

**RESEARCH ARTICLE** 



# Traditional knowledge of ethnomedicinal plants used by the Mishing community in Sivasagar District, Assam (India)

Priyakshi Buragohain<sup>1</sup>, Barnali Das<sup>1,2</sup>, Madhushmita Nath<sup>1</sup>, Parag Jyoti Sarma<sup>1</sup>, Mijing Boro<sup>1</sup>, Shilpa Roy<sup>1</sup> & Namita Nath<sup>1\*</sup>

<sup>1</sup>Department of Botany, Gauhati University, Gopinath Bordoloi Nagar, Guwahati-781014, Assam, India <sup>2</sup>Department of Botany, Pragjyotish College, Santipur, Guwahati-09, Assam, India

\*Email: nathnamita1@gauhati.ac.in

# 

#### **ARTICLE HISTORY**

Received: 09 February 2024 Accepted: 22 May 2024

Available online Version 1.0 : 07 June 2024 Version 2.0 : 17 June 2024

() Check for updates

#### **Additional information**

**Peer review:** Publisher thanks Sectional Editor and the other anonymous reviewers for their contribution to the peer review of this work.

**Reprints & permissions information** is available at https://horizonepublishing.com/

journals/index.php/PST/open\_access\_policy

**Publisher's Note**: Horizon e-Publishing Group remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Indexing: Plant Science Today, published by Horizon e-Publishing Group, is covered by Scopus, Web of Science, BIOSIS Previews, Clarivate Analytics, NAAS, UGC Care, etc See https://horizonepublishing.com/journals/ index.php/PST/indexing\_abstracting

**Copyright**: © The Author(s). This is an openaccess article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution and reproduction in any medium, provided the original author and source are credited (https://creativecommons.org/licenses/ by/4.0/)

#### **CITE THIS ARTICLE**

Buragohain P, Das B, Nath M, Sarma PJ, Boro M, Roy S, Nath N. Traditional knowledge of ethnomedicinal plants used by the Mishing community in Sivasagar District, Assam (India). Plant Science Today. 2024; 11(sp1): 184-196. https://doi.org/10.14719/pst.3360

# Abstract

Ethnobotany plays a significant role in traditional medicine practices. The present study aims to enlist the ethnomedicinal plants used by the Mishing community in Sivasagar district, Assam, India. The study was conducted from March 2021 to March 2022 to record the ethnomedicinally important plants used by the Mishing community. In the present study, 109 plant species were used in different ethnomedicinal practices which belong to 55 families and 101 genera. Out of 55 families, Asteraceae is dominant with the highest number of medicinal plants (8 species, 7.33%). In the survey, the symptomatic diseases category showed the highest agreement with an  $F_{IC}$ of 0.64%. The most commonly used plant parts for medicinal treatments were leaves (68 species, 62.38%). In comparison to other plant parts, the utilization of leaves causes less distress to the plant ensuring sustainability and its further conservation. It is concluded that the Mishing community of Sivasagar (Assam) District uses various medicinal plants to cure different diseases as their primary source of health care. This will be a significant contribution to the herbal and pharmaceutical industries for the welfare of mankind.

# **Keywords**

Assam; ethnobotany; mishing; Sivasagar; traditional knowledge

# Introduction

Traditional knowledge plays a crucial role in resource conservation, specifically of native plant species important for local communities (1-4). Since time immemorial, the local communities have been collecting ethnomedicinal plants from the wild in various parts of the world (5-12) and the information is passed from generation to generation (13). This information has to be conserved particularly in countries facing a high risk of biodiversity loss because of urbanization, migrations, deforestation, and natural disasters. In India, traditional knowledge is decreasing day by day at an alarming rate because of the above-mentioned factors. As a mega biodiversity hot spot, Northeast India is wealthy in endemic flora (14-18) and shelter to nearly 1,350 medicinal plants with great economic value that are utilized in different ethnomedicinal concoctions (19). Apart from being wealthy in floristic diversity, the region is also rich in diversified culture and traditional knowledge between 145 tribal communities (20). NE India is considered as one of the ecological hot spots of the globe and has plenty of medicinal plants familiar to the local people (18, 21-23). Assam, an important state of northeastern India falls under the Indo-Burma Global Biodiversity Hotspot (24). The Mishing tribes are especially found in the Dhemaji,

Lakhimpur, Sonitpur, Jorhat, Sivasagar, Dibrugarh, and Tinsukia districts of Assam. The Mishing people as a riverine tribe build their houses on elevated platforms about 4-5 feet from the ground, locally called Chang-ghar. Due to the lack of suitable communication and hospitals, they developed traditional recovery practices to protect themselves from various diseases, and till now they are still relying on traditional medicinal practices. Since ancient times the Mishing tribe of Sivasagar District of Assam, have been using medicinal plants to cure various illnesses over many centuries through the indigenous knowledge system that has been passed down through generations. The utilization of medicinal plants is decreasing rapidly because of certain factors like modern lifestyles and developments in medical sciences. То defeat this problem, appropriate documentation and assessment of the traditional knowledge of the local people is crucial (25). Thus, and preservation appropriate documentation of ethnomedicinal knowledge have become an urgent necessity before getting lost and superseded by modern medical facilities. Because of the accessibility of the current lifestyle and medical facilities, the culture of utilizing indigenous knowledge to cure common ailments is neglected. Therefore, traditional household practices are decreasing rapidly at an alarming rate in this region. No such work was done at the district level except for some preliminary basic work like Das & Pathak (2013) and Panging & Sharma (2017). Therefore, the present investigation was conducted to report the medicinal plants utilized by the Mishing community in the Sivasagar District; and to expose the medicinal plants with maximum ethno-medicinal significance for future value addition to their presence and protection for long-term purposes. The present work attempts to find out the ethno-medicinal recipes used by the Mishing community of Assam, to enlist the diversified medicinal plants used by the traditionally rich community, the recipes along with the use value of the plants, and the informant's consensus factor.

This type of work has tremendous significance in the field of science and medicine as the traditional knowledge holders of indigenous communities possess diverse knowledge of the local healthcare system as well as traditional medicine practices which often becomes the preliminary base for the discovery of many crude drugs.

## **Materials and Methods**

# **Study Area**

The survey was carried out in the Sivasagar district of Assam which belongs to the Upper region of the state. The district is situated between 26°45'-27°15'N latitude & 94° 25'-95°25'E longitude covering a geographical area of approximately 2,668 sq. km (**Fig. 1**). It is surrounded by the districts Dibrugarh & Charaideo on East, Jorhat on the West, the mighty river Brahmaputra on the North & neighboring states Meghalaya & Arunachal Pradesh on the South. The climate is mainly humid sub-tropical which is characterized by heavy rainfall & high relative humidity (above 90%). According to the 2011 Census of India report, the district has a population of around 1,151,050 out of

which 22,123 were Mishing people (1.92% of the total population). The tribe is distributed in about 26 villages mainly on the river banks (like Desang, Dikhow, and Demow). The following 9 villages were selected as the study sites for the survey- Demowmukh Mishing Gaon, Desangpar Jurdubi Mishing Gaon, Koibotra Doloni Mishing Gaon, Desangmukh Sumoni Gaon, Desangmukh Majorbari Gaon, Desangmukh Ligiribari Gaon, Desangpar Dighol Doriyali and Boloma Gaon.

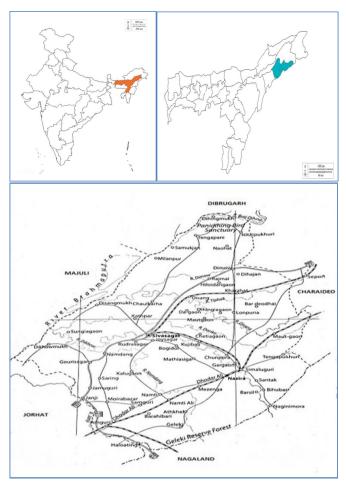



Fig.1. Map of study area (Sivasagar District, Assam, India)

#### **Field Survey and Collection of Data**

The study was conducted from 2021 March to 2022 March in various localities following standard ethnobotanical methods using a specially designed questionnaire (28). All the relevant data including those of traditional uses of the medicinal plants used by the Mishing community of Sivasagar District were collected following the ISE code of ethics (2006). Using specially designed questionnaire, data was collected through personal interviews as well as through focused group discussions with a total of 50 informants. Several visits were made to remote places in the district at different time intervals for primary data collection. Based on the information obtained from the ethnic tribe the identification of the key informants became possible. With their cooperation, the plants were collected from the forest and the local names of the given plants were recorded in a structured questionnaire, comprising scientific names, family, local names of plants, parts used, application, method of preparation, and route of administration. In the present study, a total of 50 informants with a strong traditional knowledge base were

selected for data collection. During the process, importance was given to collecting data with a detailed account of every informant including their identity, address, qualifications, and tribal group. This was recorded before the collection of traditional knowledgebased information in the local language.

## **Plant Collection, Identification and Preservation**

Plants were collected by the herbal practitioners of the Mishing community for proper recognition during the mature stage. Also, voucher specimens related to ethno-medicinal information were collected during the reproductive phase for proper identification. Collected specimens were first tagged with the local name during the survey; then they were identified by following relevant taxonomic literature such as Flora of Assam (29); Assam's Flora (30); A checklist of Angiosperms and Gymnosperms (31), also comparing with the deposited voucher specimens at GUBH (Gauhati University Botanical Herbarium). Digital databases like "IPNI: International Plant Name Index (https://www.ipni.org)" and "POWO: World Plants of the Online (https:// powo.science.kew.org)" were used for checking the accepted scientific nomenclature of each specimen.

## **Statistical analysis**

The collected data is represented orderly in tabular format. Demographic data contains the details about the informants; whereas data related to medicinal plants such as scientific name, family, vernacular name, use value, parts used, disease, and mode of application were tabulated together.

# **Determination of Use Value (UV)**

By determining the use value the relative importance of each recommended medicinal plant was calculated (32, 33), for measuring the relative importance of plants used by local healers on a quantitative basis:

Here,

 $\mathbf{U}_{i}$  = number of use reports cited by each informant for a given species

**n** = total number of informants

**UV** will be high for a plant when there are many use reports, and **UV** will approach zero (0) when there are few reports.

# Determination of informants' consensus factor (FIC)

Usually, the informants' consensus factor ( $F_{Ic}$ ) is determined to find out the uniformity in the data given by the informants of the study area. By using the following formula  $F_{Ic}$  was calculated (34-37).

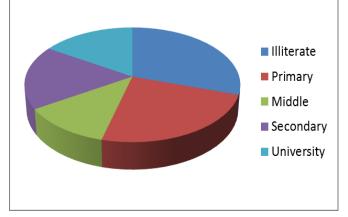
$$F_{IC} = (N_{ur} - N_t) / N_{ur-1}$$

Here,

 $\mathbf{N}_{ur}$  = number of use reports in a particular category of illness by informants

 $\mathbf{N}_{t}$  = number of species of taxa that are used for the treatment of a particular disease category by informants of the study.

The informants' consensus factor value ranges from 0 to 1. When  $\mathbf{F}_{IC}$  is higher or close to 1, it indicates higher reports about a plant species used by the informants in a specific ailment. When it is low or close to 0, it indicates disagreement by the informants about a plant used for a particular ailment.


# **Results and Discussion**

# Demography

In the Sivasagar District, Assam a total of 50 informants of the age group range from 30-79 years were interviewed (**Table 1**). Out of 50 informants,18 were male (36%) and 32 were female (64%). From the present work, it was found that the average age of the informants was 59 years. Most of the informants were involved with other livelihood activities being farmers, social workers, teachers, shopkeepers, and housewives. The illiteracy rate was found to be 24% while the literacy rate at the primary level was 22%, the middle level was 20%, the secondary level was 18% and the university level was 16% (**Table 2;Fig. 2**).

Table 1. Distribution of ethnic informants based on age and sex

|           |      | 5      |                       |                |  |  |  |
|-----------|------|--------|-----------------------|----------------|--|--|--|
| Age group | Male | Female | No. of<br>Individuals | Percentage (%) |  |  |  |
| 20-29     | 00   | 03     | 03                    | 6              |  |  |  |
| 30-39     | 02   | 07     | 09                    | 18             |  |  |  |
| 40-49     | 06   | 08     | 14                    | 28             |  |  |  |
| 50-59     | 03   | 05     | 08                    | 16             |  |  |  |
| 60-69     | 06   | 06     | 12                    | 24             |  |  |  |
| 70-79     | 01   | 03     | 04                    | 8              |  |  |  |
| Total     | 18   | 32     | 50                    | 100            |  |  |  |



 $\ensuremath{\textit{Fig.2.}}$  Pie chart showing the informants percentage based on educational status

**Table 2**. Educational status of the informants

| Education level | No. of Individuals | Percentage (%) |
|-----------------|--------------------|----------------|
| Illiterate      | 12                 | 24             |
| Primary         | 11                 | 22             |
| Middle          | 10                 | 20             |
| Secondary       | 09                 | 18             |
| University      | 08                 | 16             |

## An overview of medicinal plants

In the present study, 109 plant species were used in different ethnomedicinal practices which belong to 55 families and 101 genera. These were found to be used to heal certain human diseases which were grouped under 17 ICPC (International Classification of Primary Care) disease categories. It was found that the most documented ethnomedicinal plants were followed by herbs, shrubs, trees, lianas, and epiphytes (Fig. 3). The details on traditional knowledge accomplished by the Mishing people of Sivasagar District were arranged by scientific names together with their families, vernacular names and applications (Table 3). This is because of the availability of non-conventional herbs which are simple to plant in home gardens as compared to shrubs, trees, lianas, and epiphytes which take a longer period to grow. Due to this

reason herbs possess strong medicinal properties and more healing effects to combat illnesses (38-40). Most of these traditionally used plants are used by the Mishing tribe in their daily life for their livelihood and also to clear out serious/chronic health problems.

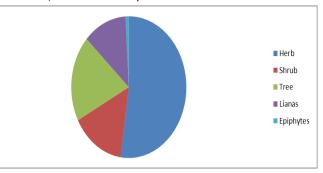



Fig.3. Percentage distribution of the medicinal plants habit wise

 Table 3. Description of plants with use value, parts used, application, method of preparation, and route of administration collected from Sivasagar District, Assam, India

| Sl.<br>No. | Scientific name                             | Family         | Common<br>name          | Use<br>Value | Parts<br>used | Application                                                                                            | Method of preparation                               | Route of administration |
|------------|---------------------------------------------|----------------|-------------------------|--------------|---------------|--------------------------------------------------------------------------------------------------------|-----------------------------------------------------|-------------------------|
| 1          | Acmella ciliata (Kunth)<br>Cass.            | Asteraceae     | Huhoni-bon              | 0.14         | Wh, Fl        | Tongue bump,<br>vision, fever,<br>cough, headache,<br>body pain, post-<br>parturition pain             | Raw,<br>vegetable                                   | Oral                    |
| 2          | Acorus calamus (L.)                         | Acoraceae      | Bosh                    | 0.14         | Rh, L         | Fever, stomach<br>pain, dizziness                                                                      | Raw, pill                                           | External, oral          |
| 3          | Aegle marmelos (L.)<br>Correa               | Rutaceae       | Bael                    | 0.02         | Fr            | Leukorrhoea                                                                                            | Juice                                               | Oral                    |
| 4          | Ageratum conyzoides (L.)                    | Asteraceae     | Gendhali-bon            | 0.08         | L             | Cut & wound,                                                                                           | Paste                                               | External                |
| 5          | Allium cepa (L.)                            | Amaryllidaceae | Piyanj                  | 0.04         | Bu            | Diarrhoea<br>(children),<br>dizziness                                                                  | Paste                                               | External                |
| 6          | Allium sativum (L.)                         | Amaryllidaceae | Nohoru                  | 0.24         | Bu            | Fever, gall bladder<br>stone, gastric,<br>hypertension, post<br>-parturition<br>weakness,<br>toothache | Raw, oil<br>infusion,<br>paste, juice,<br>vegetable | External, oral          |
| 7          | Aloe vera (L.) Burm. f.                     | Asphodelaceae  | Sal-kunwori             | 0.06         | L             | Fever                                                                                                  | Raw                                                 | External                |
| 8          | Alternanthera sessilis (L.)<br>R.Br. Ex DC. | Amaranthaceae  | Mati-kanduri            | 0.04         | L, St         | Gastric,<br>pneumonia                                                                                  | Vegetable,<br>water<br>infusion                     | Oral                    |
| 9          | Amaranthus spinosus L.                      | Amaranthaceae  | Hati-khutura            | 0.12         | L, St,<br>R   | Cut & wound,<br>pinned,<br>tuberculosis,<br>leukorrhoea                                                | Raw, juice                                          | Oral, external          |
| 10         | Ananas comosus (L.) Merr.                   | Bromeliaceae   | Anaras,<br>Mati-kothal  | 0.02         | L             | Roundworm                                                                                              | Paste                                               | Oral                    |
| 11         | Andrographis paniculata<br>(Burm.f.) Nees   | Acanthaceae    | Kalmegh                 | 0.04         | L             | Fever                                                                                                  | Water<br>infusion                                   | Oral                    |
| 12         | Artocarpus heterophyllus<br>Lam.            | Moraceae       | Kothal                  | 0.06         | Fr, L         | Diabetes,<br>tonsillitis                                                                               | Water<br>infusion,<br>smoke                         | Oral, external          |
| 13         | Azadirachta indica A.<br>Juss.              | Meliaceae      | Mahaneem                | 0.06         | L             | Itchiness, malaria,<br>small-pox                                                                       | Raw, water<br>infusion                              | External, oral          |
| 14         | Bambusa tulda Roxb.                         | Poaceae        | Banh                    | 0.08         | L, B          | Over menstrual<br>bleeding, cuts &<br>wounds, epiglottis<br>enlargement                                | Juice, paste                                        | Oral, external          |
| 15         | Basella alba (L.)                           | Basellaceae    | Puroisak                | 0.02         | L, St         | Piles                                                                                                  | Pill                                                | Oral                    |
| 16         | <i>Blumea lacera</i> (Burm. f.)<br>DC.      | Asteraceae     | (Barbie in<br>mishing)  | 0.02         | L             | Boil                                                                                                   | Paste                                               | External                |
| 17         | Bombax ceiba L.                             | Malvaceae      | Himolu<br>(SinggiAppun) | 0.02         | L             | Boil                                                                                                   | Paste                                               | External                |

| 18 | Cardiospermum                                      | Sapindaceae     | Kopalphuta                     | 0.04 | L            | Gastric, and joint pain                                                                                                                            | Juice, paste                                | Oral,             |
|----|----------------------------------------------------|-----------------|--------------------------------|------|--------------|----------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------|-------------------|
| 19 | halicacabum L.<br>Centella asiatica(L.)            | Capinadocae     | Bor-                           |      | -<br>Wh,     | Leucorrhoea,<br>dysentery, boil,                                                                                                                   |                                             | external<br>Oral, |
| 15 | Urb.                                               | Apiaceae        | manimuni                       | 0.08 | L            | pneumonia                                                                                                                                          | Juice, paste                                | external          |
| 20 | <i>Centipeda minima</i> (L.)<br>A.Braun & Asch.    | Asteraceae      | Hasiyoti<br>bon                | 0.02 | Wh,<br>L     | Waist pain                                                                                                                                         | Juice                                       | Oral              |
| 21 | Chrysopogon aciculatus<br>(Retz.) Trin.            | Poaceae         | Bonguti                        | 0.04 | St,<br>Rh    | Pneumonia, urinary<br>infection                                                                                                                    | Pill, water infusion                        | Oral              |
| 22 | Cissampelos pareira (L.)                           | Menispermaceae  | Tubukilota                     | 0.02 | L            | Sore throat                                                                                                                                        | Paste                                       | External          |
| 23 | Cissus quadrangularis<br>(L.).                     | Vitaceae        | Harjuralota                    | 0.04 | Wh           | Bone fracture, breakage                                                                                                                            | Paste                                       | External          |
| 24 | Citrus × aurantiifolia<br>(Christm.) Swingle       | Rutaceae        | Kaji-nemu                      | 0.10 | L, Fr        | Dizziness, itchiness,<br>typhoid pneumonia,<br>post-parturition pain,<br>stomach scars                                                             | Juice, water<br>infusion                    | Oral,<br>external |
| 25 | Citrus× limon (L.)<br>Osbeck                       | Rutaceae        | Golnemu                        | 0.12 | L, Fr,<br>Sp | Pneumonia, jaundice,<br>dysentery, roundworm,<br>diarrhea                                                                                          | Juice,<br>paste, pill,<br>water<br>infusion | Oral              |
| 26 | Clerodendrum<br>colebrookeanum Walp.               | Lamiaceae       | Nephaphu                       | 0.04 | L            | Hypertension                                                                                                                                       | Juice,<br>vegetable                         | Oral,<br>external |
| 27 | <i>Coccinia grandis</i> (L.)<br>Voigt              | Cucurbitaceae   | Belipoka                       | 0.08 | L, St        | Dysentery, leucorrhoea,<br>pneumonia                                                                                                               | Water<br>infusion,<br>pill, juice           | Oral              |
| 28 | Cocos nucifera (L.)                                | Arecaceae       | Narikol                        | 0.18 | Fr           | Jaundice, fever, small-<br>pox, dizziness, cuticle<br>pain, heat rash                                                                              | Juice                                       | Oral,<br>external |
| 29 | <i>Colocasia esculenta</i> (L.)<br>Schott.         | Araceae         | Kola kosu,<br>bonoriyako<br>su | 0.04 | Rh,<br>La    | Cancer, epiglottis<br>enlargement                                                                                                                  | Paste, raw                                  | External          |
| 30 | <i>Commelina diffusa</i><br>Burm.f.                | Commelinaceae   | Kona-<br>himolu                | 0.02 | L, St        | Jaundice                                                                                                                                           | Juice                                       | Oral              |
| 31 | Coriandrum sativum (L.)                            | Apiaceae        | Dhaniya                        | 0.02 | S            | Gall bladder                                                                                                                                       | Water<br>infusion                           | Oral              |
| 32 | Crinum asiaticum (L.)                              | Amaryllidaceae  | Bon-nohoru                     | 0.02 | Bu           | Urinary problems<br>(children)                                                                                                                     | Raw,<br>smoked                              | External          |
| 33 | <i>Curcuma caesia</i> Roxb.                        | Zingiberaceae   | Kola<br>halodhi                | 0.06 | Rh           | Stomach pain, gastric                                                                                                                              | Paste, raw                                  | Oral              |
| 34 | Curcuma longa (L.)                                 | Zingiberaceae   | Halodhi                        | 0.1  | Rh           | Menstruation pain,<br>dizziness, bone<br>fracture, joint pain,<br>memory booster                                                                   | Raw, paste,<br>pill, juice                  | Oral,<br>external |
| 35 | <i>Cyathula prostrata</i> (L.)<br>Blume            | Amaranthaceae   |                                | 0.02 | L            | Cut & wound                                                                                                                                        | Paste                                       | External          |
| 36 | <i>Cynodon dactylon</i> (L.)<br>Pers.              | Poaceae         | Dubori bon                     | 0.1  | Wh           | Cut & wound, dysuria,<br>urinary problem                                                                                                           | Juice, paste                                | Oral,<br>external |
| 37 | Datura metel (L.)                                  | Solanaceae      | Dhatura                        | 0.02 | L            | Bone-breakage                                                                                                                                      | Paste                                       | External          |
| 38 | Dillenia indica (L.)                               | Dilleniaceae    | Ow-tenga<br>(Sompa-<br>payur)  | 0.02 | Fr           | Boil                                                                                                                                               | Paste                                       | External          |
| 39 | <i>Drymaria cordata</i> (L.)<br>Willd. ex. Schult. | Caryophyllaceae | Lai-jabori                     | 0.02 | L            | Sinusitis                                                                                                                                          | Juice                                       | External          |
| 40 | Eclipta prostrata (L.).                            | Asteraceae      | Keheraj                        | 0.2  | L, St        | Pneumonia, jaundice,<br>menstruation pain, over<br>-menstrual bleeding,<br>external scars,<br>dysentery, stomach<br>pain, post-parturition<br>pain | Paste, juice,<br>pill                       | External,<br>oral |
| 41 | Eleocharis dulcis<br>(Burm.f.) Trin. Ex<br>Hensch. | Cyperaceae      | Sensu                          | 0.02 | Co           | Asthma                                                                                                                                             | Juice                                       | Oral              |
| 42 | Elettaria cardamomum<br>(L.) Maton                 | Zingiberaceae   | Elachi                         | 0.08 | Fr           | Cough, pneumonia,<br>jaundice, gallbladder<br>stone                                                                                                | Pill, raw                                   | Oral              |

# BURAGOHAIN ET AL

| 43 | Eleusine indica (L.)<br>Gaertn.                             | Poaceae       | Bobosa bon                             | 0.04 | Wh,<br>R  | Pneumonia, scabies                                                                             | Water<br>infusion, raw                                   | Oral,<br>external |
|----|-------------------------------------------------------------|---------------|----------------------------------------|------|-----------|------------------------------------------------------------------------------------------------|----------------------------------------------------------|-------------------|
| 44 | Eryngium foetidum L.                                        | Apiaceae      | Man-dhoniya                            | 0.02 | L         | Indigestion                                                                                    | Juice                                                    | Oral              |
| 45 | Ficus carica L.                                             | Moraceae      | Dimaru                                 | 0.06 | L         | Post-parturition<br>weakness, post-<br>parturition bleeding,<br>menstruation pain              | Vegetavble,<br>juice                                     | Oral              |
| 46 | Ficus hispida L.f.                                          | Moraceae      | (Tapot)                                | 0.02 | L         | Pneumonia                                                                                      | Water infusion                                           | Oral              |
| 47 | Ficus lamponga Miq.                                         | Moraceae      | (Takhot)                               | 0.02 | L         | Ear pain                                                                                       | Smoke                                                    | External          |
| 48 | Foeniculum vulgare Mill.                                    | Apiaceae      | Sauf                                   | 0.02 | S         | Gall bladder stone                                                                             | Water<br>infusion                                        | Oral              |
| 49 | Guilandina bonduc L.                                        | Fabaceae      | Letaguti                               | 0.2  | S         | Cough, stomach<br>pain, pneumonia                                                              | Water<br>infusion, pill                                  | Oral              |
| 50 | Hellenia speciosa<br>(J.Koeing) S.R.Dutta                   | Costaceae     | Jam-lakhuti                            | 0.06 | Rh        | Leukorrhoea                                                                                    | Juice                                                    | Oral              |
| 51 | Hibiscus rosa-sinensis L.                                   | Malvaceae     | Jobaphool<br>(Goshaniapp<br>un)        | 0.14 | L, Fl     | Fever, boil, small-pox                                                                         | Paste                                                    | External          |
| 52 | Houttuynia cordata<br>Thunb.                                | Saururaceae   | Masandari                              | 0.06 | L         | Diarrhoea, gastric,<br>dysentery                                                               | Raw, juice,<br>vegetable,<br>paste                       | Oral              |
| 53 | Hydrocotyle sibthorpioides<br>Lam.                          | Araliaceae    | Horu-<br>manimuni                      | 0.18 | Wh        | Leukorrhoea,<br>diarrhoea,<br>pneumonia,<br>dysentery, memory<br>boosting                      | Raw, juice,<br>vegetable,<br>paste, pill                 | Oral              |
| 54 | <i>Impatiens tripetala</i> Roxb.<br>Ex DC.                  | Balsaminaceae | Demdeuka                               | 0.04 | L         | Cancer, fever                                                                                  | Paste                                                    | External          |
| 55 | Jatropha curcas L.                                          | Euphorbiaceae | Bongali-<br>enera                      | 0.04 | L, St     | Diarrhoea, toothache                                                                           | Paste, smoke                                             | External          |
| 56 | <i>Kalanchoe pinnata</i> (Lam.)<br>Pers.                    | Crassulaceae  | Dupor-tenga                            | 0.04 | L         | Gall bladder stone,<br>kidney stone                                                            | Juice, paste                                             | Oral              |
| 57 | Lawsonia inermis L.                                         | Lythraceae    | Jetuka                                 | 0.02 | L         | Cuticle pain                                                                                   | Paste                                                    | External          |
| 58 | <i>Leucas aspera</i> (Willd.)<br>Link                       | Lamiaceae     | Durun bon                              | 0.3  | L         | Boil, cough, stomach<br>pain, gastric, cold,<br>tonsillitis, sinusitis,<br>eye pain, itchiness | Paste, water<br>infusion,<br>juice,<br>vegetable,<br>raw | External,<br>oral |
| 59 | <i>Lippia alba</i> (Mill.)N.E.Br.<br>Ex Britton & P. Wilson | Verbenaceae   | (Pelutoying<br>in mishing)             | 0.02 | L         | Roundworm                                                                                      | Vegetable                                                | Oral              |
| 60 | <i>Lygodium japonicum</i><br>(Thunb.) Sw.                   | Schizaeaceae  | Kopou-<br>dhekiya<br>(Rakan-<br>makat) | 0.02 | L         | Menstruation pain                                                                              | Pill                                                     | Oral              |
| 61 | Mesosphaerum<br>suaveolens (L.) Kuntze                      | Lamiaceae     | Tokma                                  | 0.02 | S         | Urinary infection                                                                              | Water<br>infusion                                        | Oral              |
| 62 | <i>Mikania micrantha</i> Kunth                              | Asteraceae    | Premlota                               | 0.12 | L         | Dysentery, stomach<br>pain, cut & wound                                                        | Paste, juice,<br>pill                                    | External,<br>oral |
| 63 | Mimosa pudica L.                                            | Fabaceae      | Lajukilota                             | 0.02 | L         | Pneumonia                                                                                      | Water<br>infusion                                        | Oral              |
| 64 | <i>Miscanthus fuscus</i> (Roxb.)<br>Benth                   | Poaceae       | Nol, Khagori                           | 0.02 | L, St     | Cancer                                                                                         | Paste                                                    | External          |
| 65 | Momordica charantia L.                                      | Cucurbitaceae | Tita-kerela                            | 0.02 | L         | Nasal bleeding                                                                                 | Juice                                                    | External          |
| 66 | Morinda angustifolia<br>Roxb.                               | Rubiaceae     | Akalbih<br>(Aawmpul)                   | 0.02 | L         | Boil                                                                                           | Paste                                                    | External          |
| 67 | <i>Moringa oleifera</i> Lam.                                | Moringaceae   | Sojina                                 | 0.02 | В         | Epilepsy                                                                                       | Water<br>infusion                                        | Oral              |
| 68 | Musa acuminata Colla                                        | Musaceae      | Malbhogkol                             | 0.04 | Fr,<br>Rh | Leukorrhoea, piles                                                                             | Raw, juice                                               | Oral              |
| 69 | Myristica fragrans Houtt.                                   | Myristicaceae | Jaiphal                                | 0.06 | S         | Pneumonia,<br>jaundice, gall<br>bladder stone                                                  | Pill, water<br>infusion                                  | Oral              |
| 70 | Nicotiana tabacum L.                                        | Solanaceae    | Mansadha                               | 0.04 | L         | Toothache                                                                                      | Raw                                                      | External          |
|    |                                                             |               |                                        |      |           |                                                                                                |                                                          |                   |

https://plantsciencetoday.online

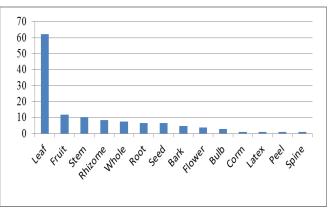
| 71 | Nigella sativa L.                              | Ranunculaceae  | Kaljira                | 0.02 | S              | Gall bladder stone                                                                                                                                                                                                                         | Water<br>infusion                                       | Oral             |
|----|------------------------------------------------|----------------|------------------------|------|----------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------|------------------|
| 72 | Nyctanthes arbor-tristis L.                    | Oleaceae       | Sewali<br>phool        | 0.08 | L, Fl          | Fever, pneumonia,<br>cough                                                                                                                                                                                                                 | Water<br>infusion                                       | Oral             |
| 73 | Ocimum tenuiflorum L.                          | Lamiaceae      | Tulashi                | 0.12 | L              | Cough, small-pox, ear<br>pain                                                                                                                                                                                                              | Paste, juice,<br>pill, raw                              | Oral,<br>externa |
| 74 | Oldenlandia corymbosa L.                       | Rubiaceae      | Bon-jaluk              | 0.14 | L, St          | Body pain, cough,<br>stomach pain,<br>pneumonia, dysentery                                                                                                                                                                                 | Vegetable,<br>water<br>infusion, pill                   | Oral             |
| 5  | Paederia foetida L.                            | Rubiaceae      | Bhedailota             | 0.16 | L              | Menstruation pain, boil,<br>diarrhoea, gastric, post-<br>parturition weakness,<br>itchiness, pneumonia                                                                                                                                     | Juice, paste,<br>vegetable                              | Oral             |
| 6  | Persicaria chinensis (L.)<br>H.Gross           | Polygonaceae   | (Sibe-takkir)          | 0.02 | L, St          | Boil                                                                                                                                                                                                                                       | Paste                                                   | Extern           |
| 7  | Phyla nodiflora (L.)<br>Greene                 | Verbenaceae    | (Gakhirkuse<br>rai)    | 0.04 | L              | Lactation deficiency,<br>pneumonia                                                                                                                                                                                                         | Juice                                                   | Oral             |
| 8  | Phyllanthus emblica L.                         | Phyllanthaceae | Amlakhi                | 0.04 | Fr             | Liver weakness, hair fall                                                                                                                                                                                                                  | Juice, paste                                            | Oral,<br>extern  |
| 9  | Phyllanthus niruri L.                          | Phyllanthaceae | Bon-<br>amlakhi        | 0.02 | R              | Pneumonia                                                                                                                                                                                                                                  | Water<br>infusion                                       | Oral             |
| 0  | Physalis angulata L.                           | Solanaceae     | (Tumpet)               | 0.02 | R              | Pneumonia                                                                                                                                                                                                                                  | Water<br>infusion                                       | Oral             |
| 81 | Piper betle L.                                 | Piperaceae     | Paan                   | 0.1  | L              | Cough; post-parturition<br>vomiting, pain;<br>pneumonia, stomach<br>scars                                                                                                                                                                  | Raw, paste,<br>juice, water<br>infusion                 | Oral             |
| 32 | Piper nigrum L.                                | Piperaceae     | Jaluk                  | 0.6  | Fr             | Pneumonia, jaundice,<br>over menstrual<br>bleeding, gall bladder<br>stone, cough, asthma,<br>stomach pain, cold,<br>menstruation pain,<br>fever, headache, body<br>pain, post-parturition<br>weakness & pain, waist<br>pain, stomach scars | Pill, juice,<br>water<br>infusion,<br>vegetable         | Oral             |
| 3  | Plumbago zeylanica L.                          | Plumbaginaceae | Agasiat                | 0.08 | L, R           | Tuberculosis, hairy<br>caterpillar bite, liver<br>weakness                                                                                                                                                                                 | Oil infusion,<br>paste, pill,<br>vegetable              | Oral<br>extern   |
| 4  | Pogostemon benghalensis<br>(Burm.f.) Kuntz     | Lamiaceae      | Hukloti                | 0.02 | L              | Stomach pain                                                                                                                                                                                                                               | Vegetable                                               | Oral             |
| 5  | <i>Persicaria glabra</i> (Willd.)<br>M.Gomez   | Polygonaceae   | Bihlogoni              | 0.08 | L              | Fever, cough, headache,<br>body pain                                                                                                                                                                                                       | Vegetable                                               | Oral             |
| 6  | Portulaca oleracea L.                          | Portulacaceae  | Malbhogkhu<br>tura     | 0.08 | Wh,<br>L       | Cough, asthma,<br>jaundice                                                                                                                                                                                                                 | Juice, pill                                             | Oral             |
| 7  | <i>Potentilla indica</i><br>(Andrews) Th. Wolf | Rosaceae       | Goru-khis<br>(Bog-jer) | 0.04 | Rh             | Tongue bump, throat<br>ulcer                                                                                                                                                                                                               | Paste, juice                                            | Oral             |
| 8  | <i>Pouzolzia zeylanica</i> (L.)<br>Benn.       | Urticaceae     | Borali-<br>bokua       | 0.02 | L              | Cut & wound                                                                                                                                                                                                                                | Paste                                                   | Extern           |
| 9  | Psidium guajava L.                             | Myrtaceae      | Madhuri                | 0.16 | L              | Pneumonia, stomach<br>pain, cough, dysentery                                                                                                                                                                                               | Juice, pill,<br>paste                                   | Oral             |
| 0  | Punica granatum L.                             | Lythraceae     | Dalim                  | 0.02 | Pe             | Epilepsy                                                                                                                                                                                                                                   | Water<br>infusion                                       | Oral             |
| 1  | Rhynchostylis retusa (L.)                      | Orchidaceae    | Kopouphool             | 0.02 | L              | Ear pain                                                                                                                                                                                                                                   | Juice                                                   | Extern           |
| 2  | Blume<br><i>Rubus alceifolius</i> Poir.        | Rosaceae       | Jetuli-poka            | 0.02 | L              | Menstruation pain                                                                                                                                                                                                                          | Juice                                                   | Oral             |
| 3  | Sapindus mukorossi<br>Gaertn.                  | Sapindaceae    | Manisal                | 0.08 | S              | Pneumonia, cough                                                                                                                                                                                                                           | Water<br>infusion, pill                                 | Oral             |
| 4  | Scoparia dulcis L.                             | Plantaginaceae | Bon- cheni             | 0.02 | L              | Boil                                                                                                                                                                                                                                       | Paste                                                   | Extern           |
| 5  | Sida rhombifolia L.                            | Malvaceae      | Hun-boriyal            | 0.12 | L,<br>Fr,<br>R | Pneumonia, jaundice,<br>tongue bump                                                                                                                                                                                                        | Pill, juice,<br>raw                                     | Oral             |
| 6  | Solanum violaceum<br>Ortega                    | Solanaceae     | Horubhekur<br>i        | 0.04 | R              | Asthma, pneumonia                                                                                                                                                                                                                          | Juice, pill                                             | Oral             |
| 7  | Streblus asper Lour.                           | Moraceae       | Gowalsali,<br>hora gos | 0.06 | L              | Boil, dysentery,<br>pneumonia                                                                                                                                                                                                              | Paste                                                   | Extern           |
| 8  | Syzygium aromaticum (L.)<br>Merr. & L.M. Perry | Myrtaceae      | Laung                  | 0.18 | Fl             | Cough, pneumonia,<br>jaundice, over<br>menstrual bleeding, gall<br>bladder stone,<br>leucorrhoea, toothache,<br>menstruation pain                                                                                                          | Pill, paste,<br>raw,<br>vegetable,<br>water<br>infusion | Oral             |
|    |                                                |                |                        |      |                | •                                                                                                                                                                                                                                          |                                                         | <b>F</b> 1       |
| 99 | Tagetes erecta L.                              | Asteraceae     | Narjiphool             | 0.08 | L              | Cut & wound, boil                                                                                                                                                                                                                          | Paste                                                   | Extern           |

Plant Science Today, ISSN 2348-1900 (online)

| 101 | <i>Terminalia arjuna</i> (Roxb.<br>ex DC.) Wight &Arn.       | Combretaceae   | Arjun gos               | 0.02 | В  | Menstruation pain                                                                                                    | Juice                                                          | Oral              |
|-----|--------------------------------------------------------------|----------------|-------------------------|------|----|----------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------|-------------------|
| 102 | Terminalia chebula Retz.                                     | Combretaceae   | Hilikha                 | 0.04 | Fr | Liver weakness,<br>jaundice                                                                                          | Juice, pill                                                    | Oral              |
| 103 | Tetrastigma<br>leucostaphylum (Dennst.)                      | Vitaceae       | Nol-tenga               | 0.08 | L  | Boil, diabetes,<br>dysentery, diarrhea                                                                               | Paste, juice,<br>vegetable                                     | External,<br>oral |
| 104 | <i>Tinospora cordifolia</i><br>(Willd.) Hook.f. &<br>Thomson | Menispermaceae | Amarlota,<br>hogunilota | 0.02 | В  | Gall bladder stone                                                                                                   | Water<br>infusion                                              | Oral              |
| 105 | Vitex negundo L.                                             | Lamiaceae      | Pasatiya                | 0.14 | L  | Fever, dysentery,<br>cough, headache,<br>bodypain                                                                    | Water<br>infusion,<br>juice,                                   | Oral              |
| 106 | Volkameria inermis L.                                        | Lamiaceae      | -                       | 0.02 | L  | Dysentery                                                                                                            | Juice                                                          | Oral              |
| 107 | Xanthium strumarium L.                                       | Asteraceae     | Agoruwa                 | 0.02 | R  | Cough                                                                                                                | Pill                                                           | Oral              |
| 108 | Zanthoxylum nitidum<br>(Roxb.) DC.                           | Rutaceae       | Tejmui                  | 0.02 | В  | Toothache                                                                                                            | Raw                                                            | External          |
| 109 | Zingiber officinale Roscoe                                   | Zingiberaceae  | Ada                     | 0.28 | Rh | Pneumonia, jaundice,<br>cough, stomach pain,<br>cold, pneumonia,<br>gastric, post-parturition<br>weakness, toothache | Raw, juice,<br>paste, pill,<br>vegetable,<br>water<br>infusion | Oral              |

(Abbreviation: L-Leaf, Wh-Whole plant, St-Stem, B-Bark, Fr-Fruit, Fl-Flower, Pe-Peel, R-Root, Bu-Bulb, Co-Corm, S-Seed, Rh-Rhizome, La-latex)

#### Plant parts used and types of medication


#### Quantitative data on the ethnomedicinal uses

Use value (UV)

The tribe has a deep native knowledge on the use of different plant parts and their therapeutic properties. Commonly used parts of plants were leaf, root, rhizome, flower, fruit, bulb, bark, stem, seed, and whole plant for different purposes in their daily life. The most commonly used plant parts for medicinal treatment were leaves (68 species, 62.38%). In comparison to other parts of plants, the use of leaves causes less distress to the plant thus ensuring sustainability and its further conservation (18). It is then followed by fruit (13 species, 11.92%), stems (11 species, 10.09%), rhizomes (9 species, 6.42%), seeds (7 species, 6.42%), bark (5 species, 4.58%), flowers (4 species, 3.66%), bulbs (3 species, 2.75%), corm (1 species, 0.91%), Latex (1 species, 0.91%), peel (1 species, 0.91%), Spine (1 species, 0.91%)(Fig. 4).

Out of 55 families, Asteraceae is dominant with the highest number of medicinal plants (8 species, 7.33%); followed by Lamiaceae (7 species, 6.42%); Poaceae, Solanaceae and Moraceae (5 species, 4.58%) (Table 4).

The medicinal plants that were used in different forms to treat various human diseases were plant juice (48 species, 44.03%) followed by plant paste (46 species, 42.20%), water infusion (31 species, 28.44%), pill (26 species, 24.52%), eaten raw (24 species, 22.01%), vegetable (18 species, 16.51%), smoke (4 species, 3.66%), oil infusion (2 species, 1.83%)(Fig. 5).



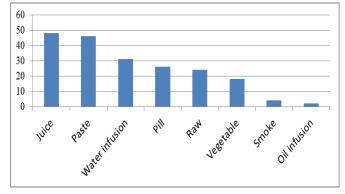
**Fig.4.** Bar diagram showing the percentage of parts used of the medicinal plants

In this study, the use value ranges from 0.6-0.02 (Table 3). The most frequently used species were Piper nigrum L. with a 0.6 use value and Leucas aspera (Willd.) Link with 0.3 use value; followed by Zingiber officinale Roscoe with a use value of 0.28. Various works have been done on the above-mentioned plants to evaluate their medicinal properties. Piper nigrum L. has medicinal properties such as antioxidant (41), Neuroprotective (42), Anti-inflammatory (43), Anticancer (44), Analgesic (43), hypoglycemic, and hypolipidemic (45) activities, etc. It is scientifically proven that Leucas aspera L. is a very potential source of traditional medicine as it shows Antioxidant (46), Antimicrobial (47), Anticancer (48), Antiinflammatory (49), Hepatoprotective (50), Larvicidal (51), Renoprotective (52), Anthelmintic (53) activities, etc. Zingiber officinale Roscoe is also a very important herb in traditional medicinal practices. Works have been done on its medicinal properties such as Antiviral (54), Radioprotective (55), Antiinflammatory (56), Anticancer (57), Antioxidant (58) activities, etc. (Fig. 6 and 7).

## Informant consensus factor (F<sub>IC</sub>)

In ethnomedicinal studies, F<sub>IC</sub> analysis gives a measure of accessibility for the given information of data collection (59). In this study, the medicinal plants used to cure various ailments in the Sivasagar District of Assam were classified into 17 ICPC (International Classification of Primary Care) (https://www.who.int/standards/classifications/other-





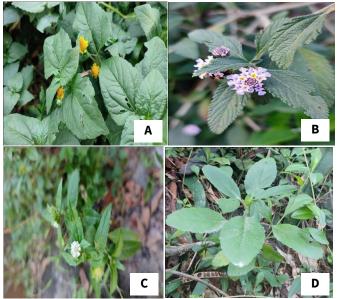


Fig.5. Bar diagram showing the forms of medication of the medicinal recipes

Table 4.Category wise distribution of various medicinal plant taxa in Sivasagar District

| Sl. No. | Family            | Number of genera | Percentage of genera | Number of species | Percentage of species |
|---------|-------------------|------------------|----------------------|-------------------|-----------------------|
| 1       | Asteraceae        | 8                | 8                    | 8                 | 7.34                  |
| 2       | Lamiaceae         | 7                | 7                    | 7                 | 6.42                  |
| 3       | Poaceae           | 5                | 5                    | 5                 | 4.59                  |
| 4       | Moraceae          | 3                | 3                    | 5                 | 4.59                  |
| 5       | Solanaceae        | 4                | 4                    | 4                 | 3.67                  |
| 6       | Apiaceae          | 4                | 4                    | 4                 | 3.67                  |
| 7       | Zingiberaceae     | 3                | 3                    | 4                 | 3.67                  |
| 8       | Rutaceae          | 3                | 3                    | 4                 | 3.67                  |
| 9       | Malvaceae         | 3                | 3                    | 3                 | 2.75                  |
| 10      | Amaranthaceae     | 3                | 3                    | 3                 | 2.75                  |
| 11      | Fabaceae          | 3                | 3                    | 3                 | 2.75                  |
| 12      | Rubiaceae         | 3                | 3                    | 3                 | 2.75                  |
| 13      | Amaryllidaceae    | 2                | 2                    | 3                 | 2.75                  |
| 14      | Sapindaceae       | 2                | 2                    | 2                 | 1.83                  |
| 15      | Menispermaceae    | 2                | 2                    | 2                 | 1.83                  |
| 16      | Lythraceae        | 2                | 2                    | 2                 | 1.83                  |
| 17      | Verbenaceae       | 2                | 2                    | 2                 | 1.83                  |
| 18      | Polygonaceae      | 2                | 2                    | 2                 | 1.83                  |
| 19      | Rosaceae          | 2                | 2                    | 2                 | 1.83                  |
| 20      | Myrtaceae         | 2                | 2                    | 2                 | 1.83                  |
| 21      | Vitaceae          | 2                | 2                    | 2                 | 1.83                  |
| 22      | Piperaceae        | 1                | 1                    | 2                 | 1.83                  |
| 23      | Cucurbitaceae     | 1                | 1                    | 2                 | 1.83                  |
| 24      | Phyllanthaceae    | 1                | 1                    | 2                 | 1.83                  |
| 25      | Combretaceae      | 1                | 1                    | 2                 | 1.83                  |
| 26      | Acoraceae         | 1                | 1                    | 1                 | 0.92                  |
| 27      | Other 28 families | 28               | 28                   | 28                | 25.69                 |
| Total   | 54                | 100              | 100%                 | 109               | 100%                  |



Image 1- A- Informant showing *Morinda angustifolia*Roxb., B-Informant showing *Plumbago zeylanica* L.



**Image 2**- Some medicinal plants collected from study site: A-Acmella ciliata (Kunth) Cass., B- Lippia alba (Mill.) N.E.Br. Ex Britton & P. Wilson, C-Eclipta prostrata (L.) L., D- Kalanchoe pinnata (Lam.) Pers.

disease categories and the Fic value of each disease category was calculated (Table-5). In the investigation, the symptomatic diseases category showed the highest agreement with a  $F_{IC}$  of 0.64%. It was followed by external injuries (0.54%), heart and cardiovascular system disorders and diabetes (0.50%), digestive system disorders (0.44%), gynecological problems (0.41%), pneumonia (0.40%), ENT (0.33%), respiratory & pulmonary system diseases (0.3%), hepatological & dermatological diseases (0.29%), masculoskeletal & nervous system disorders (0.21%), urinogenital & renal and miscellaneous disorders (0.2%), oral & dentistry (0.09%). The lowest agreement between the informants was documented in the responses related to cancer and piles both with 0%  $F_{\mbox{\tiny IC}}$  Value. Earlier different workers followed this  $F_{I\!C}$  value as an important tool to conduct respective ethnobotanical studies (60-64). These studies show the greatest level of agreement between the different ethnic tribes of the state of Assam having a rich traditional knowledge with diverse flora as well as fauna together with rich tradition and culture.

# Conclusion

The current study presents a comprehensive dataset on the traditional medicinal knowledge and ethnobotanical practices of the Mishing tribe in Sivasagar District. A total of 109 plants associated with 17 different disease categories were documented. While the majority of these plants belong to various angiospermic families, one belongs to the pteridophytic family.

In treatment of various diseases, senior villagers and traditional healers gave more preferences to some medicinal plants, such as Piper nigrum L., and Leucas aspera (Willd.) Link, Zingiber officinale Roscoe, Allium sativum L., Guilandina bonduc L., Eclipta prostrata (L.) L., Cocos nucifera L., Hydrocotyle sibthorpioides Lam., Syzygium aromaticum (L.) Merr. & L.M.Perry, Paederia foetida L. and Psidium guajava L. The most commonly utilized plant parts for medicinal treatments were leaves (68 species, 62.38%). In comparison to other plant parts, the use of leaves causes less threat to the plant ensuring sustainability and its further conservation. In this survey, the symptomatic disease category showed the highest agreement with a  $F_{IC}$  of 0.64%. The lowest agreement between the informants was recorded in the responses related to cancer and piles both with a F<sub>IC</sub> of 0%. These statistical analyses of the medicinal plants have validated their relative importance and capability towards curing different ailments. Therefore, plants having ethno medicinal properties can be chemically tested for proper recognition of bioactive compounds which can be utilized further for drug designing. This will be a significant contribution to the herbal and pharmaceutical industries for the welfare of mankind. This current investigation offers a fresh perspective aimed at raising awareness and establishing management strategies for both the ethnomedicinal plants and the floral diversity within Sivasagar District.

| Sl. No. | Disease category                                                                                                               | Use Report (N <sub>ur</sub> ) | No. of taxa (N $_{\rm t}$ ) | F ıc |
|---------|--------------------------------------------------------------------------------------------------------------------------------|-------------------------------|-----------------------------|------|
| 1       | Symptomatic diseases [Fever, cold, headache, dizziness]                                                                        | 49                            | 18                          | 0.64 |
| 2       | External injuries [Cut & wound, pinned, cuticle pain, external scars]                                                          | 23                            | 11                          | 0.54 |
| 3       | Heart & cardiovascular system disorders<br>[Hypertension]                                                                      | 5                             | 3                           | 0.5  |
| 4       | Diabetes                                                                                                                       | 3                             | 2                           | 0.5  |
| 5       | Digestive system disorders [Gastric, stomach ache, diarrhea, dysentery,<br>indigestion, roundworm, stomach scars]              | 55                            | 31                          | 0.44 |
|         | Gynecological problems                                                                                                         |                               |                             |      |
| 6       | [Menstruation pain, over-menstrual bleeding, leucorrhoea, post-parturition vomiting, bleeding, weakness, lactation deficiency] | 35                            | 21                          | 0.41 |
| 7       | Pneumonia                                                                                                                      | 48                            | 21                          | 0.41 |
| 8       | ENT diseases [Ulceration, sore throat, throat bumps, tonsillitis, sinusitis, ear pain, nasal bleeding]                         | 13                            | 9                           | 0.33 |
| 9       | Respiratory & pulmonary system diseases [Tuberculosis, cough, asthma]                                                          | 31                            | 22                          | 0.3  |
| 10      | Hepatological [Gall bladder, liver weakness, jaundice]                                                                         | 28                            | 20                          | 0.29 |
| 11      | Dermatological diseases [Boil, itchiness, small-pox, scabies, heat rash]                                                       | 25                            | 18                          | 0.29 |
| 12      | Masculoskeletal & nervous system disorders [Bone fracture, joint pain, waist pain, body pain, epilepsy]                        | 15                            | 12                          | 0.21 |
| 13      | Urinogenital & renal [Dysuria, kidney-stone, urinary infection & problems]                                                     | 6                             | 5                           | 0.2  |
| 14      | Miscellaneous disorders [Vision, memory booster, hairy caterpillar bite,<br>malaria]                                           | 6                             | 5                           | 0.2  |
| 15      | Oral & dentistry problems [Tongue bumps, toothache, uvule enlargement]                                                         | 12                            | 11                          | 0.09 |
| 16      | Cancer                                                                                                                         | 3                             | 3                           | 0    |
| 17      | Piles                                                                                                                          | 2                             | 2                           | 0    |

# Acknowledgements

All the authors are grateful to the local informants and traditional healers of the Mishing community of Sivasagar district, Assam for providing valuable data and for their cooperation during the entire field survey. The authors are also grateful to Dr. Sauravjyoti Borah, Curator, GUBH for the permission to study the deposited voucher specimens. The authors are also thankful to the authority of the Dept. of Botany, Gauhati University for all necessary help during the study.

# **Authors' contributions**

The fieldwork was conducted by PB. PB and BD calculated the main statistical data. NN and BD helped in the identification of the specimens. BD, MN, and PJS collectively wrote the manuscript. NN supervised the work; all authors read, corrected, and approved the manuscript.

# **Compliance with ethical standards**

**Conflict of interest:** Authors do not have any conflict of interest to declare.

# Ethical issues: None.

#### References

- 1. Cox PA. Will tribal knowledge survive the millennium? *Science*. 2000;287:44–45. https://dx.doi.org/10.1126/science.287.5450.44
- Leonti M, Sticher O, Heinrich M. Medicinal plants of the Popoluca, México: organoleptic properties as indigenous selection criteria. Journal of Ethnopharmacology. 2002;81 (3):307–315. https://dx.doi.org/10.1016/s0378-8741(02)00078-8
- 3. Leonti M. The future is written: impact of scripts on the cognition, selection, knowledge, and transmission of medicinal plant use and its implications for ethnobotany and ethnopharmacology. Journal of Ethnopharmacology. 2011;134 (3):542–555. https://dx.doi.org/10.1016/j.jep.2011.01.017
- Kayani S, Ahmad M, Sultana S, Shinwari ZK, Zafar M. Ethnobotany of medicinal plants among the communities of alpine and sub-alpine regions of Pakistan. Journal of Ethnopharmacology. 2015;164:186-202. https:// dx.doi.org/10.1016/j.jep.2015.02.004
- Rana VS, Sharma S, Rana N, Kumar V, Sharma U, Modgill V, Prasad H. Underutilized fruit crops in North-Western Himalayan region under changing climatic scenario. Genetic Resources and Crop Evolution. 2023;70(1):37-69. https://doi.org/10.1007/ s10722-022-01470-y
- Matu EN, Staden JV. Antibacterial and anti-inflammatory activities of some plants used for medicinal purposes in Kenya. Journal of Ethnopharmacology. 2003;87(1):35-41. https:// dx.doi.org/10.1016/s0378-8741(03)00107-7
- Mall B, Gauchan DP, Chhetri RB. An ethnobotanical study of medicinal plants used by ethnic people in Parbat District of western Nepal. Journal of Ethnopharmacology. 2015;165:13–17. https://dx.doi.org/10.1016/j.jep.2014.12.057
- Pasquini MW, Mendoza JS, Sanchez-Ospina C. Traditional Food Plant knowledge and Use in Three Afro-Descendant Communities in the Colombian Caribbean Coast: Part I Generational Differences. Economic Botany. 2018;72(3):278– 294. https://dx.doi.org/10.1007/s12231-018-9422-6
- 9. Phumthum M, Balslev H. Use of Medicinal Plants among Thai

Ethnic Groups: A Comparison. Economic Botany. 2018;73(1):64–75. https://dx.doi.org/10.1007/s12231-018-9428-0

- Tomasini S, Theilade I. Local Knowledge of Past and Present Uses of Medicinal Plants in Prespa National Park, Albania. Economic Botany. 2019;73:217–232. 10.1007/s12231-019-09454 -3. https://doi.org/10.1007/s12231-019-09454-3
- Dixit S, Tiwari S. Investigation of anti-diabetic plants used among the ethnic communities of Kanpur division, India. Journal of Ethnopharmacology. 2020;253:112639. https:// dx.doi.org/10.1016/j.jep.2020.112639
- Qamariah N, Mulia DS, Fakhrizal D. Indigenous Knowledge of Medicinal Plants by Dayak Community in Mandomai Village, Central Kalimantan, Indonesia. Pharmacognosy Journal. 2020;12(2):386–390. https://dx.doi.org/10.5530/pj.2020.12.60
- Tabuti JRS, Dhillion SS, Lye KA. Traditional medicine in Bulamogi Country, Uganda: its practitioners, users and viability. Journal of Ethnopharmacology. 2003;85(1):119–129. https:// dx.doi.org/10.1016/s0378-8741(02)00378-1
- 14. Mao AA, Hynniewta TM. Floristic diversity of North East India. Journal Assam Science Society. 2000;41(4):255–266
- Sajeng AL, Rout J, Nath M. Traditional tribal knowledge and status of some rare and endemic medicinal plants of North Cachar Hills District of Assam, northeast India. Ethnobotanical leaflets. 2008;12:261–275
- Barbhuiya AR, Sharma GD, Arunachalam A, Deb S. Diversity and conservation of medicinal plants in Barak Valley, Northeast India. Indian Journal of Traditional Knowledge. 2009;8(2):169– 175
- Mao AA, Hynniewta TM, Sanjappa M. Plant wealth of Northeast India with reference to Ethnobotany. Indian Journal of Traditional Knowledge. 2009;8(1):96–103
- Panmei R, Gajurel PR, Singh B. Ethnobotany of medicinal plants used by the Zeliangrong ethnic group of Manipur, Northeast India. Journal of Ethnopharmacology. 2019;235:164-182. https://dx.doi.org/10.1016/j.jep.2019.02.009
- Dutta BK, Dutta PK. Potential of ethnobotanical studies in northeast India: an overview. Indian Journal of Traditional Knowledge. 2005;4(1):7–14
- Ali ANMI, Das I. Tribal situation in northeast India. Studies of Tribes and Tribals. 2003;1(2):141–148. https:// dx.doi.org/10.1080/0972639X.2003.11886492
- Asati BS, Yadav DS. Diversity of horticultural crops in northeastern regions. Envis Bulletin: Himalayan Ecology. 2004;12(2):1–10
- Debbarma M, Pala NA, Kumar M, Bussmann RW. Traditional knowledge of medicinal plants in tribes of Tripura in Northeast, India. African Journal of Traditional Complementary and Alternative Medicines. 2017;14(4):156–168. https:// dx.doi.org/10.21010/ajtcam.v14i4.19
- Lanusunep AT, Jamir AN, LongkumerSI ,Jamir NS. Traditional knowledge of herbal medicines practiced by Ao- Naga tribe in Nagaland, India. *Pleione*. 2018;12(1):11–17. https:// dx.doi.org/10.26679/Pleione.30.6.2018.011-017
- Mittermeier RA, Turner WR, Larsen FW, Brooks TM, Gascon C. Global biodiversity conservation: the critical role of hotspots. Biodiversity Hotspots. 2011. London Springer Publishers. 3-22 pp. https://doi.org/10.1007/978-3-642-20992-5\_1
- Teklehaymanot T, Giday M. Ethnobotanical study of medicinal plants used by people in Zegie Peninsula, Northwestern Ethiopia. Journal of Ethnobiology and Ethnomedicine. 2007;3:1 -12. https://dx.doi.org/10.1186/1746-4269-3-12
- Das RJ, Pathak K. Use of indigenous plants in traditional health care systems by Mishing tribe of Dikhowmukh, Sivasagar District, Assam. International Journal of Herbal Medicine. 2013;1 (3):50-57

- Panging SM, Sharma S. Studies on the ethno medicinal and traditional healing practices among Mishing community of Desangmukh Gaon Panchayat, Sivasagar District of Assam, India. Journal of Medicinal Plants Studies. 2017;5(54):193-196
- 28. Jain SK. *A* Manual of Ethnobotany. Jodhpur, India. Scientific Publisher. 1987.
- 29. Kanjilal UN, Kanjilal PC, Das A, De RN. Flora of Assam. Government of Assam Publication. 1940.
- Chowdhury, S. Assam's Flora Present Status of Vascular Plants. Assam Science Technology and Environment Council, Guwahati. 2005.
- 31. Barooah C, Ahmed I. Plant Diversity of Assam (A checklist of Angiosperms and Gymnosperms), ASTEC. Bigyan Bhawan, Guwahati, Assam. 2014.
- Phillips O, Gentry AH, Reynel C, Wilkin P, Durand BCG. Quantitative ethnobotany and Amazonian conservation. Conservation Biology. 1994;8(1):225–248. https:// doi.org/10.1046/j.1523-1739.1994.08010225.x
- Zenderland J, Hart R, Bussmann RW, Zambrana NYP, Sikharulidze S. The Use of Use Value: Quantifying Importance in Ethnobotany. Economic Botany. 2019;73(1):1-11. https:// dx.doi.org/10.1007/s12231-019-09480-1
- Trotter RT, Logan MH. Informant census: a new approach for identifying potentially effective medicinal plants. Plants in Indigenous Medicine and Diet. 1986;91-112. https:// doi.org/10.4324/9781315060385-6
- Henrich M, Ankli A, Frei B, Weimann C, Sticher O. Medicinal plants in Mexico: Healer's consensus and Cultural importance. Social Science and Medicine. 1998;47(11):1859–1871. https:// dx.doi.org/10.1016/s0277-9536(98)00181-6
- Singh GA, Kumar A, Tewari DD. An ethnobotanical survey of medicinal plants used in Terai forest of western Nepal. Journal of Ethnobiology and Ethnomedicine. 2012;8:19. https:// dx.doi.org/10.1186/1746-4269-8-19
- Bhat P, Hedge GR, Hedge G, Mulgund GS. Ethnomedicinal plants to cure skin diseases—an account of the traditional knowledge in the coastal parts of central Western Ghats, Karnataka, India. Journal of Ethnopharmacology. 2013;151:493–502. https:// dx.doi.org/10.1016/j.jep.2013.10.062
- Abbas Z, Khan SM, Khan SW, Abbasi AM. Medicinal plants used by inhabitants of the Shigar Valley, Baltistan region of Karakorum range-Pakistan. Journal of Ethnobiology and Ethnomedicine. 2017;13:53. http://dx.doi.org/10.1186/s13002-017-0172-9
- Chekole G. Ethnobotanical study of medicinal plants used against human ailments in Gubalafto District, Northern Ethiopia. Journal of Ethnobiology and Ethnomedicine. 2017;13:55. https://dx.doi.org/10.1186/s13002-017-0182-7
- Umair M, Altaf M, Abbasi AM. An ethnobotanical survey of indigenous medicinal plants in Hafizabad district, Punjab Pakistan. PloS One. 2017;12(6):e0177912. https:// dx.doi.org/10.1371/journal.pone.0177912
- Kapoor IP, Singh B, Singh G, Heluani CS De, Lampasona MP De, Catalan CA. Chemistry and in vitro antioxidant activity of volatile oil and oleoresins of black pepper (*Piper nigrum*). Journal of Agricultural and Food Chemistry. 2009;57 (12):5358– 64. https://doi.org/10.1021/jf900642x
- Hritcu L, Noumedem JA, Cioanca O, Hancianu M, Postu P, Mihasan M. Anxiolytic and antidepressant profile of the methanolic extract of *Piper nigrum* fruits in beta-amyloid (1–42) rat model of Alzheimer's disease. Behavioral and Brain Functions. 2015;11:13. https://doi.org/10.1186/s12993-015-0059-7
- 43. Tasleem F, Azhar I, Ali SN, Perveen S, Mahmood ZA. Analgesic and anti-inflammatory activities of *Piper nigrum* L. Asian Pacific

Journal of Tropical Medicine. 2014;7S1:S461–S8. https:// doi.org/10.1016/S1995-7645(14)60275-3

- Ee GC, Lim CM, Lim CK, Rahmani M, Shaari K, Bong CF. Alkaloids from Piper sarmentosum and *Piper nigrum*. Natural Product Research. 2009;23(15):1416-23. https:// doi.org/10.1080/14786410902757998.
- Kaleem M, Sheema H, Sarma D, Bano B. Protective effects of *Piper nigrum* and *Vinca rosea* in alloxan induced diabetic rats. Indian Journal of Physiology and Pharmacology. 2005;49:65–71.
- Eleazu CO, Eleazu KC. Physico-chemical properties and antioxidative potentials of 6 new varieties of ginger (*Zingiber* officinale). American Journal of Food Technology. 2012;7(4):214-221. https://doi.org/10.3923/ajft.2012.214.221.
- Sunilson JAJ, Suraj R, Rejitha G, Anandarajagopa K. In vitro antibacterial evaluation of *Zingiber officinale, Curcuma longa* and *Alpinia galangal* extracts as natural foods preservatives. American Journal of Food Technology. 2009; 4(5):192-200. https://doi.org/10.3923/ajft.2009.192.200.
- 48. Katiyar SK, Agarwal R, Mukhtar H. Inhibition of tumor promotion in SENCAR mouse skin by ethanol extract of *Zingiber officinale* rhizome. Cancer Research. 1996; 56(5):1023-1030.
- Jung HW, Yoon CH, Park KM, Han HS, Park YK. Hexane fraction of Zingiberis Rhizoma Crudus extract inhibits the production of nitric oxide and proinflammatory cytokines in LPS-stimulated BV2 microglial cells via the NF-kappaB pathway. Food Chemistry and Toxicology. 2009; 47(6):1190-1197. https:// doi.org/10.1016/j.fct.2009.02.012.
- Khaki AA, Khaki A. Antioxidant effect of ginger to prevents leadinduced liver tissue apoptosis in rat. Journal of Medicinal Plants Research. 2010;4(14):1492-1495. 10.5897/JMPR09.397.
- Lin RJ, Chen CY, Chung LY, Yen CM. Larvicidal activities of ginger (Zingiber officinale) against *Angiostrongylus cantonensis*. Acta Tropica. 2010; 115(1-2): 69-76. https://doi.org/10.1016/ j.actatropica.2009.12.007.
- Kuhad A, Tirkey N, Pilkhwal S, Chopra K. 6-Gingerol prevents cisplatin-induced acute renal failure in rats. BioFactors. 2006;26 (3):189-200. 10.1002/biof.5520260304. https://doi.org/10.1002/ biof.5520260304
- 53. Dubey RD, Verma S, Rane D, Wani VK, Pandey AK, Paroha S. Comparative studies of anthelmintic activity of *Zingiber officinale* and *Cassia tora*. International Journal of Chemistry and Pharmaceutical Sciences. 2010;1:1-4
- Chang JS, Wang KC, Yeh CF, Shieh DE, Chiang LC. Fresh ginger (*Zingiber officinale*) has anti-viral activity against human respiratory syncytial virus in human respiratory tract cell lines. Journal of Ethnopharmacology. 2013;145(1):146-151. https:// doi.org/10.1016/j.jep.2012.10.043.
- Baliga MS, Haniadka R, Pereira MM, Thilakchand KR, Rao S, Arora R. Radioprotective effects of *Z. officinale* Roscoe (ginger): past, present and future. Food & Function. 2012;3(7):714-723. 10.1039/c2fo10225k. https://doi.org/10.1039/c2fo10225k
- Mao QQ, Xu XY, Cao SY, Gan RY, Corke H, Beta T, Li HB. Bioactive compounds and bioactivities of ginger (*Zingiber officinale* Roscoe). Foods. 2019;8(185):1-21. https://doi.org/10.3390/ foods8060185.
- Manju V, Nalini N. Chemoprotective efficacy of ginger, a naturally occurring anticarcinogen during the initiation, postinitiation stages of 1,2 dimethylhydrazine induced colon cancer. Clin Chim Acta. 2005;358(1-2):60-67. https:// doi.org/10.1016/j.cccn.2005.02.018.
- Kabuto H, Nishizawa M, Tada M, Higashio C, Shishibori T, Kohno M. Zingerone [4-(4- hydroxy-3-methoxyphenyl)-2-butanone] prevents 6-hydroxydopamine depression in mouse striatum and increases superoxide scavenging activity in Serum. Neurochemical Research. 2005;30(3):325-332. https:// doi.org/10.1007/s11064-005-2606-3.

- Malla B, Chhetri RB. Indigenous knowledge on medicinal nontimber forest products (NTFP) in Parbat district of Nepal. Indo-Global Research Journal of Pharmaceutical Sciences. 2012;2 (2):213–225. https://doi.org/10.35652/IGJPS.2012.26.
- Inta A, Trisonthi P, Trisonthi C. Analysis of Traditional knowledge in medicinal plants used by Yuan in Thailand. Journal of Ethnopharmacology. 2013; 149: 344–351. https:// dx.doi.org/10.1016/j.jep.2013.06.047
- Singh H, Husain T, Agnihotri P, Pande PC, Khatoon S. An ethnobotanical study of medicinal plants used in sacred groves of Kumaon Himalaya, Uttarakhand, India. Journal of Ethnopharmacology. 2014;154:98–108. https:// dx.doi.org/10.1016/j.jep.2014.03.026
- 62. Mall B, Gauchan DP, Chhetri RB. An ethnobotanical study of medicinal plants used by ethnic people in Parbat District of western Nepal. Journal of Ethnopharmacology. 2015;165:13–17. https://dx.doi.org/10.1016/j.jep.2014.12.057
- Boro M, Das B, Boro KK, Nath M, Buragohain P, Roy S, Sarma PJ, Kalita S, Nath N. Quantitative ethnobotany of medicinal plants used by the Bodo Community of Baksa District, Assam, India. Biodiversitas: Journal of Biological Diversity. 2023 ;24(6): 3169-3182. https://doi.org/10.13057/biodiv/d240610
- Das B, Tissopi G, Devi N, Nath N. Study on folk remedies using medicinal plants by Karbi tribe of West Karbi Anglong District, Assam, India. Indian Journal of Traditional Knowledge (IJTK). 2023; 22(3):576-86. https://doi.org/HYPERLINK "http:// dx.doi.org/10.56042/ijtk.v22i3.57