc. Seven-
teen percent of the total Cucurbit species, encompassing 
108 species from 34 genera, are found in India, which has 

been recognized as one of the 3 primary centers of origin 
for cultivated Cucurbits (13). The importance of the family 
Cucurbitaceae in agriculture and medicine is well estab-
lished. While the limited hereditary base of the cultivated 
cucurbits poses a challenge for their genetic improvement, 
wild species are highly diversified and possess the genetic 

variations and agriculturally useful traits necessary for the 
genetic enhancement of existing crops. The Cucurbitaceae 
family exhibits all three major angiosperm sexual pat-

terns—bisexuality, monoecy and dioecy—among its mem-
bers. It has also been observed that species with exclusive-
ly unisexual flowers can be either monoecious or dioecious 

(14). Specifically, 67 species within this family are dioe-
cious, spanning across 19 genera (15). Due to the afore-
mentioned significance, the Cucurbitaceae family is an 

ideal choice for analyzing sexual dimorphism and evolu-

tion. Therefore, the aim of this study is to understand the 
evolution of sex in flowering plants within the Cucurbita-

ceae family, exploring the multiple paths and drivers in-
volved in the evolution, the role of phytohormones in sex-
ual expression and sex determination and the involvement 

of sex chromosomes in gender diversification. 

Sex evolution in flowering plants          

The sex determination system based on heteromorphic 

sex chromosomes, X and Y, is an interesting study from 
both developmental and evolutionary perspectives. In 

animal systems, the labiality in the sex-determining sys-
tems was laid down by Charlesworth and Mank, 2010 (16). 
Basically, sex changes are possible due to fluctuation in 

heterogamety and sex-linkage (17). Several attempts have 
been made by different groups of researchers to find out 
the pathways leading to such modifications (18). The evo-

lutionary transitions in the sexual systems of flowering 
plants involve 2 key phenomena. The first is the shift from 
predominant outcrossing to predominant selfing and the 

second is the evolution of separate sexes from combined 
sexes (19).   A comprehensive review of mixed mating sys-
tems provided theoretical explanations and empirical evi-

dence for the evolution of selfing (20). An earlier study had 
explored the evolution of dioecy in flowering plants, exam-
ining ecological and genetic correlates (21). Another study 

discussed the recent advances in understanding plant sex-
ual diversity, including transitions between outcrossing 
and selfing as well as the evolution of separate sexes, inte-

grating genetic, ecological and evolutionary factors (22). 
A report has provided valuable insights into the genomic 
basis of reproductive isolation and the evolution of selfing 

in dandelions (23), highlighting the genetic changes asso-
ciated with transitions in the sexual system. These refer-
ences collectively provided a comprehensive understand-

ing of the evolutionary dynamics shaping sexual systems 
in flowering plants. A major conclusion drawn from these 
studies is that differentiated sex chromosomes and sexual-

ly incompatible alleles can obstruct the modification of 
sexual differentiation in animals (24). In contrast, plants 
consist of multiple sexual forms, regulated by environmen-

tal, evolutionary and hereditary events (1) (Fig. 1). Her-
maphroditism is the most prevalent sexual form making 
up for 94 % of plant species. Deviations from this general 

Fig. 1. Three major angiosperm sexual systems in the family of Cucurbitaceae.  
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pattern lead to dioecy, observed in only 6 % of the 24000 
angiospermic plant species (25). Although dioecy is rare in 

plant systems, its evolution from hermaphrodites ances-
tors is quite common (21). According to a study, approxi-
mately 15600 dioecious species likely developed through 

5000 sovereign transitions from bisexual ancestors (25). 
This suggests that dioecy can form a completely isolated 
lineage (21, 25). However, recent studies challenge the 

idea that dioecy represents the culmination of sexual evo-
lution. One study suggests that divergence may occur 
more rapidly in some dioecious lineages compared to their 

hermaphrodite ancestries (26). Another study suggested 
that dioecy does not universally influence diversification 
rates, even in many genera that include both dioecious 

and non-dioecious species (27). These findings suggest 
that different lineages may exhibit different patterns. Alt-
hough the development of dioecy is often considered irre-

versible, based on the comparison with gonochorism in 
the animal system (28), recent evidence suggests that 
dioecy in plants can revert to other sexual forms (21, 25). 

The evolution of dioecy in flowering plants is controlled by 
multiple pathways and influenced by different evolution-
ary forces across various lineages (29).  

Multiple paths and drivers in the evolution of dioecy in 

cucurbits           

Among the most evolved taxa of angiosperms, dioecy is 

not only widely distributed but also associated with a vari-
ety of diverse characteristics (25). Most dioecious species 

are trees, shrubs and herbs, commonly found in tropical 
regions and islands rather than in temperate or continent 
regions. Pollination occurs through wind, water and ani-

mal-mediated seed dispersal. Dioecious plants typically 
have small, whitish or greenish flowers arranged in large 
inflorescences. The evolution of dioecy is highly complex 

due to the involvement of multiple interdependent traits 
(29). There are various theories put forth to explain the 
complex phenomenon of dioecy, or the evolution of sepa-

rate sexes in plants. Two  reports on the  selective ad-
vantage theory argues that dioecy arises when natural 
selection favors distinct sexes due to factors such as re-

duced resource competition between the sexes or in-
creased outcrossing rates ( 30, 31). According to the genet-
ic burden theory, dioecy develops as a means to isolate 

harmful mutations on non-recombining segments of sex 
chromosomes, thereby reducing the genetic load caused 
by inbreeding (28). A study explaining the sexual conflict 

theory, suggest that dioecy emerges from conflicts be-
tween the reproductive objectives of males and females, 
which are resolved through the evolution of distinct sexes 

(32). Another study discussing the environmental deter-
minism theory, argue that environmental factors such as 
stress and habitat heterogeneity drive the evolution of 

dioecy as a strategy to maximize reproductive success in 
unpredictable or challenging conditions (33). Together, 
these theories illuminate the various mechanisms that 

have contributed to the evolution of distinct sexes in 
plants. 

 Dioecious species have 2 major advantages. The 
first is the evolution of outcrossing mechanisms, which are 

crucial for the reproductive success of most plant species 
(34). Outcrossing serves as a major driving force in the evo-

lution of plant reproductive systems, with more than 50 % 
of the flowering plants adopting this strategy to evade 
selfing (35). Consequently, dioecy, which inherently pre-

vents selfing, can restore genetic self-incompatibility (SI) 
under definite conditions, as observed in cucurbits like 
Coccinia grandis (Fig. 2). In such plants, pollen transfer 

may be less efficient, leading to an increased rate of self-
pollination (36). Further, SI can prevent self-fertilization, it 
does not completely eliminate selfing and pollen discount-

ing. Overall, the loss of pollen to selfing can compromise 
the chances of outcrossing in the dioecious plants. It is 
generally easier to lose self-incompatibility than to evolve 

it over time (18). 

 The loss of Self-incompatibility (SI) can create a 

platform for the development of separate sexes through 
polyploidization by alternative outcrossing (37). In some 

cases, SI may be lost to enhance reproductive success 
when species colonize isolated areas, such as oceanic is-
lands, which could explain the high frequency of separate 

sexes in these environments (38). The second major ad-
vantage of dioecy is the optimized allocation of resources 
between male and female functions, which is essential for 

the evolution of gonochorism in dioecious cucurbit spe-
cies. Hermaphroditism tends to evolve only when the fit-
ness of male or female is compromised by increased in-

vestment in either sex. Furthermore, it is true that attrac-
tive flowers can benefit from both sexual functions, while 
the temporal separation of male and female roles often 

favours hermaphroditism. This has been a long debate 
over the past few decades regarding whether dioecy pri-
marily serves to optimize sex allocation or to avoid selfing 

(39). However, recent survey and different modeling stud-
ies suggest that interplay of several forces, including the 
sexual specialization and inbreeding avoidance, likely con-

tributes to the development of dioecy in cucurbit (Fig. 3) 
(40, 41).  

 There are 2 possible evolutionary pathways for the 
development of dioecy: one involves the emergence of one 

sexual phenotype followed by the other and the other in-
volves the transition from hermaphrodite to monoecy, 
wherein species initially produce unisexual flowers before 

developing distinct unisexual characteristics (29). Howev-
er, the exact pathway contributing most significantly to 
the prevalence of dioecious individuals is yet to be ascer-

tained in different plants along the evolutionary pathway. 
In reality, dioecious cucurbit species exhibit variable sex 
expression, with male individuals frequently developing 

female flowers or female organs. This suggests that males 
may have evolved after females, possibly through an inter-
mediate gynodioecious state (42). Additionally, studies of 

gynodioecious species indicate significant differences in 
the male characteristics of hermaphrodites, suggesting 
that various intermediate stages may be present in differ-

ent plants along the evolutionary pathway (43).  

 To become fully dioecious, gynodioecy may not 

always provide a direct evolutionary pathway (44). Com-
parisons between the two attributes have shown that 
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while gynodioecy is primarily found intemperate herbs 
(45), dioecy is more common in tropical woods (24). On the 

other hand, monoecy is found linked with dioecy traits (5, 
25), suggesting that monoecious conditions are more like-
ly to favors the evolution of dioecy than those that pro-

mote gynodioecy. Therefore, the evolutionary develop-
ment of dioecy from hermaphrodite is not bound to follow 
2 distinct steps but may instead be a gradual process with 

multiple steps and pathways (44). For instance, in the case 
of Sagittaria latifolia, a dioecious species, the progression 
appears to have occurred from monoecy through gynodi-

oecy (46). In this scenario, male and female flowers are 

fully developed and separate, while hermaphroditic indi-
viduals possess incomplete floral structures. Contrary to 

this assumption, a recent report suggests that the gynodi-
oecious nature of Sagittaria latifolia may be the outcome 
of monoecious and dioecious hybridization (47). This 

might be one of the reasons why there have not been di-
rect steps for evolution from monoecy to dioecy. 

Evolution of sex chromosomes in cucurbits          

Most angiosperms exhibit hermaphroditism characterised 
by the presence of bisexual flowers. Only around 10 % of 

flowering plants have the ability to produce unisexual 

Fig. 2. Sex evolution pattern of dioecious cucurbit: (A) Evolution of male flower from three different budding stages to flower formation with anther,  (B) Evolu-
tion of female flower from three different budding stages to flower formation with stigma in dioecious cucurbit C. grandis.  

A B 
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flowers (48). Among these, only about 6 % of angiosperms 
have separate male and female flowers on different plants, 
a condition known as dioecy (24) (Table 1). Based on exist-

ing data, it is suggested that dioecious plants have inde-
pendently evolved from their bisexual progenitors (49). 
The evolution of sex chromosomes in angiosperms is a 

recent concept compared to the animal system. In study-
ing sex chromosomes, dioecious plants are particularly 
valuable due to the presence of fertile bisexual relatives in 

some species. Unlike animal dioecy, dioecious plants rare-
ly possess sex chromosomes; only 19 species have been 
identified with heteromorphic sex chromosomes (50).  

Dioecy results from 2 simultaneous modifications, leading 
to male and female sterility within the hermaphroditic 

developmental program. A close genetic linkage between 
the mutant genes is crucial for maintaining dioecy, as it 
prevents genetic recombination and the reversion to her-

maphroditism (49). Likewise, dioecy co-evolve with mo-
noecy in many plant systems, serving as a viable alterna-
tive pathway to the evolution of dioecious plants (51). 

 A well-studied example of sex chromosomes in 

plant is Silene latifolia, (family Caryophyllaceae), which 
exhibits distinct male and female plants with XY and XX sex 
chromosomes respectively. Another example is Rumex 

acetosa, which is well known for its ZW sex determination 
system (52). In   Carica papaya (Papaya), sexual variation is 
controlled by a homologous set of sex chromosomes, 

where the Y chromosome controls male development and 
YH chromosome controls hermaphroditism (53). The Cu-
curbitaceae is particularly notable for encompassing three 

angiospermic sexual systems i. e. monoecy, dioecy and 
bisexuality. This diversity makes it an ideal group for stud-
ying the evolution of sex and sexual dimorphism. Various 

investigations have led to the understanding of the mech-
anism of sexual segregation in different genera of Cucurbi-
taceae, including Bryonia, Trichoxanthes and Coccinia (48, 

54, 55). Chromosomal sex determination mechanism was 
first commenced in Bryonia, resulting in the development 
of the X-Y sex determination system. The genus is repre-

sented by a basic chromosome number of x=10 and B. dioica 
exhibits homomorphic sex chromosomes (56). In contrast, 
the chromosome number in Ecballium is 9 and 12 (56). 

Chromosome counting has also been demonstrated in 
other species of this genus, such as Bryoniaalba (2n=20),  

Fig. 3. Developmental stages of bud in dioecious flowering plant: A. Nine different stages of female buds, B. Nine different stages of male bud.  

Plant species Chromosome sex chromosome 

number Reference 

Spinacia oleracea Dioecious (2n=12)  (62) 

Silene latifolia Dioecious (2n=24)  (63) 

Carica papaya Dioecious (2n=18)  (64) 

Mercurialis annua Dioecious (2n=14)  (65) 

Rumex acetosa Dioecious (2n=14)  (29) 

Salix spp. Dioecious (2n=38-156)  (66) 

Humulus lupulus Dioecious (2n=20)  (67) 

Asparagus officinalis Dioecious (2n=20)  (68) 

Dioscorea bulbifera Dioecious (2n=20)  (69) 

Actinidia chinensis Dioecious (2n=29)  (70) 

Cannabis sativa Dioecious (2n=20)  (71) 

Table 1. Some selected angiosperms and their chromosome numbers with 
references 



PATTNAIK  ET AL   6  

https://plantsciencetoday.online 

B. aspera (2n=40), B. cretica (2n=60), B. marmorata 
(2n=40), B. multiflora (2n = 20), B. syriaca (2n =20) and        

B. verrucosa (2n=20) (56). Development of a male specific 
marker BdY1 in Bryoniadioica supports the past agreement 
of an X–Y sexual system (54, 55). Another genus in the Cu-

curbitaceae family, Momordica, provides a wide range of 
sexual expressions. M. Dioica is represented by an asym-
metric karyotype with n=14 and possesses homomorphic 

sex chromosome (X and Y of approximately the same 
length) (57). Similarly, M. charantia has a confirmed set of 
22 chromosomes (58). Among other species in this genus, 

M. sahyadrica, M. subangulata, M. cochinchinensis and     M. 
denudata have 14 pairs of chromosomes (59), while M. 
rostrata has 11 pairs (n=11) (60). The monoecious     M. 

cymbalaria has 9 pairs of chromosome (59). Interestingly, 
all dioecious species of this genus exhibit chromosomal 
homomorphism. Two other important genera in the Cu-

curbitaceae family are Luffa and Trichosanthes. Unisexual 
species like L. cylindrica, L. Hermaphrodita, and L. acutan-
gula have 13 pairs of chromosomes, while the bisexual 

L. Echinata exhibits gonosomic homomorphism. Tricho-
santhes is a model genus for studying sex determination 
due to its high level of speciation among all members in 

the family of the Cucurbitaceae family. The cucurbit Tri-
chosanthes possesses x=11 in both diploids and poly-
ploids. T. dioca has homomorphic sex chromosomes but 

also exhibit irregularities in meiotic behaviour (61). How-
ever, T. kirilowii var. japonica and T. ovigera are reported to 
have heteromorphic sex chromosomes. 

 Coccinia represents the most important genus in 
Cucurbitaceae characterized by a highly specialized sex 
chromosome and sex differentiation scheme. Although 
there are a large number of Coccinia species in Africa, C. 
grandis from India has been reported to demonstrate     X–
Y sex-determination system and possesses chromosomal 
heteromorphism. Based on cytogenetic analysis, Coccinia 
is dioecious with diploid chromosome number (2n=24) and 
an X–Y sexual system, characterized by a large Y chromo-
some in males (Fig. 2). The large Y chromosome is mainly 
due to tremendous accretion of repeat sequences in the 
newly evolved large male Y chromosome structures (72). A 
distinctive heteromorphy of 45S rDNA signals has been 
reported in the homologous chromosomes found in the 2 
genders of C. grandis (73). Furthermore, the genome sizes 
of the male and female plants differ by at least 10 %. The 
male genome size ranges from 0.92 to 0.94 picograms/2 
coulombs (pg/2C), whereas the female genome measures 
between 0.75 and 0.85 pg/2C (72, 44). The Y chromosome 
of C. grandis is extensively pseudo-autosomal and highly 
heterochromatinized, as demonstrated by genomic in 
situ hybridization (GISH) and         C-banding analysis (72). 
The significant retrotransposon accumulation in the Y 
chromosome from the Ty1/copia and T3/gypsy superfami-
lies, is another variable causing gonosomal hetero-
morphism (73). Intriguingly, the Y chromosome in C. gran-
dis does not respond to rDNA signals and chromomycin A3 
stains (74). Recent report suggests that the Y chromosome 
possesses specific genes related to stamen development, 
gynoecium suppression and male fertility (48, 75). 

Role of phytohormones on plant sexual expression and 

sex determination in cucurbits           

Phytohormone biosynthesis and signal transduction are 
crucial factors in floral development, sexual expression 

and sex determination (76). According to the previous 
studies, auxin plays a vital role in floral organ develop-
ment (77). Anthers are the primary sites of auxin deposi-
tion, where it accumulates in high concentrations, inhibit-
ing the development of adjacent whorls in both acropetal 
and besipetal directions. AUX/IAA proteins, auxin response 

factors (ARFs), auxin-induced proteins and auxin efflux 
carriers are the major constituents of the auxin signaling 
pathway (78). ARF1, ARF6, small auxin up RNA (SAUR) gene 

and auxin responsive Gretchen hagen 3 (GH3) have been 
implicated in stamen elongation, anther dehiscence and 
flower bud opening (79). In contrast, low-level expression 

of IAA/AUX proteins could result in higher expression of 
secondary auxin-responsive genes which in turn induces 
sex differentiation (80) (Fig. 4). Additionally, multiple ARFs 

and transport inhibitor response 1 (TIR1) correlate auxin 
synthesis with carpel differentiation and stigma matura-
tion (77). 

 Auxin-induced ethylene biosynthesis plays a sub-

stantial role in sex determination by inhibiting stamen 

development and inducting pistillate flowers (77). 1-amino
-cyclopropane, 1-carboxylate synthase (ACC synthase) is 
primarily associated with ethylene biosynthesis and has 

been previously implicated in the development of female 
flowers (81). ACS-7 and ACS-11 are increasingly expressed 
in the female primordia of both melon and cucumber and 

a loss in their enzymatic activity directs stamen develop-
ment (81). These 2 genes have also been found to be con-
served in other cucurbits, such as watermelon and M. char-

antia (81). The Ethylene insensitive 3 (EIN3) gene and serine 
threonine protein kinase CTR1 are negative regulators in 
the ethylene response pathway. The response to ethylene 

signaling was reported to be highly deformed in the ein3 
insensitive mutant of Arabidopsis thaliana (82).  Cytokines 
play an important role in sex determination of Vitis vinifera 

and Spinacea oleracea. Giberellins (GAs) is required for 
male flower promotion in Cucumis sativus and A. officinalis 
(83). High concentrations of GA abort the   development of 

male sexual structures in female flowers of maize.  In con-

Fig. 4. Factors affecting sex determination in flowering plants.  
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trast, abscisic acid (ABA) promotes the development of 
femaleness by decreasing the activity of GAs (84). 

 ABA is a major promoter of flower senescence. In 

Arabidopsis, ABSCISIC ACID-INSENSITIVE 4 (ABI4) gene ad-
versely control’s floral transition by directly endorsing the 
transcription of FLOWERING LOCUS C (FLC) (85). ABA delays 
the flowering transition mediated by DELLA transcription 
factors, although the precise mechanism is yet to be ex-
plored. According to a study, ABA negatively affects floral 

transition by activating FLC transcription through the tran-
scription factor ABSCISIC ACID INSENSITIVE MUTANT 5 
(ABI5) (86). In contrast to these findings, ABA also stimu-

lates floral development through LcAP1 expression in Litchi 
chinensis Sonn . The study showed that the number of pan-
icles in the ABA induced plants was higher as compared to 

the control (86). Jasmonic acid (JA) and salicylic acid (SA) 
also play crucial roles in plant reproductive development. 
Male sterility is often found in JA mutants lines (fad378, 

dad1, opr3 and acx1/5) of Arabidopsis thaliana (82). High 
concentration of JA activates a complex network of bHLH-
MYB and MYC transcription factors (TFs) guided by JAZ 

repressors (87). JAZ repressors are known for directing 
appropriate development of stamen in plants (88). In 
maize, mutation in JA biosynthetic pathway resulted in 

early floral developmental flaws including poor develop-
ment of male propagative organs (89). A different scenario 
was found in tomato, where the jai1 mutant resulted in 

female sterility. Similarly in Arabidopsis thaliana, the coor-
dinated action of CONSTANS and jasmonate signaling was 
found controlling flower senescence (90, 91). Similarly, SA 
has been reported to be involved in the regulation of flow-
er senescence, but there is no clear information about its 
role in floral differentiation (92). Overall, these reports sug-

gest that phytohormones and their associated signaling 
pathways are essential for reproductive development and 
sex differentiation in a wide range of angiosperms.   

 

Conclusion and future prospects   

The review has shed light on the complex process of sex 
evolution in flowering plants and demonstrated the varie-

ty of factors that have shaped the development of sexual 
systems in cucurbit. From studying the evolution of sex in 
flowering plants, it is clear that multiple routes have led to 

the development of dioecy as a common sexual system. 
Numerous factors, including as sexual conflict, genetic 
load, selective advantage and environmental determin-

ism, have influenced the evolution of dioecy. Furthermore, 
the evolution of angiosperm sex chromosomes provides 
insight into the genetic foundations of sexual differentia-

tion, with various phytohormones playing crucial roles in 
floral whorl differentiation, as seen in cucurbits.  

 As research continues to uncover the complexities 

of sex determination and sexual systems in plants, it is 

clear that the story of sex evolution in flowering plants is 

rich and multifaceted, offering fertile ground for future 

exploration and discovery. There is a pressing need for 

additional research on the mechanisms determining sex, 

the effects of dioecy on genome structure, the epigenetic 

aspects of sex chromosome evolution and the interactions 

between TE regulation and non-recombining region for-

mation.   
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