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Abstract  

DNA barcoding is a technique for identifying specimens using brief, stand-

ardised DNA segments. In a variety of fields, including phylogeny, ecology, 

population genetics and biodiversity, DNA barcoding has become a success-

ful method for precisely distinguishing species. The method is straightfor-

ward, efficient in both time and money and accurate. The key to successful 

DNA barcoding is choosing the right DNA marker. Since the idea of a quick 

approach for species identification was first put up in 2003, the scientific 

community has been keen to realise the potential of DNA barcodes. Cyto-

chrome c oxidase, I (COI) region of the mitochondrial genome is mostly rec-

ognised as a standard barcoding region in animals. Later, rbcL + matK pair-

ing, with a 70 % discriminating efficiency, was suggested by the Plant Work-

ing Group (PWG) of the Consortium for the Barcoding of Life (CBOL) as the 

standard barcode in plants. Three conditions must be met for a gene region 

to be an efficient DNA barcode: it must have sufficient species-level genetic 

divergence and variability, it must have conserved flanking regions for the 

widest taxonomic use and for generating universal PCR primers and it 

should be long enough to facilitate current capability for sequencing and 

extracting DNA. Different combinations of plastid coding, non-coding and 

nuclear markers are utilised as supplemental markers to boost the degree 

of plant species differentiation. The reliability of different barcodes in distin-

guishing species varies among different groups of plants. As DNA barcoding 

approaches its twentieth anniversary, technologies are still being devel-

oped that make use of this resource, which is constantly expanding in a va-

riety of biological disciplines. Plant DNA barcoding, which became a scien-

tific advance during the last ten years, is frequently employed as a taxo-

nomical aid in identifying species. It is a way of choosing genetic loci that 

identifies and distinguishes an organism's membership from specific spe-

cies, variations or even intervarieties. It varies from molecular phylogeny, 

which identifies an unknown sample from an existing classification rather 

than identifying patterns of association.   
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Introduction  

As a distinctive identifying marker to detect and classify species, DNA bar-

codes are gene sequences of between 400 and 800 base pairs (bp) that are 
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taken from a specified region of the genome (1-3). Using 

these brief DNA segments and techniques that have been 

authorised by international agencies, DNA barcoding is a 

tool for species identification that builds a worldwide rec-

ord of living things (4-6). It is reported that the first accu-

rate (100 %) identification of 200 closely related Lepidop-

teran species using the mitochondrial cytochrome c oxi-

dase, I (COI) region (4, 5). The basic objective of DNA bar-

coding is to provide comprehensive online datasets of all 

known species. DNA barcoding fulfills the need for precise 

identification of species for the preservation and utilisa-

tion of plants. This method can help to mitigate some of 

the inherent problems with traditional taxonomic identifi-

cation (7). 

 DNA barcoding has broader applications as it ena-

bles the researcher to identify species from any part of the 

plant, like spores, ovules, roots, or samples collected from 

the air, water, land or even processed products. The use of 

roots to reveal previously undiscovered information on the 

diversity of underground plants and the use of soil rem-

nants to recreate previous vegetation and climates are 

some other aspects of DNA barcoding. Using genetic se-

quences provided by DNA barcoding, phylogenetic trees 

have been constructed for use in phylogenetic community 

ecology. The two main issues causing inaccuracy in plant 

identification by barcodes are pseudogenes and hybridiza-

tion. Some biological phenomena that occur at different 

degrees, like heteroplasmy, paternal leakage, introgres-

sion, polyploidization, recent speciation, incomplete line-

age sorting, polymorphism, error in specimen identifica-

tion and incorrect taxonomy, also interfere with barcoding 

(8). Studies on DNA barcoding have been progressing day 

by day since its introduction (Fig. 1). Advanced techniques 

like Affordable high-throughput DNA barcoding technique 

using Microfluidic Enrichment Barcoding (ME Barcoding 

are proven to be efficient alternatives to traditional PCR 

and Sangers sequencing to create a vast number of plant 

DNA barcodes and expand barcode databases. Plant ge-

nome research has advanced more quickly owing to the 

development of high-throughput sequencing technology, 

especially in the area of chloroplast genomics. Primarily 

utilised in phylogenetics, breeding, domestication and 

conservation research, these plastome data have also 

been suggested as the “super-barcode” for plants. It has 

also been demonstrated that complete chloroplast ge-

nomes can effectively distinguish between closely related 

species. However, there are still certain issues to take into 

account when using “super-barcodes” for large-scale bio-

diversity research, such as data management and bioinfor-

matic difficulties. Furthermore, because of variations in 

gene structure, length and organisation, whole chloroplast 

alignments between genetically distant populations can 

be challenging. Hence, researchers began to rely on Sang-

er’s sequencing-based barcoding for species discrimina-

tion, authentication or phylogeny studies of plants. 

 This review outlines the characteristics, benefits 
and drawbacks of the markers used to identify plant spe-

cies as well as the suggested standard DNA barcodes for 

plant species. Also, the paper focuses on the operational 

procedures, process and data analysis followed in the DNA 

barcoding studies, in addition to its multiple positive im-

pacts on taxonomy and biodiversity research or barcoding 

operational procedures and processes. 

Software tools used for post-sequencing data analysis in 

DNA barcode studies       

The laboratory method of DNA barcoding includes sample 

selection, DNA extraction and amplification using PCR and 

the success of PCR can be tested on Gel electrophoresis 

followed by sequencing of DNA (Fig. 2). Aligning sequences 

and assigning barcodes to sequences for enhanced identi-

fication are both included in data management. By ampli-

fying a highly variable section of the nuclear, chloroplast, 

and mitochondrial genomes in plants, polymerase chain 

reaction (PCR) aids in finding a species' identity (9). Soft-

ware tools like BLAST are used for sequence alignment. 

Numerous software programs, such as ABGD (10), Taxon 

DNA (11) and MEGA 7.0 (12), are used in the analytical ex-

aminations of sequenced DNA. 

 A widespread DNA barcode should be legitimate 

and its reference database should contain high-quality 

sequences. But in some cases, incorrectly labeled ones are 

also present in GenBank due to several possibilities, such 

as contamination; e.g., ITS primers are universal for plants 

and fungi, and sometimes they may be altered by endoge-

nous fungal contamination. Extracted DNA gets confound-

ed identification or by the low quality of the sample, DNA 

is misled. The actual aim of barcodes is to minimise this 

type of problem, promote clear and credible data for com-

parison, and make it easy to remove the labels from bar-

codes of legitimate data records. The most widely used 

methods for barcoding queries can be roughly divided into 

two categories: In contrast to clustering approaches like 

parsimony and neighbour joining, which are currently sig-

nificantly slower and presumably are not practicable for a 

worldwide plant query system, similarity methods include 

BLAST, mega BLAST and FASTA, which all produce answers 

rather quickly. When managing some of the situations that 

emerge in barcoding, these strategies are particularly 

prone to errors and inconsistencies (13). 

 The frequency with which nearest neighbour dis-

tances exceed intraspecific divergences, suggesting the 

Fig. 1. Estimate on yearly increase in the published literature on DNA 
barcoding for last two decades. The pie diagram is based on the detailed 
literature searched in popular sources of scientific information viz. Pubmed, 
google scholar, and research gate. In August 2023, data spanning from 2013 
to 2023 was gathered in preparation for the drafting of this article.  
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occurrence of a barcode gap, is being determined by plot-

ting maximum intraspecific divergence versus nearest 

neighbour distance. Additionally, variation in GC content 

among species is investigated using the 'Sequence Com-

position' tool on BOLD. In order to find out whether the 

number of samples taken from a genus or species is affect-

ing the mean distances between nearest neighbours, line-

ar regressions are carried out in Revolution R using the 

Picante and VEGAN packages (14). The mean closest neigh-

bour distance and mean GC content are compared using 

the boot and Hmisc packages in Revolution (15). By using 

the Kimura-2-Parameter (K2P) distance measure, genetic 

distances can be estimated using the BOLD Management 

and Analysis System (16). An inadequate reference dataset 

may decrease the likelihood of a match but may potential-

ly misidentify an unknown species. If a query's intraspe-

cies variability exceeds or equals its interspecies variability 

or if it more closely resembles the barcodes of another 

species than the one to which it actually belongs, the que-

ry may be incorrect (17). 

Common loci used for plant genome studies         

The cytochrome c oxidase I (COI) region of mitochondria, 

widely known as a characteristic barcoding region, can be 

used to identify animal species (18). There are not enough 

variations in the COI among various plant groups to be 

used for plant identification (19). There are numerous vari-

ations in the entire plastid genome as there are in the COI 

location in animals and it is widely used in plant DNA bar-

coding (20). The chloroplast barcode regions can distin-

guish between closely related plants with greater diversity 

since it is substantially longer (between 110 and 160 kb) 

than other DNA barcodes (21). The large copy number, 

conserved structure and variety of substitution rates 

among genes, introns and intergenic spacers make the 

chloroplast genome ideal (22). The utilisation of 2 or more 

barcoding loci is necessary to achieve the level of species 

discrimination and universality for plants because a single 

locus combining both features is still not known (23). The 

"Consortium for the Barcode of Life (CBOL) Plant Working 

Group" suggested two coding areas from the chloroplast 

genome, rbcL and matK, as a "core barcode" for plants in 

2009 (24). This "core barcode" was to be extended with 

additional parts. There are reports for the assessment of 7 

markers—trnH-psbA, matK, rbcL, chloroplast RNA poly-

merase subunit (rpoC1), ycf5, ITS2 and ITS—from different 

species of medicinal plants. In addition to DNA sequences, 

each plant that is DNA barcoded must also have a herbari-

um record in order to build superior databases. Users of 

the data should also have access to information on the 

DNA sequences' quality, the primers used and the trace 

elements. For each species, many individuals should have 

their DNA barcoded in order to check for flaws and ac-

count for intraspecies variation (25). It is becoming clearer 

from several studies that DNA barcoding has improved 

other conventional scientists' access to and comfort with 

the Linnaean taxonomy system. The core process will be 

better understood with the support of current DNA bar-

coding research, which will also show applicability for this 

strategy in several fields. First and foremost, these meth-

ods give conventional taxonomists a wonderful chance to 

increase the precise inventory of the variety of ecosystems 

and plant life on Earth (26).  

Fig. 2. Pictorial representation of various steps of DNA barcoding procedures for plant species.   
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 The ideal DNA marker should be appropriate for a 

variety of taxa, have significant interspecific diversity and 

be highly preserved within the species. It should be easily 

amplified by PCR using just one primer pair and should 

also be able to be sequenced in both directions with the 

least amount of human alteration (27). Common loci used 

in plant DNA barcoding studies are as follows:  

The rbcL region        

The plastid genome's ribulose 1, 5-bisphosphate carbox-

ylase/oxygenase large subunit coding region (rbcL) is 600–

750 bp long. It is the most abundant protein on the earth, 

with 476 amino acid residues (28). The gene for ribulose 1, 

5, bisphosphate carboxylase, or rbcL, can identify genera-

level evolutionary links. The rbcl region has the potential 

for plant barcoding (29). The functional locations and con-

served sections of this protein have been identified by 

structural and mutational research. The chloroplast gene, 

rbcL, has been utilised to build the phylogeny of plants. 

This gene segment is readily amplifiable and the phyloge-

ny of angiosperm and other photosynthetic plants at fami-

ly and subclass levels was effectively constructed using it 

(30). Therefore, it is not particularly useful for making spe-

cies-level distinctions. Nevertheless, rbcL is still widely 

employed for plant barcoding despite its drawbacks be-

cause of the abundance of readily available data and the 

simplicity with which the whole gene sequence can be 

recovered. rbcL alone does not have the necessary charac-

teristics of a barcoding locus (31). rbcL is not a good mark-

er for distinguishing between organisms at the species 

level because there is variation above the level of the spe-

cies and little variation at the level of the species; however, 

it can be used in conjunction with other plastid or nuclear 

loci to provide accurate identifications (32). Despite lack-

ing a number of essential characteristics, rbcL enables for 

accurate identification when combined with another plas-

tid or nuclear marker (33). rbcLaF and rbcLr590 were used 

for the initial PCR in a variety of species and were success-

ful (25). 

The matK region        

With applications in plant molecular systematics and evo-

lution, the matK gene, previously referred to as orfK, is a 

1500 bp long region found within the intron of the chloro-

plast gene trnK. Its 5’ region is highly variable compared to 

the conserved 3’ end (34). The chloroplast lysine tRNA 

(trnK) gene is located next to the matK core region. This 

gene encodes the maturase K protein, which facilitates 

RNA editing. The CBOL Plant Working Group (2009) claims 

that the matK barcoding area was chosen due to its exten-

sive diversity and ability to distinguish across species (24). 

Researchers have reported its high rate of substitution and 

the existence of conserved areas (34). The maturase pro-

tein, or matK, is a degenerated version of the reverse tran-

scriptase enzyme. One of the plastome's rapidly develop-

ing protein-coding sites is this marker (35). Despite the fact 

that it commonly displayed discrepancies between for-

ward and backward readings compared to other coding 

areas (36). The pace and kinds of nucleotide changes in 

the gene, as well as the utilisation of sequence variation in 

building phylogenies from the level of the tribe to that of 

the division, are the features of this region that are being 

examined (37). Primers developed from matK loci have 

proven to be powerful markers in ferns (38). Researchers 

assert that matK has a low transition/transversion rate, an 

appropriate length, clear interspecific divergence and a 

strong evolutionary pace (29). Unfortunately, using the 

primer sets that are currently available, matK is difficult to 

uniformly amplify. In later studies, it is reported that the 

matK gene was successfully amplified in all 1667 samples 

of angiosperm plants (39). However, another study is re-

porting that the discriminating rates of various taxonomic 

groups present an additional difficulty. Only 56 % of the 92 

species from 32 genera that sought to classify were suc-

cessfully identified using the matK barcode (32). These 

studies demonstrate that the matK barcode by itself is 

frequently insufficient as a universal barcode. 

The trnH-psbA region          

Most plants include a non-coding spacer called trnH-psbA, 

which exhibits several characteristics that would make a 

good barcode between tRNA-His and photosystem II pro-

tein D1. In the intron of the chloroplast DNA, the trnH-psbA 

has amplicons that are 318 to 820 bp in size with a high 

degree of insertions and deletions as well as sequence 

divergence. Its length variance is mostly caused by minor, 

dispersed insertions and deletions that do not appear to 

have a taxonomic pattern (40). According to the existing 

reports, almost all angiosperms can likely be multiplied by 

a single trnH-psbA primer pair (41). All species in plant 

group members like Dendrobium, Pteridophytes and Hy-

drocotyle may be recognised by the trnH-psbA region (19). 

Since some plant ancestry has multiple inversions, the 

trnH-psbA barcode has the disadvantage of overestimat-

ing genetic variation and leading to incorrect phylogenetic 

classification (42). These mononucleotide repeats have the 

additional drawback of prematurely terminating sequenc-

ing reads, which makes it difficult to recover longer parts 

without internal sequencing primers. Its use as a core bar-

code is further prohibited by the widespread incidence of 

insertions within species, large poly structures that make 

sequencing challenging and relatively short lengths (2). 

The trnH-psbA can be coupled with other markers, such as 

rbcL and matK as a multi-locus system in order to obtain 

adequate resolution (41).  

The ITS region         

The nuclear ribosomal DNA's internal transcribed spacer 

(ITS) located between 16S and 23S rRNA genes and its spe-

cific ITS regions may serve as possible barcodes (43). It is 

solely suggested by CBOL as an additional locus. As a po-

tential universal DNA barcode in eukaryotes, it appears to 

be one of the strongest contenders. It is not permissible for 

an ITS area to serve as a core barcode marker for the fol-

lowing reasons: 1) variation in amplification and sequenc-

ing success, 2) its concerted evolution is insufficient and 3) 

as the ITS region is found in both fungi and plants, the fun-

gal ITS sequence also gets amplified (44). It is advised that 

a core plant DNA barcode be created using the ITS of nr 

DNA, one of the DNA markers utilised most frequently in 
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plant phylogenetic and DNA barcoding research, which is 

suggested as a fundamental plant DNA barcode (45). It has 

been suggested that the ITS2 sequence is suited for DNA 

barcoding applications in plants due to its shorter length 

(300 bp) (46, 47). Due to ITS2's excellent discrimination 

strength in both post-DNA barcoding and High-resolution 

melting analyses (HRM), it was shown to be a more credi-

ble DNA barcode than rbcL. Along with separating counter-

feit goods from genuine ones, the DNA barcode and HRM 

showed how sensitive these approaches are in detecting 

them (48). Due to its conserved sequence, ITS 2 can help 

alleviate issues with ITS area amplification and sequenc-

ing. Later, ITS 2 was acknowledged as a cutting-edge uni-

versal barcode for a variety of plant species. The ITS region 

is divided into 3 partitions: the ITS1 partition, the 5.8S par-

tition and the ITS2 partition. The 5.8S region is the least 

frequently employed for phylogenetic analyses and DNA 

barcoding because it is too well preserved to include a 

significant number of relevant sites (49). According to the 

China Plant BOL Group (2011), the core barcode for seed 

plants should include the ITS/ITS2 regions (50). It is trust-

worthy, exhibits considerable intraspecific variation and is 

more discriminatory at lower taxonomic levels. There is a 

report regarding studies demonstrating that there is nrITS 

discrimination between plant species that share plastid 

haplotypes (51). However, CBOL has designated ITS as a 

supplemental locus because of constraints such as im-

properly regulated evolution, fungal attack, amplification, 

and sequencing concerns (19, 24). The study of the dis-

criminatory power of ITS2 has shown a 90 % potential at 

the species level while evaluating about 4800 species from 

800 genera (46). Several reports are there regarding suc-

cessful species discrimination and adulteration studies 

using ITS (51, 52). 

Multi locus barcodes          

matK, rbcL and ITS are single locus DNA barcodes. As sin-

gle locus modifications are insufficient for significant spe-

cies discrimination, many researchers have proposed a 

multi-locus approach (24, 40). rbcL + trnH-psbA, rpocL + 

matK + trnH - psbA, or rpocL + rpoB + trnH-psbA are just a 

few examples of the many combinations of plastid loci 

that have been discovered (40). Researchers revealed that 

a 2-locus combination has been suggested as a high reso-

lution marker (53). According to different researchers, 

different groups of plants demand different markers. In 

the evaluation of several genera of land plants, it was ob-

served that different multi-locus combinations comprising 

4-7 markers showed only a slight increase in success rates 

(32). The TrnH-psbA+ rbcL, a 2-locus combination, acts as 

a universal barcode for land plants with sufficient species 

discrimination (40). 

 DNA that has been transferred from ancestor plas-

tids into mitochondrial genomes is known as mitochondri-

al plastid DNA (MTPT). Research on MTPTs has showed 

that DNA markers like rbcL, atpB, rpl2, rpl23, psaA, psaB, 

psbC, psbD, rpoB, rps7, rps12 and ycf2 were all found in 

the mitochondrial genomes of more than 20 plant species 

and can cause misidentification of species during DNA bar-

coding. Therefore, the use of multi-marker combinations 

was suggested to avoid such barcoding contradictions 

(54).  

Data analysis of DNA barcoding        

The use of DNA barcoding as an identifying method re-

quires the development of top-notch reference databases 

of sequences (19). The procedure entails classifying the 

DNA of recognised species in a barcoding library and com-

paring the DNA of unidentified species to the genetic infor-

mation stored in the library (40). For species identification 

and taxonomic clarification, the database can be accessed 

online (55), namely through the NCBI GenBank and the 

Barcode of Life Data (BOLD). Each DNA sequence must be 

linked to the plant specimen from which it originated as 

well as the time, location and person(s) responsible for 

collecting and identifying it. Creating a herbarium voucher 

for each DNA sample is also important, but in some cir-

cumstances, especially for rare and endangered species, a 

photograph can be adequate (56). A project management 

tool called BOLD enables the storage of DNA sequences 

with trace files, herbarium specimen images and pictures 

to submit information to the Barcode of Life Data system 

in addition to GenBank, which serves as a repository for 

DNA sequences and makes all data accessible to the public 

(57). It's crucial to record the lab procedures used to gen-

erate a sample so that the data's ultimate users can access 

the details of primers, trace files and quality parameters 

for its DNA sequence (56). The ITS2, matK and rbcL bar-

code markers underwent bidirectional sequencing. The 

acquired sequences can be put together and aligned in 

MEGA X and Geneious Prime 2021 (accessed on 27 Decem-

ber 2021) using the Muscle Algorithm (12). With the help of 

the online sequence submission tool "BankIt", the se-

quences can later uploaded to NCBI GenBank and access 

numbers for all the analysed barcode markers can be ac-

quired (58). Utilizing the NCBI Gen-BLASTn Bank's pro-

gramme, the sequences can put through a taxonomic ex-

amination to find homologies between the fragments. Ad-

ditionally, unsupervised OTU selecting techniques can be 

used. MEGA can use for the phylogenetic analysis, while 

ABGD and ASAP can use for the OTU evaluation (59). Su-

pervised Machine Learning (SML) techniques can use in 

conjunction with the unsupervised OTU selecting tech-

niques to identify divergent taxa. With the help of the FAS-

TA to WEKA converter, the aligned datasets can be con-

verted to the WEKA's necessary file format (60). The sites 

with gaps and missing values can be taken out of the data 

set for the pairwise distances analysis (complete deletion 

option). The neighbour-joining (NJ) approach is used to 

create phylogenetic trees in accordance with the Kimura 2

-Parameter (K2P) model, which is being evaluated using 

MEGA 7.09 (61). In these trees produced using the NJ tech-

niques, the clade dependability can be investigated using 

bootstrapping, which determines the support values of the 

clade nodes through 1000 repeated sample tests. Librado 

and Rozas, performed polymorphic sites, genetic diversity 

indices and neutrality tests (62). Researchers have also 

successfully created a few DNA barcode reference libraries 

for natural medications. For example, the first Medical 

Materials DNA Barcode Database (MMDBD), which has 
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62011 sequences from 2111 species (http://

www.cuhk.edu.hk/icm/mmdbd.htm) was established in 

2010 (63). Several of the sampled species were not in the 

DNA BOLD or PubMed databases. This suggests that the 

organism is not currently included in any database since 

the alignment of these samples was less than 90 %. The 

identification of these organisms at the species level is not 

possible, yet they may be able to be placed in a certain 

genus. An official identification for these materials will 

require collaboration with a taxonomist. It would also be 

important to create a voucher that could be added to the 

DNA BOLD database (64). The main databases providing 

reference barcodes are GenBank, the DNA Databank of 

Japan (DDBJ) and the European Molecular Biology Labora-

tory (EMBL) (65). 

Future perspectives of DNA barcoding       

Living things have frequently been barcoded using DNA. 
The BOLD system has produced more than one million 

barcodes thus far (DNA barcode data depository). IBOL 

speeds up the barcoding process even further by building 

massive libraries that make it easier to correctly identify 

living things. Barcoding plays an important role in taxo-

nomic research, but it also facilitates significant coopera-

tion and communication across many scientific groups, 

particularly taxonomists, population geneticists, phyloge-

neticists and applied biologists (26). The critical stage in 

constructing a high-quality reference library of DNA se-

quences of all known plant species on Earth will be the 

collection and compilation of well-identified sample sets 

that are acceptable for DNA sequence analysis. Taking into 

account technological developments, these sample sets 

will be reasonably simple to resequence for new loci once 

they have been assembled (19). Plant barcoding necessi-

tates additional markers like trnH-psbA and ITS in addition 

to the essential DNA barcodes rbcL and matK. Further-

more, DNA barcoding is sometimes imprecise and necessi-

tates the use of extra group-specific markers in species 

that are closely related and cryptic. However, molecular 

phylogeny, population genetics, evolution and the field of 

ecology, biological safety and food-related product regula-

tion are all significantly impacted by DNA barcoding. The 

resolution of cryptic taxa may be done quickly, accurately 

and affordably using recently developed technologies like 

metabarcoding in combination with high throughput se-

quencing (HTS). All gene variants can be sequenced using 

next-generation sequencing (NGS), even in the presence of 

microsatellites, homopolymeric areas, insertions/

deletions (indels) and single nucleotide polymorphisms 

(SNPs). NGS is a priceless instrument with a wide range of 

applications in the DNA barcoding field because it can effi-

ciently sequence hyper variable markers. It also sheds 

light on the shortcomings of earlier research and methods. 

Unlike Sanger sequencing, NGS technology can sequence 

single DNA molecules in enormous parallel, producing 

high-throughput data. All areas and variants of the gene 

are read by parallel sequencing, which eliminates the diffi-

culty of working with multiple templates and enables the 

discovery of contaminants, pseudogenes and allelic varia-

tion within organisms. While one of the first applications of 

NGS technology was whole-genome sequencing, several 

techniques have since been developed to produce multi-

locus sequence data for a range of purposes, including 

phylogenetics and genotyping. Direct Sanger sequencing 

of DNA barcode amplicons, which is the method used in 

the majority of DNA barcoding procedures, is hindered by 

the requirement for a relatively high yield of target ampli-

cons, nuclear mitochondrial pseudogene coamplification, 

sequence confusion with intracellular endosymbiotic bac-

teria (like Wolbachia), and intraindividual variability 

(heteroplasmy). Failures in Sanger sequencing attempts or 

unclear DNA barcodes produced can result from any of 

these circumstances. Because of its multiplexing ability, 

NGS is an affordable DNA barcoding technique. 

 A further effective method for defining biological 

groups from samples of terrestrial and aquatic habitats is 

environmental DNA (eDNA) metabarcoding, which com-

bines universal DNA barcodes with HTS (66). According to 

the China Plant BOL Group (2011), the advantages of em-

ploying nrDNA ITS for species resolution are expected to 

exceed the increase in our capacity to identify between 

different plant species (50). In order for experts to make 

taxonomic determinations and incorporate the specimen 

information into floras or species descriptions, the herbar-

ium provides an organisational framework for sharing 

specimens with other institutions. Curators and systema-

tists who work in herbariums can identify uncommon or 

unusual species and mark them for field collections or ob-

servations (67). One of the most difficult tasks for the up-

coming ten years is to fill the world's plant DNA barcode 

collection. As they frequently contain well-verified identifi-

cations, vouchered collections and individually tagged 

specimens, these ecological monitoring plots offer an in-

valuable resource for creating the plant DNA barcode li-

brary (68). Metabarcoding, also referred to as environmen-

tal DNA, is an innovative variation of DNA barcoding that 

employs genetic markers to identify living entities in envi-

ronmental samples (69). Due to technological advances in 

the recovery, amplification and sequencing of minuscule 

DNA fragments and even damaged ones, the field of 

metabarcoding is expanding quickly. Furthermore, creat-

ing new bioinformatics tools that can translate a list of 

DNA sequences discovered in a sample into a list of species 

that can be identified is difficult, but this issue could ulti-

mately be resolved (68). 

Challenges of DNA barcoding         

Taxonomic congruence          

For the DNA barcoding proposal to be successful, there 

must be a strong correlation between the barcodes and 

the group’s species classification. Although it may be more 

important, there should not be any overlap in the absolute 

barcode sequences of distinct species. The ideal condition 

would be for interspecific variation to dominate intraspe-

cific variation. These prerequisites have so far been ac-

complished in fewer studies on plants than on animals. 

This may be brought about by reasons such as hybridiza-

tion and polyploidy, inadequate sorting of ancestral poly-

morphisms, faulty taxonomies and poorly described spe-
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cies, in addition to the putative plant DNA barcode areas' 

lower variability and the less well-defined borders be-

tween plant genomes (32). 

Implications of using plastid regions          

Given that the plant DNA barcode is made up of 2 plastid 
regions, which are key factors in species identification, 

hybridization and polyploidy may have a greater impact 

on species identification in groups with high levels of apo-

mixis. 

Hybridization         

In the majority of angiosperms, back cross after hybridiza-

tion can cause introgression of plastids from one maternal 

parent into another. But in conifers, it is from the paternal 

parent (70). The subsequent generation may contain the 

plastid genome of the second species but a more or less 

"pure" nuclear genome from the first species following 

multiple generations of backcrossing. The "erroneous” 

response will occur if the common plant barcoding loci (or 

any other plastid loci) are used. However, certain popula-

tions that were previously believed to be pure examples of 

one species include the plastid genome of a distinct spe-

cies, according to morphological and nuclear DNA investi-

gations. 

Polyploidy         

More than 70 % of angiosperm species may have experi-

enced one or more polyploid occurrences in the course of 

their evolutionary history, making polyploidy a wide-

spread phenomenon. This can make plastid genome-

based barcoding problematic (71). The plastid genome of 

recently generated auto polyploids will be identical to that 

of the parental diploid. Barcoding won't be able to detect 

the difference between the diploid and the polyploid line-

ages that have been created due to reproductive isolation. 

Also, barcoding alone will not be able to distinguish be-

tween the plastid donor parent and the polyploid since 

newly created allopolyploids will only contain the plastid 

genome of one of the progenitors. When sufficiently intact 

specimens are available for examination, morphological 

study combined with barcoding may be able to solve the 

allopolyploid problem, but auto polyploids and parental 

diploids are frequently difficult to distinguish on the basis 

of gross morphology and have been treated as cytotypes 

of the same species (72). The usage of "traffic light" sys-

tems, such as those found at https://www. isisintegra-

tion.com, might be made possible (43). In such a system, a 

green light indicates that the DNA barcode completely 

matched another species' barcode that was known to be 

unique. A red signal would indicate that this particular 

taxon does not work with barcoding, while an amber light 

would say, "Continue with care.” There may not be a 

match in the current database, the supplied sequence is of 

low quality or there are many matches, among other pos-

sibilities, for this. The standard and completeness of the 

barcode database, as well as knowledge of genetic trends, 

will surely affect how accurate such a traffic light system is 

(1) Key challenges such as collection of specimens for rare 

or ephemeral species (2) limited availability of taxonomic 

knowledge required for accurate identification of refer-

ence specimens and (3) issues with amplifying and   

matching barcode data at the molecular level. Low popu-

lations of uncommon species can also be troublesome 

because it is impractical to collect them when sampling 

could have a detrimental impact on population survival; 

as a result, workers must spend valuable time hunting for 

alternative sources of plant material (73). With the help of 

well-built barcode libraries, end users may classify plant 

material according to species or genus utilising tissue 

pieces (such as a single leaf, root or stem) that are hard to 

identify using conventional taxonomic keys. However, be-

cause barcode matches are based only on sequence data 

and not morphology, end users are unable to identify 

flaws in the initial species identification. Nevertheless, 

digital photos and herbarium specimens can be checked 

again in the future to confirm identifications. Therefore, it 

is crucial that reference specimens are identified correctly 

(74). It is possible to construct phylogenetic hypotheses for 

taxa that have some barcode data utilising incomplete or 

skewed molecular matrices; nevertheless, a lack of se-

quence data may increase phylogenetic uncertainty and 

result in unresolved nodes (i.e., polytomies). This lack of 

phylogenetic precision will have various implications de-

pending on the problems to which the phylogenetic theo-

ries are applied (75). 

Applications of DNA barcoding          

The advances in sequencing techniques have enhanced 

the applicability of DNA barcoding for various biomonitor-

ing applications (76). Species identification has been the 

main application of DNA barcodes. By extending the diag-

nostic range to include all stages of an organism's life his-

tory, unisexual species, damaged specimens, stomach 

contents and fecal samples, barcoding is a research tech-

nique that helps taxonomists identify different species. 

DNA markers have quickly risen to the top as the most 

popular tools for genetic evaluations of crops and culti-

vars, in addition to tracking and verifying the unprocessed 

ingredients used in food (77). 

Identification and discrimination of species         

The DNA barcoding method is used to determine the iden-
tity of biological items, their purity and the identification 
of controlled species, including invasive and endangered 
species (78). Especially for undescribed and cryptic spe-
cies, barcoding serves as a biodiversity discovery method 
that can help to identify species that may be novel to sci-
ence. DNA barcodes are currently being used to address 
significant ecological and evolutionary problems, such as 
the species composition of plant communities and the 
degree of specialisation in tropical versus temperate zone 
herbivores (40). Compared to traditional morphological 
identification, DNA barcoding can distinguish between 
species and guarantee that a product is legitimate and not 
a duplicate; it is helpful for identifying medicinal plant 
(MP) species for conservation and use (59). Based on phy-
logenetic analysis and genetic distance, a 2-locus combi-

nation of matK + ycf1 and ndhF + ycf1 or ndhF and ycf1 

alone has proved to be markers for the identification, con-
servation and utilisation of members of Orchidaceae (79). 
For Clerodendrum species, a 2-locus combination of      
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ITS2 + matK has been proposed as the core barcode (80). 
Similarly, identification at the level of family, species as 
well as subspecies level has been done using DNA barcod-
ing (81) (Supplementary Table 1).  

 Traditional biologists have the ability to recognise 
the species of vectors harming humans, animals and crop 
plants most severely and to comprehend the mechanisms 
of management (26). DNA barcoding is a method for moni-
toring and regulating the illegal trade of natural resources. 
For the purpose of barcoding hardwood trees, scientists 
have created a database that serves as a reference bar-
code library. This will help to further improve natural re-
source management and conservation techniques (82). 
Controlling the spread of water-borne illnesses requires 
careful examination of any possible microflora in drinking 
water. DNA barcoding has made it possible to identify mi-
crobes quickly while less expensive and in minimal time by 
avoiding the need for elaborate methods. Environmental 
authorities utilise DNA barcoding to assess the water's 
quality and guarantee that the water being delivered is fit 
for human use (26). The identification of many illnesses 
and disorders has been aided by DNA barcoding. By recog-
nising foreign species, DNA barcoding has aided in medi-
cine authentication and improved biosecurity. Species 
barcoding is thought to be a reliable and trusted identifi-
cation strategy for determining the status and conserva-
tion of biodiversity at the level of species and populations 
(43). The use of DNA barcodes as a tool has significantly 
increased cooperation between ecologists and systema-
tists, who study patterns of association and species inter-
actions as well as the identification of species and their 
evolutionary links (83). Ecologists made great strides with 
the development of Phylomatic (84), a tool for calculating 
phylogenetic trees for plant communities. Genetic markers 
known as "DNA barcode forensics" are being used to safe-
guard endangered species from being trafficked illegally, 
to ensure the identification and purity of commercial 
products and to track how locals use forest plants. One of 
the motivating factors behind the current uses of DNA bar-
code technologies in different locations of the world is the 
need for an efficient, trustworthy and affordable instru-
ment for the detection of illicit wood products (68). The 
use of these identifiers are in the identification of wild-
collected goods, including animal items, that are sold in 
marketplaces throughout the world (85). Today, it is com-
mon practice to utilise DNA barcodes to identify the spe-
cies that cause bird attacks on commercial aeroplanes 
(86). DNA barcoding, a tool primarily for species identifica-
tion, can be applied to biodiversity conservation in 2 ways: 
1) to increase the accuracy and speed of biodiversity moni-
toring both before and after conservation actions and 2) 
by providing information to help determine estimates of 
phylogenetic diversity for allocating conservation priori-
ties (87).  

Identification of diseases and pests        

By accurately identifying pests, DNA barcoding assists in 
pest control and helps to reduce costs caused by agricul-
tural pest infestation. DNA barcoding may be used to 
quickly create containment and suppression tactics for 
disease incursions before their numbers get out of control 

(88). Traditional biologists have the ability to recognise the 
species of vectors harming humans, animals and crop 
plants most severely and to comprehend the mechanisms 
of management (26). DNA barcoding is a method for moni-
toring and regulating the illegal trade of natural resources. 
For the purpose of barcoding hardwood trees, scientists 
have created a database that serves as a reference bar-
code library. This will help to further improve natural re-
source management and conservation techniques (82). 
Controlling the spread of water-borne illnesses requires 
careful examination of any possible microflora in drinking 
water. DNA barcoding has made it possible to identify mi-
crobes quickly while less expensive and in minimal time by 
avoiding the need for elaborate methods. Environmental 
authorities utilise DNA barcoding to assess the water's 
quality and guarantee that the water being delivered is fit 
for human use (26). The identification of many illnesses 
and disorders has been aided by DNA barcoding. Numer-
ous fungi infections have dramatically grown, including 
aspergillosis, candidiasis and cryptococcosis. Fungal DNA 
barcoding, which traditionally depended on a single bar-
coding area, is frequently used to identify these infections. 
However, only a few of the fungi were successfully identi-
fied. The translational elongation factor 1 (TEF1), a supple-
mental barcoding area that ensures efficient and accurate 
detection of invasive fungal infections, has most recently 
been introduced to fill this gap (89). By recognising foreign 
species, DNA barcoding has aided in medicine authentica-
tion and improved biosecurity.  

Molecular traceability of agricultural products         

Agricultural products go through extensive processing and 
manufacture before they are distributed to the market. 
These activities modify plant structure, making it difficult 
to identify most agricultural products using visual charac-
teristics. To circumvent this limitation, the study of pro-
teins and/or DNA is increasingly utilized as the primary 
tool for plant tracking. DNA barcoding is a genuine func-
tional tool for agricultural products’ molecular traceability 
because the majority of minor crops have not yet been 
identified with specific markers like SSR or SNP that would 
enable a precise DNA fingerprinting system. Reports are 
there regarding the application of DNA barcoding using 
nuclear and plastid regions for authentication of minor 
crops like spices, aromatics plants, legumes, herbal infu-
sions, fruits and also for major crops (90).  

Identification of plants causing intoxication        

DNA barcoding is a useful technique for identifying the 
plant species that are responsible for consumer poisoning 
or intoxication (91). ITS1 and ITS2 primers were successful-
ly designed for the identification of toxic substitutes of the 
Apiaceae family. Such DNA barcode regions have a size of 
140 and 80 bp respectively, termed as mini barcodes (92). 
A reference DNA barcode library for 100 poisonous plant 
species has recently been created employing rbcL DNA 
barcodes (93). 

Detection of adulterants in food commodities and 
herbal medicines           

The ability to identify contaminated food products pre-

served once was made possible by DNA barcoding (http://
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www.dnabarcoding101.org). The detection of adulterants 

in adulterated spices is a very difficult process; however in 

the literature, it has been discovered that DNA barcoding is 

helpful in locating unethical product substitution. This 

method has become a reliable tool for identifying tainted 

processed seafood and meat products (94). Species from 

the same genus, less expensive imitations with a similar 

colour or appearance or crop-based goods like rice or 

wheat flour were frequently used to adulterate spices (95) 

(Supplementary Table 2). Detection of spices as well as 

their adulterants has been done by many researchers (52). 

Similarly, the authentication of medicinal plants, including 

laxative-yielding plants like Cassia and Senna, has been 

done (96). With the aim of authenticating herbal items, a 

standard Biological Reference Materials (BRM) herbal DNA 

library has been created, including 180 species of plants 

(97). A standardized method for the application of DNA 

barcoding in the detection of adulterants has been given 

by Howard et al., using Hypericum perforatum L. Accord-

ing to researchers, the ITS2 intergenic spacer is useful for 

detecting medicinal components in processed medicinal 

plants from different families (98). 

Phylogenetic diversity analysis and plant biodiversity 

conservation         

Prioritising and managing the protected area successfully 

requires an assessment of species variety and richness. 

Phylogenetic diversity is used to evaluate taxonomic diver-

gence in various species (99). The improvement and accel-

eration of phylogenetic diversity analyses are made possi-

ble by DNA barcoding. Comparing DNA barcode-based 

data on phylogeny with a larger evolutionary repository is 

required in this (68). Plant DNA barcodes have proven to 

be essential for assessing species richness in previously 

unexplored regions, such as the tropical forests of Austral-

ia (100). Reports are there for authentication and develop-

ment of conservation strategies for threatened species of 

the genus Decalepis of the Apocynaceae using DNA bar-

code studies (44). With the help of this innovative tech-

nique, it is possible to simultaneously identify the majority 

of species from a specific biotope and assess the biodiver-

sity of ecosystems with limited accessibility. Molecular 

methods and DNA barcoding may allow scientists to pre-

cisely recreate the past habitats of flora and fauna (101). 

 Specific barcoding is thought to be a reliable and 

trusted identification strategy for determining the status 

and conservation of biodiversity at the level of species and 

populations (43). The use of DNA barcodes as a tool has 

significantly increased cooperation between ecologists 

and systematists, who study patterns of association and 

species interactions as well as the identification of species 

and their evolutionary links (83). Ecologists made great 

strides with the development of Phylomatic (85), a tool for 

calculating phylogenetic trees for plant communities. Ge-

netic markers known as "DNA barcode forensics" are being 

used to safeguard endangered species from being 

trafficked illegally, to ensure the identification and purity 

of commercial products and to track how locals use forest 

plants. One of the motivating factors behind the current 

uses of DNA barcode technologies in numerous different 

locations of the world is the need for an efficient, trustwor-

thy, and affordable instrument for the detection of illicit 

wood products (68). The use of these identifiers in the 

identification of wild-collected goods, including animal 

items, that are sold in marketplaces throughout the world 

(85). Today, it is standard procedure to employ DNA bar-

codes to pinpoint the species responsible for bird attacks 

on commercial aircraft (86). DNA barcoding, a technique 

primarily used for species identification, can be used to 

support biodiversity conservation in two ways: 1) by im-

proving the precision and efficiency of biodiversity moni-

toring and 2) by providing data to support estimates of 

phylogenetic diversity for determining conservation priori-

ties (87).   

 

Conclusion  

DNA barcoding is a rapid succession procedure that en-

hances species identification by comparing the barcodes 

from the DNA barcode library. DNA barcoding makes the 

analysis of samples easy and helps with classification. The 

main aim of DNA barcoding is to prepare a barcode library 

for reference and taxonomical identification. The barcode 

library paves the way for the reference of samples and is 

open to other researchers. It also gives clarity on the spe-

cies’ discovery and it aids in certain other impacts in the 

biological field. Phylogenetic analysis, ecological foren-

sics, medicinal plant authentication, endangered species 

conservation, helping in the discovery of new species in 

particular plant groupings and performing identifications 

when taxonomic knowledge is lacking are just a few of the 

many applications that find great utility in DNA barcoding. 

Physical procedures for the detection of adulterants are 

easy and inexpensive, but the main disadvantages are the 

inaccuracy and repeatability of results. This emphasises 

the need for precise molecular authentication techniques. 

Numerous taxonomists might be replaced by a DNA bar-

coding technician for basic identification, freeing up tax-

onomists to focus on locating reference specimens to 

build trustworthy databases. DNA barcoding is now a 

widespread practice across the entire tree of life and is a 

recognised and integrated tool in the study of biodiversity. 

Even though the discriminating efficiency of single locus 

markers in plants is less than that of animals’ multiple lo-

cus combinations, it gives an enhanced resolution. Differ-

ent combinations of markers show different degrees of 

identification efficacy in various groups of plants. In biodi-

versity research, the potential for accurate identification 

or library preparation could be considerably increased by 

using the next-generation sequencing technique for DNA 

barcoding.   
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