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Abstract

We propose and discuss a simulation model of annual plants competing for a single
resource. Plants are characterised by their tolerance to a surplus of this resource and
the maximum number of  seeds  a  plant  can produce  in a  year.  Interaction among
plants is reduced to blocking a part of the resource by the plant’s nearest neighbours.
Spatial and temporal conditions are homogeneous. There are no trade-off mechanisms
nor immigrants. Plants may suffer from both a lack and too much of the resource. We
consider two systems - plants of one type (target plants) and a mixture of two types,
where the second type differs from the target ones only by the tolerance to surplus of
the resource. We show how the life cycle of a plant depends on its tolerance, on supply
of the resource and on how it is affected by the presence of the second type of annuals.
We demonstrate that even in such a simple system coexistence of the two species is
possible, and we determine the conditions for this. We present also a mean field type
approach to the problem, showing that the results from simulations and mean field are
quite similar. However the mean field approach cannot answer questions concerning
spatial arrangement of plants, like possible formation of niches for different types of
plant.
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1 Introduction

The  problem  of  coexistence  of  species  and
maintaining biodiversity is one of the central issues
of plant ecology (1). As such it has many facets and
the  number  of  papers  devoted  to  the  subject  is
enormous.  There are many papers discussing  the
competition  -  colonisation  trade-off  (2–6),  role  of
heterogeneity  of  space  (1,  7,  8),  various  type  of
disturbance, such as fire, flooding or grazing (9–11)
or tolerance-fecundity trade-off (12). Pairwise (PW)
experiments of annual  plants have been reported

by Goldberg and Fleetwood (13), where the effect of
the presence of the nearest neighbouring plants has
been studied and the plant types differed in many
aspects.  The focus was  on the role  played by the
size of the seeds in the competition between plants.
The  problem of  how the  presence  of  one type  of
plants affects the target plants, has no satisfactory
answer  (14–17)  and  therefore  further,  also
theoretical,  studies  are  much  needed.  We  shall
consider here mostly the stabilising mechanism (1),
i.e. resource partitioning.
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In this  paper  we present a model  of  a  PW
simulation experiment of annual plants. We do not
assume,  as  is  quite  often  done,  that  competing
plants have several features and while one type is
superior  in  one  characteristic,  it  is  inferior  in
another. In short, there is no trade-off mechanism
of any kind. The habitat is homogeneous and does
not offer by itself  a  niche more suitable  for one
type of plant. There is just one resource and there
are  no  immigrants.  Finally,  while  in  all  papers
known  to  us,  only  the  effect  of  a  shortage  of  a
resource has been studied, we allow for a surplus
of  the resource,  having also a negative effect on
the population. To the best of our knowledge such
a  model  has  never  been  studied.  The  model,
described  in  detail  in  the  next  section  is  of
individual  based  type  and  its  properties  are
determined  by  Monte-Carlo  type  numerical
simulations.  Next  section  is  devoted  to  a  mean-
field approach (MFA) to the same problem.

We  revisit  some  important  questions  (17),
namely:

• In  a  pairwise  evolution  which  species
dominates at a particular time?

• Is coexistence of two species possible, and
if so, under what conditions?

• What  is  the  effect  of  the  presence  of
another species on the performance of the
target plants?

• How do the above relations change when
the supply  of the resource vary –  from a
shortage,  through  optimal  to  a  surplus.
How  the  dominance  changes  with  the
supply of the resource?

Dominance  means here that  one species  is
more abundant than the other (17).

There  are  many  factors  characterising  a
plant community and accounting for even most of
them would make the model intractable, banning
exploration of the full parameter space. Therefore
we have decided to  reduce the characteristics  of
the plants to just their demand for one resource –
tolerance  to  a  surplus  of  it  and  the  maximum
number of seeds a plants can produce in a year.
The  term  tolerance  is  used  here  sensu  Muller-
Landau  (12).  It  means  tolerance  to  stress,  here
coming from either too much or not enough of the
resource.

2 Model
We study a homogeneous habitat  composed of a
population of annual plants living on plaquettes of
a square lattice of size  L ×  L with hard boundary
conditions. In the first part of the paper we shall
investigate a system with only one type of annual
plant. Here we determine the role of the control
parameters  and  the  mechanisms  at  play.  In  the
second part we study a system with two types of
plant  and  we  establish  the  influence  of  the
presence of the second type of plant on the first. In
both cases, a lattice site could be either empty or

contain only one plant.  Plants  are competing for
just  one  resource  (water),  which  comes  from
outside.  Each plant has  the same demand for  it,
which  is  our  yardstick,  in  the  sense  that  all
quantities  referring  to  water,  like  the  rainfall,
actual amount of water available to a plant or its
tolerance  are  normalised by  this  demand,  hence
they  are  dimensionless  quantities.  Tolerance,  τ
measures how well a plant copes with surplus of
water. Larger value of τ mean that the plant better
supports  water  supply  bigger  than  the  demand,
equal  1 by definition,  while  small  τ characterise
plants  better  supporting  shortage  of  water.  The
plants of a given type have the same tolerance. The
system  is  homogeneous,  i.e. the  value  of  the
rainfall  is  the same on all  sites.  The structure of
our model is, to some extent, based on the papers
(18)  and  (19)  where  annual  plants  living  in
mountain areas have been studied. Authors have
shown i.a. that the seeds’ success depends strongly
on  the  external  conditions  and that  plants  have
different  tolerances  to  water.  Their  coexistence
has  been observed for  a period of  several  years
(18).

In  our  model  initially  a  given  number  of
plants,  2000  for  one  type  of  plants  and  1000  of
each type when there are two of them, is randomly
distributed  on  the  lattice.  Increasing  the  initial
number  of  plants  to,  say,  5000  is  virtually
unnoticed after some 10 years. The life cycle of a
plant (a year) is composed of the germination and
adult  phases.  In  the  latter  the  plant  produces
seeds, distributes them in a given neighbourhood
and then dies. Each year the rainfall,  w,  on each
site is the same. Each adult plant interacts with its
nearest  neighbours  (NN)  as  the  roots  of  the
neighbours block a certain amount of water, thus
reducing the water supply available to the plant.
Root  competition  and  mechanisms  inhibiting
access  of  other  roots  to  resources  (called
sometimes contest competition or allelopathy) is a
well known phenomenon (20). Effective amount of
water available to a plant i having nni  NN is

i = w(1  −   nn· i), (1)

where the factor  determines the strength of the
interactions among the plants. The value   = 0.1,
which  we  took  for  simulations  is  a  compromise
between a smaller values when the effect of the
interactions is lost and a larger value, when it is
overwhelming,  reducing  the  influence  of  the
external conditions (rainfall). In general, reducing
the interaction strength leads to an increase of the
plants’ abundance, sharpening also its peak value
and  bringing  it  closer  to   =  1,  as  with  weak
interactions less water is blocked. Since both types
of plant use the same resource, we have the case of
p =  1,  i.e. complete  niche  overlap  in  the
terminology  of  Chesson  (1).  Smaller  values  of  p
correspond to partial sharing of the resource.
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Our control parameter τ describes how well
a  plant  copes  with  too  much  water.  Therefore
when the amount of water available to a plant is
less than the optimum supply, i.e. when  < 1, large
tolerance has a negative effect. When the situation
is the opposite – there is too much water, large τ is
beneficial.  We  may  therefore  determine  the
survival  chance  a  plant  i of  type  m has,  if  i is
larger than 1, as

πi(m)=  
exp (– (1 – i )2  .  τ (m) / i ) if i < 1 (2)

exp (– (1 – i )2 / (τ (m) . i )) if i < 1 (3)

In the biological literature there is no form of the
survival  chance  that  could  be  regarded  as  a
canonical  one.  We  have  therefore decided  on  a
simple form which fulfils some natural conditions.
It  must  peak when the supply  is  equal  to  to the
demand  for  the  resource  and  should  decrease
when  the  supply  departs  from  the  optimum,
reaching zero if there is no water. The above form
agrees  with  those  demands.  It  should  also  be
mentioned that were we to decide to take another
form, as e.g.

πi ~ i  / τ (m),  for  πi  < 1 (4)

and the inverse of it when πi  > 1, the results from
simulations would be qualitatively quite similar.

A random number ri Є (0, 1) is taken from a
uniform distribution and if it is smaller than πi(m),
the plant survived, otherwise it is removed. Once
the plant has passed the survival test, it produces
seeds, the number of which depends on πi, and the
assumed maximum number of seeds,  β,  which a
plant can produce in optimal conditions. Using the
same  function  for  checking  the  plant’s  survival
and the  number  of  seeds  it  produced  in  a  year
might be a simplification, however,  as shown by
(21) the two are closely related and therefore such
an  assumption  is  well  justified.  Therefore  the
number of seeds produced by the plant i is

si (m) = E [β . πi  (m)]. (5)

Where  E[...] means  the  integer  part  of  [...].  The
seeds are then dispersed randomly over 13 sites in
the neighbourhood of the plant, including the site
on which the plant grows. The choice of 13 sites in
the  nearest  neighbourhood  minimises  the
probability that a plant will put most of its seeds
on  one  site,  thus  reducing  greatly  their
germination success. It is, however, not a crucial
parameter and increasing it  to,  say,  25 sites  will
not  produce  visible  effects.  After  dispersing  the
seeds,  plants  die  and  are  removed  from  the
system. There is  no limitation on the number of
seeds  which  could  be  on  a  given  site.  This
terminates the adult phase of the plant’s life.

Next comes the germination phase. Each site
is visited just once and from it one seed is chosen
for germination. It does not therefore really matter
whether  on a site  there are 3  or 15 seeds,  since
only  one  is  chosen.  We  realise  that  this
independence  of  the  germination  success  on the
number of seeds in a given site is a simplification.
Allowing for the germination success to depend on
the  number of  seeds  would  introduce  additional
parameters,  which  value  would  be  difficult  to
establish from the field data.

We  assume  that  seedlings  have  too  short
roots to block water from the NN, hence there are
no interactions among seedlings and their survival
chance is calculated from a formula similar to that
for adult plants, however with the blocking factor
 set to 0

(m)=  
exp (– (1 – w)2 .  τ (m) / w) if w < 1 (6)

exp (– (1 – w)2 / (τ (m). w)) if w < 1 (7)

Once all sites with seeds have been visited,
the seeds are removed from the system - there is
no seed bank. Seedlings become adult plants and a
new year starts. Plants are randomly chosen, put
into the survival test and if they passed it, produce
seeds which could germinate etc.

In the following we shall  first show how a
population  of  one  type  of  plants  with  a  given
tolerance  reacts  to  changes  of  the  external
parameter  w.  Afterwards we shall determine the
influence  the  second  type  of  plants  has  on  the
target plants.

The two types of plant,  called hereafter  P1
and P2, could differ in many respects - their size,
type and number of seeds, tolerance to surplus of
the resource etc. To keep the problem simple we
assume that the only difference is the tolerance.
We  have  the  following  control  parameters  -
reduced resource supply w, tolerance of plants P1
-  τ1 and  of  plants  P2 -  τ2,  maximum  number  of
seeds a plant can produce  β, equal for both types
of plant,  and the interaction strength  .  The last
two parameters we fix at the following values β = 6
and   =  0.1.  Possible  effects  of  changing  theses
values are discussed later.

3 Results
3.1 One type of plant
We consider a square lattice of dimensions  L ×  L
with L = 100 on which initially 2000 plants of one
type  are put  in  random positions.  Dynamics  has
been described in the previous section. We have
found  that  a  population  of  plants  reaches  a
stationary  state,  where  the  fluctuations  of  the
number of plants are less than 1%. The number of
plants in the stationary state varies very little from
one realisation (random initial distribution of the
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same  number  of  plants)  to  another.  We  have
limited the simulations to 100 years and the data
presented  are  averaged  over  50  realisations
differing  in  the  initial  random  distribution  of
plants. Error bars are smaller than the thickness of
the lines.

Figure 1: Number of plants P1 for various tolerances as a
function of the reduced resource supply w. Colour on line.

Figure  1  shows the  number  of  plants  as  a
function of  w, the resource supply divided by the
demand for it, for several values of the tolerance τ.
As could be expected, when the tolerance is small
(τ =  0.5)  plants  could  live  in  regions  where  the
water  supply  is  below  the  optimum.  With
increasing  tolerance,  it  is  more  difficult  for  the
plants to live in those “dry regions”, but they are
now able to grow where the rainfall is larger than
the  optimum.  In  some  sense  we  find  here  the
analogues  of  the  R*  level  introduced  by  Tilman
(25) as the resource level at which the species is
just able to persist. In our model we have two such
limiting values – the lower level and the upper
limit _Species  could  exist  within  those  two
borders.

Figure 2: Three successes. S3 - seeds success, S2 - seedlings
success, S1 - total success of plants (product of the previous
ones) as functions of the resource supply and for  τ = 1.0.
Colour on line.

Figure  2  shows  how  the  three  successes  -
that of seeds (S3), of seedlings (S2) and the total – of

plants (S1) depend on the rainfall  for a tolerance
equal 1.0. Other values of tolerance lead to quite
similar  diagrams.  The  successes  are  defined  as
follows.  S3 is the ratio of the number of seedlings
(i.e. seeds that germinated) in a given year to the
number of sites with seeds in the same year. Since
from a site only one seed could germinate, it is the
number of sites, not the number of seeds,  which
determines this success. S2 is the seedlings success
-  the  ratio  of  the  number  of  adult  plants  which
were  able  to  produce  seeds,  to  the  number  of
seedlings. Finally,  S1 is the total success - the ratio
of adult plants producing seeds to the number of
sites  with  seeds,  or  simply  S1 =  S3 ·  S2.  The
presented data come from averaging over the last
20  years  before  the  end  of  the  simulations  and
over 50 independent realisations.

Since  there  is  no  interaction  (blocking)
among seedlings, the  S3 curve showing the seeds’
success peaks at w =  = 1, hence at the optimum.
Decrease on either side of the maximum is rather
fast,  since  there  is  no  “smoothing”  effect  of
reducing the water available  by the NN. For the
seedlings  the  maximum  is  much  wider  and  less
sharp and also shifted to higher than w = τ values,
since part of the water is now blocked and not all
plants  can  survive  till  the  moment  they  can
produce seeds. Wider maximum comes from the
fact that plants have a different number of NN and
therefore the blocking effect for each plant could
be different. Finally the total success of plants – i.e.
how many seeds were able to germinate and lead
to plants which can reproduce, shows a symmetric
curve stretching from one maximum (for S3) to the
other one (for S2).

Spatial arrangement of plants may change in
different external conditions,  viz. for different  w.
A  convenient  way  to  measure  it  is  the  density-
density correlation function C(r), defined as

C(r) = (r0)(r0 + r), (8)

where  (r0) is the density of plants at site  r0 and
(r0 + r) is the density at a distance r from r0. The
average  is  over  all  plants  and  different
realisations. Assuming that the lattice constant is
equal 1, we get the dependence of C(r) (up to 5-th
neighbour) on the distance r, as shown in figure 3
for  plants  with  tolerance  τ =  1.0.  For  other
tolerances the features are similar. The correlation
functions  C(r)  shown  in  figures  3  have  been
calculated in three points – (1) when the water is
scarce (w = 0.6), (2) when there is as much water
as needed (w = 1.0) and (3) when there is too much
of water (w = 1.4).

When there is not enough water plants are
expected  to  avoid  growing  in  closely  packed
clusters, since each NN blocks a certain amount of,
already scarce, resource. When the supply of the
resource  is  about  what  a  plant  needs,  one  may
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expect a balance between the average number of
nearest  and  farther  neighbours.  Finally,  when
there is too much of the resource, growing in close
clusters becomes beneficial, as it allows to reduce
the too large supply. This is exactly what is seen in
figure 3.

Figure  3:  Density-density  correlation  function  versus
distance  (measured  by  the  neighbourhood,  r  =  1  means
nearest neighbours, r = 2 – second NN etc.) from the central
plant for three values of water supply. Plant tolerance  τ =
1.0. w1 = 0.6, w2 = 1.0, w3 = 1.4. Colour on line.

The  presented  above  plots  allow  the
following description of the basic mechanisms of
our model. There is a tendency of plants to adjust
their spatial organisation according to the external
conditions in order to cope with either surplus or
shortage of the resource. This in turn determines
whether  the  elimination  will  take  place  at  the
seedlings or adult plants stage. If  < 1, hence there
is a shortage of the resource, eliminated are mostly
adult  plants.  It  could  be  explained  as  follows.
When  the  resource  is  scarce,  seedlings,  with  no
blocking of water by their NN, are better off than
adult  plants  which  lose  part  of  the  resource
supply. This loss may be crucial and an adult plant
could be eliminated before producing seeds. When
 > 1, there is too much of the resource and the
elimination is at the level of seeds. Once a seed has
germinated and developed into an adult plant, its
conditions are better since part of the surplus of
the resource is blocked. The total success of plants
is therefore determined mainly by the success of
the adults plants when  < 1 and by the success of
seeds when  > 1.

3.2 Two types of plant
After showing the basic mechanisms of our model,
we may turn to applying them to a more complex
case, namely two, quite similar types of annuals,
called P1 and P2, differing only by their tolerances,
living in the same habitat.  We assume that  both
types are present there from the beginning of the
study and no immigrants are allowed.

The only new aspect  when considering the
system with two types of plant is concerns seeds
germination. After the plants have dispersed their

seeds, a site may contain s1 seeds coming from P1
and s2 seeds coming from P2. Only one seed will be
chosen and submitted to the germination test. This
seed is selected according to the majority rule, i.e.
the  chance  of  choosing,  say,  a  P1  seed,  is
proportional to the fraction s1/(s1 + s2) of this type
of  seed on the site.  It  corresponds to  the lottery
model with equal weights introduced in (22).

We assume that the initial fractions of the P1
and P2 are equal. Such an assumption allows us to
estimate whether a given species contributes more
at the end than at the beginning and then we can
tell  which of the species outperformed the other
(17). It corresponds to the average relative growth
rate concept (23).  We shall  call the P1 plants the
target plants with fixed value of the tolerance at τ1

= 1.0 and we shall investigate how the presence of
P2 of various tolerances, influences the existence
of P1. Fixing the value of τ and changing only τ2 is
reasonable,  since  we  know  from  the  previous
section  how  the  dynamics  of  P1,  living  alone,
changes with τ1 and moreover the only difference
between P1 and P2 are their tolerances. When two
types of plant are present, a stationary state is also
attained, although it corresponds to just one type
of plants alive. The less adapted species are sooner
or later eliminated. This may happen after a long
time, like 800 years, or just after 50 years and the
outcome  depends  on  the  supply  of  the  resource
and  initial  arrangement.  Elimination  of  a  worse
adapted species is a well established fact (1, 24). It
is  of  course  quite  unrealistic  to  assume  that
external conditions will remain the same for 800
years. Therefore we have decided to study the case
of two types of plant during a period of 100 years.
Clearly  during  that  time  the  system  is  not  in  a
stationary  state  but  in  a  transient  one.  Such  a
period  is  still  quite  long  from  an  experimental
point  of  view.  How  the  picture  changes  when
another  time  limit  is  chosen,  will  be  discussed
later.  The  figures  for  two types  of  plant  for  the
three successes and the dependence of the density-
density correlation functions are quite  similar to
the  Figures  2  and  3,  and  therefore  are  not
presented.

From figure 4 we see that the presence of P2
has  a  profound  effect  on  P1,  restricting  their
existence  range  and  changing  the  abundance.
There are regions where the better adapted plant
eliminates  the  other  one,  but  there  is  also  an
interval  of  the  values  of  water  supply  where
coexistence is possible. When the tolerances of the
species differ considerably, like for τ1 = 1.0 and τ2 =
0.6, in the upper left panel, the coexistence zone is
rather  small.  Better  suited  species  have  a  large
advantage  over  the  others  and  eliminate  them.
When  however  the  species  features  are  simiar,
they could coexist over a relatively large region of
water supply. How the target plants (P1 with  τ1 =
1.0) are affected by the presence of P2 plants with
different tolerances, is shown in figure 5 where we
compare the number of plants P1 when they grow
without  P2  (the  mono  curve)  and  when  P2  are
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present  and  have  various  tolerances.  Several
features should be noticed. When  τ2 = 1.2 the P1
are  completely  unaffected  for  small  values  of
water, since there the advantage of P1 is so large
that  P2  are  eliminated  quite  quickly.  Once
however the P2 are able to survive,  they reduce
the  number  of  P1  and  with  decreasing  w  the
process of replacing P1 by P2 is more and more
quickly. If τ2 = 0.8, the P2 appear at smaller values
of  w than when  τ2 =  1.2,  but  could eliminate  P1
only when w is quite small. As with the R* level of
Tilman (25), the species with lower value of τ will
eliminate the others when  < 1, while for  > 1 the
other species will win.

Figure  5:  Number  of  P1  where  they  grow  alone  (mono
curve) and with P2 of various tolerances as a function of the
water supply. τ1 = 1.0 for all cases. Colour on line.

This figure gives an answer to the question
often  asked  by  ecologists  (17)  -  how  much  the
target species’  performance (here the number of

plants)  is  attributable  to  the  presence  of  other
species.  The  figure  shows  how  this  influence
changes with the supply of the resource and the
relation between tolerances of the two species.

Figure 6:  The RCI  index,  for  definition  see  the text,  as  a
function of the water supply and several values of the P2
plants tolerance. Colour on line.

When two species coexist and compete for a
limited resource, often a plant competition index is
introduced. There is however still a controversy at
to how it should be defined. In a paper by Weigelt
and  Jolliffe  (26)  nearly  50  of  them  have  been
described  and  discussed.  In  view  of  the
controversy we have chosen a simple one, namely
the Relative Competition Index (RCI), introduced in
(27) as

RCI = 
NPmono − NPmix , (9)
       NPmono 
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where  NPmono is  the  number  of  plants  in  a
monoculture and NPmix is the number of the same
type of plants living with other plants. In figure 6
the  RCI  is  presented  as  a  function  of  the  water
supply  w  and  several  values  of  τ2.  There  is  no
competition when RCI is either zero or when RCI =
1, when the worse adapted plants cease to exist.
The region in between marks the competition and
coexistence  range.  If  RCI  ≤ 0.5  the  P1  are
dominant, otherwise P2 are more abundant.

An  interesting  problem,  which  could  be
studied  only  via  computer  simulations  in  agent
based models, is the spatial organisation of the two
populations. Figure 7 shows in the left panel the
temporal dependence of the abundance of P1 and
P2  plants  for  the  following  values  of  the
parameters:  w = 1.3,  τ1 = 1.0,  τ2 = 0.8. In the right
panel we present the spatial distribution of plants
at the end of simulation. The figures represent one
simulation  (without  averaging),  but  general
features  are  quite  similar  for  other  realisations.
We  see  from  that  figure  that  even  in  a
homogeneous  habitat  with  only  one  type  of
resource and plants differing by the tolerance to
surplus  of  the  resource,  plants  of  the  same type
have a tendency to grow in clusters. Even without
any kind of a trade-off plants are able to divide the
habitat into their own niches. It should be noted
that  the time evolution of  two competing plants,

shown in the left panel of figure 7, resembles plots
describing similar process in (3).

There  are  several  ways  to  measure  this
clustering  effect.  One  of  them  is  presented  in
Figure  8  as  the  average  number  of  nearest
neighbours  (NN) of the same type as the central
plant (same line) and of the other type (other line).
Left panel shows this dependence for the P1 plants
and the right hand panel – for P2 plants.

Finally, we discuss how the results presented
above change when the parameters we have fixed
assume another values. Since the plots for the two
types  of  plants  were  obtained  for  a  transient
regime, it  is  important  to check how the picture
will change were we to take another time limit at
which the plants’ abundances were calculated. 100
years  taken  by  us  in  the  simulation,  is  a  long
period  and  therefore  we  have  repeated  the
simulations  for  50  years  time  limit.  There  are
some,  but  quite  minor,  differences  between  the
results for the two time limits. We may therefore
conclude that in the transitory regime at which we
investigate the population evolution, the results do
not change qualitatively when the time limit varies
within, say, the interval [50 - 150] years and in this
respect  the  results  are  generic.  Changes  to  the
population size in time can be followed in figure 7
on left panel.
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Figure 7: Temporal dependence of the abundances of plants P1 and P2 (left panel). Spatial arrangement of the P1 (red
crosses) and P2 (green circles) plants at the end of simulation, i.e. after 100 years (right panel). w = 1.3, τ1 = 1.0 and τ2 = 0.8.
Colour on line.

Figure 8: Average number of nearest neighbours, as functions of the water supply w, of the same type (same) and of the
other (other) types. τ1 = 1.0, τ2 = 0.9. Left panel P1 plants, right panel P2 plants. Colour on line.
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The  size  of  the  system  L =  100  is  a
compromise  between  execution  speed  and
avoiding stochastic extinctions and poor statistics.
For  small  systems,  such  as  L =  20,  even  local
demographic  stochasticity  could,  in  the  case  of
non-linear  dynamics,  lead  to  global  effects,  like
extinction of species (1, 28).

Another  parameter  which  could  influence
the  dynamics  of  plants  in  our  model  is   -  the
“interaction  strength”  describing  the  effect  on  a
plant of its NN. When   = 0 we have a system of
completely  independent  plants  when  the
neighbourhood  has  no  influence  on  the  central
plant. The main difference among plots for various
values of  is the shift of the maximum number of
plants  towards  larger  values  of  w when   is
growing, since with increasing   more and more
of the resource is blocked by the NN. The second
effect of growing  is pushing down the maximum
abundance. This comes from the fact that for large
 the  nearest  neighbourhood  plays  a  more
important  role  and since not  all  the  plants  have
the same neighbourhood,  optimal  conditions  are
more  widely  spread  than  for  small  values  of  .
Also the coexistence region shrinks with growing
.  For   =  0  the  dependence  of  the  number  of
plants on water supply has a very sharp maximum
at w = .

When  the  maximum  number  of  seeds  a
plant can produce in optimal condition (parameter
β)  is  small,  such  as  3,  populations  could  be
eliminated  quite  quickly.  Increasing  β to  larger
than 6 values, has practically no effect, since from
each  site  only  one  seed  is  taken  for  the
germination test.

4 Mean Field
A  mean  field  approach  is  very  often  used  in
ecology (1, 3, 29) and it is therefore instructive to
show on our  simple  model  when simplifications
made  in  the  mean  field  approach  could  be
accepted.  In  our  model  instead  of  dealing  with
individual plants we may use global observables,
such as the density ρ(t) of plants at time t and the
rates will replace chances. The survival rate tells
us what fraction of the plants’ population survived
till  the  moment  they  could  produce  seeds.  The
germination  rate  determines  how  many  of  the
seeds will  germinate.  Keeping the same notation
and assuming,  as  before,  that  the plants  interact
only with their nearest neighbours with strength α
and that each plant can produce at most  γ seeds,
we  get  the  following  coupled  equations
determining the dynamics of the density of plants
P1 and P2

ρ1(t) = ρ1(t − 1)[(1 − ρ(t − 1)) · γ · x11 · x12] (10)
           ρ2(t) = ρ2(t − 1)[(1 − ρ(t − 1)) · γ · x21 · x22]

where ρ(t) is the sum of the densities of both types
of plant and ρm is the density of plants of type m.
The first term in the square brackets on the right
hand  side  corresponds  to  the  Verhulst  factor
reducing,  otherwise  unlimited,  growth  of  the
population.  xm1 and  xm2 are  the  survival  and
germination  rates,  respectively,  of  the  plants  m.
The maximum number of seeds γ used here is not
equal to the parameter  β used in the simulations,
as  there  we  took  only  one  seed  from  each  site.
Analogously as in the simulations, we may define
the quantity  Δ,  which determines the  amount  of
water available to a plant

Δ(t) = w(1 − 4 · α · ρ(t)) (11)

The  factor  4  comes  from the  number  of  NN.  As
before,  depending  on  whether  Δ is  smaller  or
larger  than 1,  we use  two forms of  the  survival
rate x11 for the P1 plants with tolerance τ1

x11 =  
exp (– (1 – Δ)2 .  τ1 / Δ)    if Δ < 1 (12)

exp (– (1 – Δ)2 / (τ1 . Δ))   if Δ < 1 (13)

The germination, x12, rate has the same form as the
one above, with  w replacing  Δ,  since there is no
blocking affect for the seedlings. Formulae for the
P2 plants are the same with τ2 in place of τ1.

Using these equations we get the densities of
one type of plants as a function of the water supply
w for 3 values of the tolerance, shown in figure 9
for α = 0.1 and γ = 2.5.

Figure  9:  Densities  of  one  type  of  plants  versus  water
supply w for three values of the tolerance obtained from
mean field type calculations. τ1 = 1. Colour on line.

As we can see, the plots are very similar to
what we obtained from simulation,  viz.  figure 1.
For  two  types  of  plant  we  get  the figure  10,
corresponding to figure 4. Again, the behaviour is
very  similar,  including  the  coexistence  zones.  It
should  however  be  stressed  that  while
construction of a mean field type model is much
simpler and obtaining the results is much quicker,
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yet it  is  impossible  to see what kind of a  spatial
structure (if any) the described population forms,
or what are the correlations between the same or
different  types  of  plant.  To  this  end,  spatial
explicit, or agent-based models are necessary.

5 Conclusions and Discussion
We  have  presented  and  discussed  a  computer-
based simulation model describing life cycles of a
population of annual plants competing for a single
resource. In most papers dealing with coexistence
of  species  some  kind  of  a  trade-off  (3–5,  29)  or
heterogeneity  in  space  or  time  (1,  8,  22)  is
assumed.  In  the  coexistence  models  (1)  species
have different inter- and intra-specific competition
coefficients, while in the niche theory (25) species
coexistence  is  linked  with  different  competition
capabilities  for different resources.  In our model
we  have  no  such  elements  as  the  habitat  is
homogeneous,  there  is  only  one  resource  and
plants differ just by their tolerance to the resource
supply.  One  type  better  supports  shortage  of
water, while the other tolerates better too much of
it. Taking into account that plants suffer from both
– shortage of water as  well  of too much of it,  is
another novel feature of our model.

The  questions  we  have  asked  are  –  is  a
coexistence  of  two  different  species  possible  in
such  a  simple  system,  without  the  competition-
colonisation trade-off (5, 6, 12) or disturbances (1,
10, 11)? If so, how the dominance of one species
depends  on  the  supply  of  the  resource  and  the
difference  in  the  tolerances.  How  does  the
presence  of  a  second  type  of  plants,  with  quite
similar  characteristics,  affect  the  target  plants?
What will be the spatial structure in the coexisting
phase?  To  the  best  of  our  knowledge  such
investigations have not yet been carried out.

The  results  obtained  from  the  simulations
and presented in the Results section, allow us to
conclude that our simple model leads to a coherent
description of the situation and brings new light
on the basic questions listed above.

While  the  system  of  one  type  of  plants
arrives at a stationary state very quickly (after just
10 years), dynamics of two types of plant is by far
more  complex.  The  final  state,  which  could  be
attained  sometimes  only  after  several  hundred
years,  is  always  a  singlespecies  state.  In  the
transient  period  coexistence,  lasting  also
sometimes very long, is possible, depending on the
random initial conditions. The range of values of
the resource over which it happens, is larger if the
tolerances do not differ much and happens where
the supply is close to the demand. The life cycle of
a plant could be controlled either by elimination of
the seedlings (including germination blocking) or
by  elimination  of  adults  plants.  We have  shown
that  it  depends  on  the  supply  of  the  resource
which of the mechanism is more important.  The
value of the tolerance does not play a significant
role here.

Using an individual-based model allowed us
to  determine  also  spatial  organisation  of  plants.
We have shown that depending on the availability
of the resource the plants have a tendency to stay
away  one  from  another  when  the  resource  is
scarce.  When there is an adequate amount of it,
there is no visible pattern and when there is too
much of the resource, the plants have a tendency
to form dense clusters. In a system of two types of
plant  they  form  groups  of  alike  plants  and  this
tendency  grows  when  the  difference  in  the  two
tolerances becomes smaller.

We have shown that even in a homogeneous
system  with  plants  competing  for  the  same
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Figure 10: Densities of two types of plant versus water supply w for four values of the tolerance of plants P2 obtained from
mean field type calculations. Colour on line.
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resource and without any immigrants, coexistence
of  two  types  of  plant  is  possible.  Each  species
creates its own niche where only a given type of
plant  is  growing,  pushing  out  the  other  type.  It
shows that the niche theory could be applied also
in a homogeneous system with one resource.

We have demonstrated that a much simpler
mean  field  type  approach  to  the  coexistence
problem could yield correct results regarding the
conditions for such coexistence, however it can tell
us nothing about the spatial  structure of the two
populations, in particular,  whether the two types
of plant created their own niches.

Once the basic mechanisms of such a system
are understood, it would be possible to extend the
model by considering different size of the plants
(30), competition for more than one resource (31),
different maximum number of seeds and their size
(12),  effect  of  litter  (32)  other resources (33,  34).
Also  spatial  and/or  temporal  inhomogeneities
either in the form of cyclic or random changes (9)
could be incorporated.
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