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Abstract  

In the natural world, entomopathogenic fungi are crucial for maintaining the 

population balances of agricultural pests and disease-carrying organisms. It 

is impossible to fully address the limitations of mycoinsecticides for field 

pest management by enhancing a single fungal biocontrol property. Thus, it 

is desirable to use genetic engineering to increase the biocontrol capability 

of entomopathogenic fungi in numerous ways. By breaching the host's cuti-

cle, they have the capability to propagate. When coupled with attempts to 

boost fungal virulence and stress resilience through genetic modifications, 

comprehending entomopathogenic fungi could improve the economic effec-

tiveness of employing mycoinsecticides for pest control in agricultural envi-

ronments. Additional research is necessary to elucidate the gene-for-gene 

connections in fungus-insect interaction models, given the advancing 

knowledge of fungal diseases in plants and humans.   
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Introduction  

Entomopathogenic fungus has been identified as a potentially effective bio-

control substitute for chemical pesticides. There are now 10 entomopatho-

genic fungal species in development for pest control out of the approxi-

mately 700 known species (1). Entomopathogenic fungi, which kill insects, 

have ancestral ties with plant endophytes. Through evolution, they have 

developed unique mechanisms and biomolecules that distinguish them 

from other fungi, allowing them to adapt and thrive in their specialized eco-

logical niche (2). 

 Entomopathogenic fungi can range from obligatory parasites to op-

portunistic infections that survive without live hosts. Numerous ento-

mopathogenic fungi, particularly those belonging to the Entomophthorales 

order, are accountable for generating epizootics that effectively control the 

populations of insect pests (3). Today, a spectrum of entomopathogens are 

used to reduce pest and vector insects of veterinary and medical value as 

well as to manage invertebrate pests in glasshouses, row crops, orchards, 

ornamentals, turf and grass, stored goods and forestry. Oftentimes, epizoot-

ics resulting from naturally occurring fungal and viral infections induce dra-

matic declines in insect pest populations (4). 
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Recent advances in molecular biology techniques have 

made it possible to identify and thoroughly analyze the 

genes involved in the interactions between the pathogenic 

fungus and its host (5). Genes involved in signaling events, 

which accompany and regulate every stage of the infection 

and colonization processes are the subject of current re-

search. Because they are believed to be predominantly 

involved in this necrotrophic stage of disease, efforts to 

understand the molecular characteristics of fungal viru-

lence have largely concentrated on the broad array of en-

zymes they produce during penetration and colonization 

(6). Infections can gain a notable selection advantage by 

developing enzymes that compromise the host’s physio-

logical integrity (7).  

 Entomopathogenic fungi infect insect pests by pen-

etrating their cuticle and producing enzymes like chi-

tinases, proteases, lipases and others that break them 

down (8). The conidium or spore is the infectious propa-

gule for most entomopathogens. It sticks to the host sur-

face and germinates before breaking through the insect's 

exoskeleton into its hemolymph. This process allows the 

pathogen to infect and ultimately kill the insect host (9) 

(Fig. 1). 

 Fungal biocontrol agents are less popular because 

of their lower virulence, reduced capacity to withstand 

abiotic stress and ability to remain in the field, all of which 

are supported by the use of chemical pesticides. Increased 

use of chemical pesticides caused insects to become re-

sistant and had unpredictable effects on non-target organ-

isms (10). On the other hand, biocontrol agents show fur-

ther benefits by postponing the emergence of resistance. 

In order to increase the virulence of entomopathogenic 

fungi and consequently, agricultural output, it is necessary 

to address the combinatorial effect of multifunctional pro-

teins (11). Therefore, the purpose of this review is to assess 

how effective entomopathogenic fungi are against the par-

ticular pests that they target. We highlight recent molecu-

lar and genetic biology developments in this review (12). 

Food security challenges associated with agricultural 

pest         

According to the Food and Agricultural Organization of the 

United Nations, there will be a 70 % rise in global food con-

sumption by 2050 and in order to sustainably feed this 

population, food production must double. A future free 

from hunger and malnutrition will require revolutionary 

reforms in agriculture and food systems. Several variables, 

including deteriorating soil health, temperature, precipita-

tion and appropriate crop models, impact agricultural pro-

duction (13). Unexpected outbreaks of disease and pests 

could limit growth and output. We can only generate two-

thirds of the food grains that are lost due to pests and dis-

eases; the remaining one-third is lost due to new agricul-

tural crop protection techniques (14). Foods that have 

been stored are damaged by insects, accounting for 30 % 

of post-harvest losses worth over 100 billion US dollars. 

Over 10000 insect species damage food crops, causing a 

13.6 % global yearly loss. Additionally, mosquitoes spread-

ing malaria claim the lives of over 3 million people annual-

ly (15). Tobacco whitefly (Bemisia tabaci), cotton aphid 

(Aphis gossypii), diamondback moth (Plutella xylostella) 

and cotton bollworm (Helicoverpa armigera) are some of 

the most prevalent pests worldwide and infesting a wide 

range of crops in 135 countries. In India alone, there are 

1063 pest species causing devastating effects on plants 

(16). 

Global and Indian scenario of insect pest control        

Fifty percent of Indians make their primary living from agri-

culture. The Indian community’s main concerns regarding 

sustainability are undoubtedly related to land resources, 

population growth, agricultural loss caused by pests and 

post-harvest losses. Pesticides are widely used to prevent 

insect pests from harming agricultural crops, which helps 

feed the world's expanding population and is crucial in 

avoiding the spread of malaria and other diseases carried 

by insects, which kill millions of people (17). When there is 

a high prevalence of different pests, many synthetic pesti-

cides are used.  

 Pesticides are used globally, with an estimated 4.6 

million tonnes being used for vector-borne disease man-

agement and crop protection (18). Over one-third of the 

worldwide pesticide business comprises neonicotinoids 

and fipronil systemic neurotoxic insecticides, which are 

used to control insect pest damage.  

 Most insecticides target specific receptors in in-

sects, such as the GABA-gated chloride receptor, acetyl-

cholinesterase receptor, voltage-gated sodium and chlo-

ride channels (VGCC) and the mitochondrial complex II 

electron transport system. Insecticides also disrupt hor-

mones and affect the feeding habits of insects (19). These 

methods are used worldwide to control insect populations 

efficiently. 

Fungi as bio-control agents         

Recent advances in molecular biology techniques have 
made it possible to identify and thoroughly analyze the 

genes involved in the interactions between pathogenic 

Fig. 1. Role of entomopathogenic fungi affecting the insect pest.  
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fungus and their host (20). Genes involved in signaling 

events, which accompany and regulate every stage of the 

infection and colonization processes are the subject of 

current research. The focus on unraveling the molecular 

traits of fungal virulence has primarily centered on the 

extensive range of enzymes they generate during penetra-

tion and colonization, as they are thought to play a signifi-

cant role in the necrotrophic stage of disease (20).  

 Entomopathogenic fungi like Beauveria bassiana 

(Balsamo) Vuillemin, Isaria fumosorosea (wize) Brown and 

Smith, Lecanicillium lecanii (Zimmermann) (formerly Verti-

cillium lecanii) and Metarhizium anisopliae (Metschnikoff) 

Sorokin are natural biopesticides that are environmentally 

safe and effective in controlling crop pests and disease-

carrying insects. These fungi target a wide range of insect 

orders, including Coleoptera and have shown promise in 

replacing traditional chemical pesticides with a more sus-

tainable and eco-friendly alternative (21). 

Strategies to improve virulence of entomopathogenic 

fungi        

Enzymes of entomopathogenic fungi       

Enzymes coupled to cell walls or extracellular entities may 

be responsible for the enzymatic breakdown of the host 

cuticle (Table 1). Before 1986, extracellular enzymes that 

correlate to the primary chemical components of insect 

cuticle protein, chitin and lipids had been identified (22). 

However, the fungal mycelia may secrete hydrolytic en-

zymes like lipase, protease and chitinase which allow it to 

pass right through these barriers. Depending on the integ-

ument's characteristics, the secretion will vary. One of the 

hydrolytic enzymes of entomopathogenic fungi (EPF) that 

is in charge of secretions is protease, which is thought to 

be an element of the virulence of EPF (23).  

 The disintegration of the host cuticle is caused by 

their ability to release special extracellular serine proteas-

es, including families of exo-acting peptidases, subtilisin-

like proteases and trypsin-like proteases (24) (Fig. 2). The 

primary hydrolytic secretion is Pr1 and the EPF's ability to 

cause disease is determined by the amount of active Pr1 

secretion. Moreover, chitinase catalyzes the hydrolysis of 

chitin (polymer of N-acetyl-D-glucosamine), a crucial struc-

tural element of insect cuticles (25). Additionally, it was 

proposed that lipases were also involved in the hydrolysis 

of fats, the wax layer of insect integuments and the ester 

bonds of lipoenzymes. Similar to the other 2 hydrolytic 

enzymes, lipase is crucial for breaking down lipids in the 

epicuticle, the first line of defense against microorganisms 

that pose a threat to arthropods (26). 

Molecular approaches in entomopathogenic fungi re-

search        

An investigation of the existence and mechanism of re-

combination in B. bassiana and Nomuraea rileyi was done 

by previous researchers have been stated below B. bassi-

ana and N. rileyi are anamorphs with no gregarious sex. 

However, molecular genetic characterization of popula-

tions of these and other mitosporic entomopathogenic 

fungi has shown larger amounts of gene flow than might 

be expected for asexual organisms (27). In a model-based 

investigation on the potential effects of a lack of recombi-

nation using B. bassiana and M. anisopliae, the results re-

vealed an intriguing possibility. It was theoretically 

demonstrated that mitosporic entomopathogenic fungi 

could reproduce exclusively through clonal lineages with-

out any significant impact on the fitness of the populations 

due to the absence of the critical Muller's Ratchet effect 

(24). 

 Asexual organisms are, however, believed to be 

evolutionary scandals and at best, extremely rare. Most 

asexual organisms examined show evidence of recombina-

tion in their population genetic structure (27). Ento-

mopathogenic fungal populations, including species like B. 

bassiana and N. rileyi have opportunities for genetic ex-

change through protoplast fusion in the hemolymph of 

their insect hosts (28). While genetic recombination has 

been observed between isolates of M. anisopliae co-

infecting an insect (29), these events are not commonly 

observed. More evidence is needed to understand the   

frequency distribution of  genotypes rather than relying on 

direct observations or assumptions of clonal reproduction 

(30).  

 This can be attained from molecular genetic analy-

sis of populations. Through these methods, the prevalence 

of recombination has been ascertained in B. bassiana and 

M. anisopliae (31). In B. bassiana, recombination was ob-

served between isolates sharing the same habitat when 

they were genetically closely related (belonging to the 

same genetic group); genetically dissimilar isolates (of 

Enzymes Entomopathogenic fungi References 

Lipase Fusarium oxysporum, Metarhizium anisopliae, Aspergillus flavus, Beauveria bassiana (53, 54) 

Protease Metarhizium anisopliae, Beauveria bassiana, Verticilium lecanii, Paecilomyces fumsoroseus, Isaria fumsoroseus, Tolypocladi-
um niveum (55) 

Chitinase Trichoderma atroviride, Trichoderma harzianum, Tichoderma virens, Metarhizium anisopliae, Beauveria bassiana, Nomurae 
rileyi, Aschersonia aleyrodis, Verticillium lecanii, Isaria fmosorosea (56-58) 

β-galactosidase 
Aspergillus spp., Aspergillus foelidis, Beauveria bassiana, Aspergillus fonsecaeus, Aspergillus oryzae, Auerobasidium pullu-
lans, Curvularia inequalis, Fusarium monilliforme, Metarhizium anisopliae, Metarhizium robertsii (59) 

Catalase Lecanicillium muscarium, Fusarium oxysporum, Verticillum dahlia, Aspergillus phoenicis (60) 

L-glutaminase Beauveria bassiana, Trichoderma koningii, Aspergillus flavus, Acremonium forcatum, Aspergillus wentii MTCC 1901, Tricho-
derma harzianum (49) 

Table 1. List of entomopathogenic fungi with corresponding enzymes  
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different genetic groups), however, in the same habitat 

showed no recombination (32). While a population genetic 

approach to predict recombination has been possible with 

most asexual organisms, this approach does not indicate 

the mechanism by which it is achieved (33). The molecular 

genetic tests available to confirm the prevalence of recom-

bination in a population cannot tell how recombination 

occurs, how often it occurs or when it occurs. Answering 

these questions is the next challenge in understanding the 

population biology of mitosporic fungi (34). 

 The parasexual cycle has been observed in the lab 

for various fungi, including B. bassiana, but has not been 

observed in nature yet (35). Demonstration of recombina-

tion in the genome of mitochondria - the cytoplasmic cell 

organelles, can be evidence of a mix of cytoplasm and 

therefore, the operation of the para-sexual cycle. In fungi, 

there is plentiful evidence of genetic recombination be-

tween mitochondrial DNAs originating from distinct line-

ages, observed in both artificial and natural environments 

with established heteroplasmy (36). SSCP analysis was 

done to investigate the prevalence and mechanism of re-

combination in B. bassiana and N. rileyi. Mitochondria 

genes, along with a nuclear gene were analyzed. The sig-

nature of the para-sexual cycle may be evident in the mito-

chondrial genome. Besides, alternate recombination 

mechanisms like gene conversion have often been report-

ed in mitochondrial genomes in fungi (37). Research on the 

15 variations within the rDNA-ITS region of 48 isolates of    

I. fumosorosea from various geographical and biological 

sources identified 3 distinct groups within the I. fumosoro-

sea complex (38). These groups, isolated exclusively from 

B. tabaci/ B. argentifolii, displayed a significant level of 

polymorphism. The findings were further supported by the 

use of nine microsatellite markers obtained from                   

I. fumosorosea (39). 

 A group of researchers examined the New Zealand 

Pinus radiata trees, along with other exotic and native 

trees, to find B. bassiana (40). They found 21 fungal iso-

lates that resembling Beauveria sp. from 167 trees. These 

isolates were identified as B. bassiana Clade A through 

DNA sequence analysis of the EF1-α locus. Different              

B. bassiana isolates from various locations were analyzed 

using Polymerase Chain Reaction (PCR) based Random 

Amplified Polymorphic DNA (RAPD) markers (41). Re-

searchers discovered and studied P. reniformis in a long-

horned grasshopper in Sulawesia, Indonesia. They used 

morphological characteristics, sequencing of the ITS1-5.8S 

- ITS2 region, D1/D2 regions of 28S rDNA and a portion of 

the tubulin gene for their analysis (42). 

 A recent study suggested that conducting a thor-
ough genetic analysis of asexual entomopathogenic fungi 

populations worldwide could provide insights into allopat-

ric speciation (43). A study on nucleotide sequence varia-

tion in 6 different loci revealed hidden speciation in            

M. anisopliae (44). In a study on B. bassiana, researchers 

analysed sequences of the ITS (Internal Transcribed Spac-

er) of the nuclear rRNA gene and the EF1a gene (elongation 

factor 1). They found that a comprehensive analysis of 

globally distributed species complexes, along with molec-

ular phylogenetic analysis, is an effective approach to as-

sess species diversity. This is an essential first step in un-

derstanding the evolutionary history and historical ecolo-

gy of this species (45). While N. rileyi has not been identi-

fied as a species complex in existing literature, a study us-

ing SSCP analysis of allelic forms of the J-tubulin gene in 

an epizootic population of N. rileyi revealed deep phyloge-

netic lineages. To further investigate the species structure 

in B. bassiana and N. rileyi, researchers examined samples 

from these 2 species worldwide (46). 

Fig. 2. Enzymatic interactions of entomopathogenic fungi.  
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 Several studies have explored the phylogenetic 

placement of B. bassiana in relation to sexually reproduc-

ing fungi with established taxonomic status. The conclu-

sion drawn was that B. bassiana exhibited a closer rela-

tionship to the Euriotalean Ascomycete, Aspergillus nidu-

lans, than to Sordialean members like Podospora anserine 

and Neurospora crassa. Another study, using the complete 

sequence of the small subunit rRNA gene of mitochondrial 

ribosomes, suggested a closer affiliation of B. bassiana to 

pyrenomycete than to plectomycete ascomycetous fungi 

(47). 

 Research has identified the stage (teleomorph) of B. 

bassiana as Cordyceps bassiana within the order Hypocre-

ales of Ascomycotina (48). Molecular phylogenetic anal-

yses using sequences of the internal transcribed spacer 

(ITS) region and the gene for elongation factor 1-alpha 

(EF1-a) have confirmed the relationship between B. bassi-

ana and its teleomorph species, Cordyceps bassiana/

staphylinidaecola and Cordyceps scardbaeicola (49). This 

research recommends the taxonomic placement of B. bas-

siana in Hypocreales within the family Clavicipitaceae, 

under the subfamily Cordycipitoideae. 

 Phylogenetic relatedness among some asexual en-
tomopathogenic fungi, with a focus on the genus Nomu-

raea (50). Utilizing sequences of 5.8S, 28S rDNA and ITS, 

the researchers found that Nomuraea anemonoides, N. 

rileyi and N. atypicola could be well distinguished from 

each other. Isolates of Nomuraea rileyi were discovered to 

have a closer relationship with B. bassiana, M. anisopliae 

and Metarhizium flavoviride than with Nomuraea anemo-

noides and N. atypicola. Phylogenetic relationship between 

the 3 Nomuraea species using partial β-tubulin gene se-

quence analysis, finding that N. anemonoides showed a 

close relationship with the Nomuraea rileyi - Epichloe typhi-

na cluster, while N. atypicola diverged from this clade (51). 

Notably, there has been no comprehensive study to date 

investigating the interrelationships among economically 

important asexual fungi with entomopathogenic habits 

and their taxonomic affiliations (52).   

 

Conclusion and future prospects   

The goal of biochemical and molecular studies on host-

pathogen interactions is to manipulate particular fungal 

processes by identifying the characteristics that lead to 

enhanced pathogenicity. Studies conducted at the organ-

ism level involve examining the growth and behavior of 

different stages of both the pathogen and the host, often in 

relation to changes in the surrounding environment. Bene-

ficial in advancing our knowledge of how to employ fungi 

to manage insects. Numerous and varied entomopatho-

genic fungal species have a major effect on host popula-

tions. Regretfully, not many fungal-insect systems have 

undergone extensive research. However, research so far 

has generated hypotheses to test in different host-

pathogen systems and offers frameworks for additional 

study. It goes without saying that not everything that is 

discovered about a few model systems will be applicable 

to other systems due to the wide variety of fungi and the 

many ways in which they have become successful patho-

gens. Nevertheless, we are building a body of information 

that will allow us to compare systems and identify patterns 

in pathogenicity.   
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