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Abstract  

To stabilize China's rubber planting area and maintain the security of Chi-

na's natural latex supply as a strategic material, developing the cultivation 

of edible fungi under rubber forests is considered an effective solution. 

However, the proportion of suitable substrate for cultivating edible fungi 

under forests has not been clearly defined. The lack of clarity in economic 

and energy utilization efficiency hinders the promotion and development of 

the under-forest cultivation mode of edible fungi. In this study, we investi-

gated the yield performance of Stropharia rugosoannulata cultivated under 

the forest using 9 different cultivation proportions. Additionally, we exam-

ined the economic and energy efficiency by calculating the input and output 

of each cultivation proportion, with S. rugosoannulata as the target. The 

results showed that proportion F (rubber sawdust: rice straw: rice chaff = 

3:3:2) made full use of local agroforestry wastes. This proportion not only 

achieved the highest yield (8.51 kg m-2) but also had the highest economic 

value, reaching 21.57 CNY m-2. Therefore, it is the most suitable for wide-

spread cultivation under the forest. This study provides reliable theoretical 

support for the rubber-fungus model while enhancing the rubber forest 

economy.   
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Introduction  

Natural rubber (Hevea brasiliensis) is a perennial crop, with its current plant-

ing area in Hainan Province estimated at approximately 585300 ha. Within 

this area, the production zone spans 389300 ha, yielding around 391200 

tons (1). However, since 2013, the price of latex has been declining, discour-

aging farmers from production. Consequently, the phenomenon of aban-

doned rubber trees management has emerged in Hainan Province (2, 3). 

Consequently, increasing the financial gains from rubber plantations has 

become a pressing issue that demands attention. In recent years, numerous 

studies have demonstrated that utilizing the additional space beneath the 

rubber forest to develop intercropping crops could be a promising strategy 

for boosting the revenue of rubber plantations (4, 5). Among these strate-

gies, combining rubber with edible fungus is thought to be one approach 

that functions effectively. 
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Stropharia rugosoannulata, commonly known as the wine 

cap Stropharia, belongs to the genus Stropharia. It con-

tains various nutrients such as vitamins, proteins, minerals 

and polysaccharides. Therefore, S. rugosoannulata is a 

mushroom recommended for cultivation in developing 

countries by the Food and Agriculture Organization of the 

United Nations (FAO) (6). In recent years, there has been a 

growing awareness of the importance of food health care 

and an increasing demand for green natural products. 

Consequently, S. rugosoannulata has become increasingly 

popular among consumers. Previous studies have demon-

strated that the reduced light levels and suitable humidity 

levels in the rubber forest are ideal for the growth of           

S. rugosoannulata, which improves land utilization effi-

ciency (7). Additionally, the residue after the production of 

S. rugosoannulata can be utilized as a bio-organic fertilizer 

to enhance the soil's nutrient content in rubber forests (8). 

In summary, the rubber-fungus system can enhance the 

productivity of rubber plantations and improve the effi-

ciency of resource utilization, resulting in significant eco-

nomic and ecological benefits. 

 Economic analysis has been utilized as an im-

portant method to investigate and quantify the productivi-

ty of agricultural production systems, serving as a key indi-

cators of the quality of cropping pattern (9). In addition to 

assisting farmers in determining crop efficiency, economic 

analysis enables them to select more economically advan-

tageous farming practices and modify the organization of 

agricultural production. Furthermore, it can identify issues 

with resource utilization and make improvements (10). 

Therefore, clarifying the economic benefits and perfor-

mance of the rubber-fungus system is of great significance 

for the popularization and application of this pattern. 

 On the other hand, energy input in agricultural eco-

systems aims to increase production efficiency and ensure 

that the system can consistently produce at a high level. 

Between 1991 and 2012, energy consumption in agricultur-

al production in China increased at an annual rate of      

3.11 %, from 24.7 to 47.1 GJ ha-1 (11). Although the produc-

tivity of agricultural systems has increased due to the large

-scale input of natural and manufactured resources (e.g., 

spawn substrates, irrigation water, fertilizers, pesticides 

etc.), this has also led to rising costs and a wide range of 

environmental issues (12, 13). The rubber-fungus system 

demonstrates significant ecological complementarity, as 

mentioned earlier. Determining the energy input charac-

teristics and utilization efficiency of the rubber-fungus pat-

tern is crucial for ensuring the system's sustainable devel-

opment and optimizing its management. 

 The current lack of research on energy utilization 

efficiency and economic performance hinders the progress 

of under-forest cultivation of S. rugosoannulata. The pre-

sent study established 9 different compost substrate pro-

portions using local agroforestry waste materials, includ-

ing rubber wood shavings, rice straw and cereal hulls, for 

the purpose of cultivating S. rugosoannulata under forest 

conditions. The primary objectives of this study are to       

(i) clarify the financial advantages and energy efficiency of 

cultivating S. rugosoannulata under forest cover using 

different compost substrates and (ii) identify suitable base 

material compositions for under-forest cultivation. This 

research is expected to provide the theoretical basis for 

optimizing and promoting the cultivation technology of 

the rubber-fungus pattern.   

 

Materials and Methods 

Overview of the test site        

The experimental site is located in Dacheng Town, Dan-

zhou City, Hainan Province, with a geographical location of 

19°11′ N, 108°56′ E. Dacheng Town has a tropical monsoon 

climate with an average annual temperature of 23.5 0C and 

the coldest month generally stays above 16 0C. The dry and 

rainy seasons are distinct, with an average annual rainfall 

of 1815 mm. Due to the influence of the monsoon, rainfall 

distribution throughout the year is highly uneven. May to 

October constitutes the rainy season, accounting for 84 % 

of the annual rainfall, while November to April of the fol-

lowing year is the dry season, accounting for 16 % of the 

annual rainfall. The average annual light hours exceed 

2000 h, with an average radiation of 5000 MJ m-2. 

Test design       

The compost substrate for S. rugosoannulata is based on 

rice straw, rubber sawdust and rice chaff as the major 

compost substrates for cultivation, supplemented with 

rice bran, soybean meal, urea, lime and phosphate as mi-

nor compost substrates. Nine different compost substrate 

proportions were established in the present study, as de-

tailed in Table 1, where the letters A-I represents the differ-

ent compost substrates proportions. The compost sub-

strates in this experiment were divided into 2 main groups: 

one based on rubber sawdust and rice straw (2MCS) and 

the other based on rubber sawdust, rice straw and rice 

chaff (3MCS). A randomized block design with 4 replicates 

was adopted, with each plot having an area of 3 m2 and 

containing 60 kg compost substrate. The experiment was 

conducted from November 2022 to April 2023, with man-

agement practices based on conventional mushroom cul-

tivation techniques (Table 1). 

Determination method      

Economic analysis      

S. rugosoannulata yield, gross return, net return, benefit-to

-cost ratio and other economic indicators were calculated 

as below (14-16).  

Yield (kg m-2) = Fresh weight per treatment (kg)/Treatment 

area (m2)  

Gross return (CNY m-2) = Yield (kg m-2) ×Price (CNY kg-1)  

Net return (CNY m-2) = Gross return (CNY m-2)-Total produc-

tion cost (CNY m-2)  

Benefit-to-cost ratio = Gross return (CNY m-2)/Total produc-

tion cost (CNY m-2)  

Basic information on energy and cost inputs was entered 

into Excel 2016’s spreadsheet and simulated using SPSS 

26.0 software (Table 2).  
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Energy analysis      

Energy inputs for S. rugosoannulata intercropping under 

rubber forest production include irrigation water, machin-

ery, diesel, electricity, labor, spawn substrate, fertilizer, 

compost substrate and pesticide. Energy outputs include 

the fresh weight of S. rugosoannulata. The energy con-

tained in the inputs and outputs was calculated by multi-

plying the statistical quantities of the inputs and outputs 

by the corresponding energy equivalents. The total energy 

input is the sum of all input energy and the total energy 

output is the sum of all output energy. The energy equiva-

lent values of inputs and outputs are shown in Table 2 (17). 

 

Energy use efficiency (EUE) = Energy output (Eo, MJ m-2)/

Energy input (Ei, MJ m-2)  

Energy productivity（EP, kg MJ-1）= Yield of the S. rugoso-

annulata (Y, kg m-2)/Energy 

input (Ei, MJ m-2)  

Human energy profitability (HEPF) = Energy output (Eo, MJ 

m-2)/Human energy input 

(Eh, MJ m-2)  

Statistical analysis      

All data were organized using Excel 2016 (Microsoft Office, 

WA, USA). Analysis of variance was performed on the data 

using IBM SPSS Statistics 26 (IBM, NY, USA) and multiple 

comparisons were conducted at the 0.05 level using the 

least significant difference (LSD) method to determine the 

statistical significance of different treatments. Origin 2022 

(Mapping Software, MA, USA) was used for drawing.   

 

Results   

Stropharia rugosoannulata Production under different 

proportions of compost substrates for intercropping S. 

rugosoannulata under rubber forests       

The effect of different compost substrate proportions on 

the yield of S. rugosoannulata varied significantly (Fig. 1). 

Among them, proportion F had the highest yield, which 

was significantly higher than the other proportions. The 

yield of S. rugosoannulata in proportion F reached 8.51 kg 

m-2, which was 155.3 times higher than that of proportion I 

(0.05 kg m-2), the proportion with the lowest yield. As 

shown in Fig. 1, the yield of different proportions follows 

this order: F > D > H > C > G > E > A > B > I. 

Group Proportion Major compost substrates Minor compost substrates 

2 MCS  

A Rubber sawdust: Rice straw =0: 1 

Rice bran 5 %, 

Soybean meal 1 %, 

Urea 0.5 %, 

P2O5 0.5 %, 

Lime 0.5 %   

B Rubber sawdust: Rice straw =1: 3 

C Rubber sawdust: Rice straw =1: 1 

D Rubber sawdust: Rice straw =3: 1 

E Rubber sawdust: Rice straw =1: 0 

3 MCS 

F Rubber sawdust: Rice straw: Rice chaff =3: 3: 2 

G Rubber sawdust: Rice straw: Rice chaff =1: 1: 2 

H Rubber sawdust: Rice straw: Rice chaff =1: 1: 6 

I Rubber sawdust: Rice straw: Rice chaff =0: 0: 1 

Table 1. The detail proportion of different compost substrates for intercropping Stropharia rugosoannulata under rubber forests.  

2MCS: proportions based on 2 major compost substrates (rubber sawdust and rice straw), 3MCS: proportions based on 3 major compost substrates (rubber saw-
dust, rice straw and rice chaff). The letters A-I stand for the different compost substrates proportions. The major compost substrates for A, B, C, D, E, F, G, H, I are 
Rubber sawdust: Rice straw or Rubber sawdust: Rice straw: Rice chaff, the proportions of the major compost substrates for A, B, C, D, E, F, G, H, I are 0:1, 1:3, 1:1, 
3:1, 1:0, 3:3:2, 1:1:2, 1:1:6, 0:0:1 respectively. The minor compost substrates are the same for all proportions.  

Particulars Unit 
Energy 
equivalent 

(MJ/unit) 

Price 

(CNY/

unit) 
Reference 

A. In puts  

1. Labor h 1.96 12.5 (30) 

2. Machinery h 62.70   (31-33) 

3. Diesel l 56.31 8.13 (34) 

4. Spawn substrate PCS 24.26 2.50   

5. Fertilizer   

Phosphorus(P2O5) kg 12.44 5.80 (35) 

Urea kg 57.20 5.30 (36) 

Lime kg 2.89 1.67 (37) 

6. Compost substrate   

Rubber sawdust kg 16.50 0.20 (38) 

Rice straw kg 14.09 1.25 (5) 

Rice chaff kg 14.84 1.10 (39) 

Rice bran kg 15.50 2.50 (40) 

Soybean meal kg 19.50 5.60 (41) 

7. Pesticide         

Herbicide kg 238 152.3 (17) 

Insecticide kg 101.2 166.0 (42) 

Fungicide kg 216 22 (17) 

8.Irrigation         

Water m3 1.02 2.80 (43) 

9. Electricity kWh 11.93 0.90 (44) 

B. Outputs   

Stropharia rugosoannulata kg 13.9 * (45) 

Table 2. Energy equivalent and prices of inputs and outputs in the rubber 
tree-fungus inter cropping system.  

* Frist-class 23.8 CNY·kg-1, Second-class 15.4 CNY·kg-1, Third-class 8 CNY·kg-1, 
Out of class 6 CNY·kg-1.  
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Impact of different proportions of compost substrates on 

economic efficiency      

Benefit-to-cost ratio for different proportions of com-

post substrates         

For sustainable production of S. rugosoannulata, minimiz-

ing resource consumption and achieving a high benefit-to-

cost ratio are essential. Proportion F had the highest bene-

fit-to-cost ratio of 129.26 %, followed by proportion E with 

a ratio of 121.14 %, proportion D with a ratio of 118.29 % 

and proportion G with a ratio of 115.94 %. Except for pro-

portions F, D, E and H, the rest of the proportions (A, B, C, 

G, I) had a benefit-to-cost ratio of less than 100 % (Fig. 2). 

The order of the benefit-to-cost ratio, from highest to low-

est, in all proportions was F > E > D > H > G > A > C > B > I 

(Fig. 2). 

Total production cost, gross return and net return of 

different proportions of compost substrate        

The total production cost, gross return and net return of S. 

rugosoannulata are shown in Table 3. Regarding total pro-

duction cost, proportion A had the highest production cost 

among the 2MCS, totaling 73.65 CNY m-2. Compared to pro-

portions B, D and E, this cost was 9.39 %, 8.63 %, 15.37 % 

and 26.35 % higher respectively. The calculation of pro-

duction costs revealed a gradual increase with the addi-

tion of more rice straw in 2MCS. The highest cost among 

the 3MCS proportions was found in proportion F, at 75.55 

CNY m-2. Compared to proportions G, H and I, this cost was 

6.75 %, 4.01 % and 12.83 % higher respectively. Due to the 

high yield of proportion F, it requires high economic inputs 

for manual harvesting. Regarding total gross return, pro-

portion D recorded the highest gross return in 2MCS at 

73.73 CNY m-2. This amount was 19.14 % higher than pro-

portion A, 54.92 % higher than proportion B, 27.15 % high-

er than proportion C and 10.63 % higher than proportion E. 

Proportion F had the highest gross return among the 

3MCS, with a value of 97.12 CNY m-2. This value was 30.03 

%, 14.35 % and 99.11 % higher than proportions G, H and I 

respectively. Among all the proportions, proportion F had 

a significantly higher gross return than proportions B and I, 

but no significant difference compared to other propor-

tions. In terms of net return, the proportions that achieved 

positive returns were D, E, F and H, with 11.40, 11.65, 21.57 

and 10.66 CNY m-2 respectively (Table 3). The rest of the 

proportions had negative returns. The net return of pro-

portion F was significantly higher than that of proportions 

D, E and H (89.2 %, 85.2 % and 102.3 % higher respective-

ly).  

Effect of different proportions of compost substrate on 
energy efficiency       

Energy input and output of different proportions of 
compost substrate       

Proportion E had the highest energy input of 477.58 MJ m-2 
primarily because it was exclusively treated with rubber 
sawdust. The energy per unit weight of rubber sawdust 
was higher than that of other compost substrates, such as 

Fig. 1. Stropharia rugosoannulata yield under different proportion of com-
post substrates under rubber forests. Vertical bars represent ± SE of the 
mean. Means followed by different lowercase letters are significantly differ-
ent according to the least significant difference (LSD) test at a significance 
level of 0.05. The letters A-I stand for the different compost substrates pro-
portions.   

Fig. 2. Benefit cost ratio under different proportions of compost substrates 
for intercropping Stropharia rugosoannulata under rubber forests. Vertical 
bars represent ± SE of the mean. Means followed by different lowercase let-
ters are significantly different according to the least significant difference 
(LSD) test at a significance level of 0.05. The letters A-I stand for the different 
compost substrates proportions.  

Proportion 
Total production cost 

(CNY·m-2) 
Gross return 

(CNY·m-2) 
Net return 
(CNY·m-2) 

A 73.65 59.62ab -14.03 c 

B 66.74 33.24bc -33.50c 

C 67.30 53.72ab -13.58 c 

D 62.33 73.73ab 11.40 b 

E 54.25 65.89ab 11.65 b 

F 75.55 97.12 a 21.57 a 

G 70.46 67.95ab -2.50 b 

H 72.53 83.19ab 10.66 b 

I 65.86 0.87c -64.99 d 

Table 3. Gross return, total production cost and net return under different 
proportions of compost substrates for intercropping Stropharia rugosoannu-
lata under rubber forests.  

Means followed by different lowercase letters are significantly different ac-
cording to the least significant difference (LSD) test at a significance level of 
0.05. The letters A-I stand for the different compost substrates proportions.  
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rice straw. Following this, proportion D had an input ener-
gy value of 459.49 MJ m-2 (Fig. 3). The gradual increase in 
energy input for proportions A-D is due to the increasing 
proportion of rubber sawdust in the compost substrates. 
The energy inputs of proportions F-I were as follows, 
445.20 MJ m-2, 442.59 MJ m-2, 444.47 MJ m-2 and 440.88 MJ 
m-2 respectively (Fig. 3).  

 Non-renewable energy sources include energy from 
diesel, machinery, fertilizer and pesticides, whereas re-
newable energy sources include energy from labor, spawn 
substrate, compost substrates and irrigation water         

(Fig. 4a). The proportion of renewable energy in total ener-
gy inputs ranged from 96.77 % to 97.32 %, which was high-
er than the proportion of non-renewable energy inputs, 

ranging from 2.79 % to 3.23 % (Fig. 4a). Direct energy in-
puts comprises diesel fuel, irrigation water and labor used 
in the production process, while indirect energy inputs 

include machinery, spawn substrate, fertilizer, compost 

substrate and pesticide. The proportion of indirect energy 
to total energy inputs (94.16-96.23 %) was higher than that 

of direct energy inputs (3.77-5.84 %) (Fig. 4b). Direct ener-
gy inputs were ranked as H > F > G > D > C > E > A > B > I, 
while indirect energy inputs were ranked as E > D > I > H > 

G > F > C > B > A (Fig. 4b). Energy inputs mainly include ma-
chinery, diesel, irrigation water, labor, fertilizer, compost 

substrate, pesticide and spawn substrate. In terms of ener-

gy inputs, spawn substrate and compost substrate ac-
counted for more than 90 % of the total energy inputs   
(Fig. 4c). The energy input from the compost substrate was 

the largest source of energy consumption among the pro-
portions (331.6-251.6 MJ m-2), accounting for more than 63
-69 % of the total energy input (Fig. 4c). The energy inputs 

of different agricultural production methods were, in de-
scending order, compost substrate > spawn substrate > 
electricity > labor > irrigation water > machinery > pesti-

cide > fertilizer > diesel (Fig. 4c). 

Fig. 3. Total energy input (a) and output (b) under different proportions of compost substrates for intercropping Stropharia rugosoannulata under rubber forests. 
Vertical bars represent ± SE of the mean. Means followed by different lowercase letters are significantly different according to the least significant difference (LSD) 
test at a significance level of 0.05.  

Fig. 4. Percentage of total energy input by renewable and non-renewable (a), direct and indirect (b), and different sources (c) (machinery, human labor, diesel, 
fertilizer, compost substrate, irrigation water, biocide and spawn substrate) under different proportions of compost substrates for intercropping Stropharia 
rugosoannulata under rubber forests.  
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Energy use efficiency, energy productivity and human 

energy profitability of different proportions of compost 

substrates       

The EUE, EP and HEPF of intercropping S. rugosoannulata 

under rubber forests with different proportions of compost 

substrates are shown in Table 4. The results indicate that 

proportion F had the highest EUE (0.27), EP (0.057 kg MJ-1) 

and HEPF (3.00) among all the proportions. Proportion F 

was significantly higher than proportions A, B, C, D, E, G 

and H in terms of EUE and EP and significantly higher than 

proportions A, B, E and I in terms of HEPF. Proportion I had 

the lowest EUE (0.7*10-2), EP (0.04*10-2 kg MJ-1) and HEPF 

(0.07) among all the proportions.  

Discussion 

Production      

The yield of S. rugosoannulata in this study ranged from 

0.05 to 8.51 kg m-2 (Fig. 1). The wide range of yield may be 

attributed to the diverse range of compost substrate and 

their proportions used in this study (18). The highest yield 

of 8.51 kg m-2 (Fig. 1) was obtained from proportion F, 

which is consistent with the findings of previous research 

in Hainan province (19), China. With a similar amount of 

compost substrate, the yield of the present study was 

slightly higher than that in the previous study.  

 The 2MCS, consisting of compost substrate with the 

addition of rubber sawdust and rice straw, yielded 2.18-

5.22 kg m-2. Proportion D had the highest yield of 5.22 kg m
-2 (Fig. 1), attributed to the higher content of rubber saw-

dust in proportion D, which favors the growth of S. rugoso-

annulata at later stages. Research indicates that S. rugoso-

annulata is a grass-rotting edible fungus. Nutrient supply 

during the mycelial growth period primarily comes from 

rice straw and S. rugosoannulata also possess a robust 

ability to degrade lignocellulose (20). The main energy 

source for subsequent growth is the decomposition of rub-

ber sawdust. In this study, the yields of proportion E and 

proportion A were low, measuring 2.18 kg m-2 and 2.98 kg 

m-2 respectively (Fig. 1). Among them, the main compost 

substrate used in proportion A was solely rice straw. The 

yield of proportion A was similar to that reported by (21), 

suggesting that a single compost substrate alone may not 

be sufficient to meet the nutritional requirements of S. 

rugosoannulata, leading to a mismatch between nutrient 

supply and demand for the growth of S. rugosoannulata. 

 Through the comparison of proportion D and pro-
portion H, it was shown that the addition of rice chaff to 

the main compost substrate of cultivated S. rugosoannula-

ta had a significant impact on yield, which was consistent 

with previous studies (22, 23). By comparing proportion F 

and proportion D, it was found that while proportion D 

could provide sufficient nutrients for the growth of S. ru-

gosoannulata mycelium, the high density of rubber saw-

dust resulted in poor substrate permeability, which further 

hindered the growth of mycelium and the formation of 

fruit bodies. 

 Proportion F, G and H in 3MCS involved the addition 

of a specific quantity of rice chaff to rubber sawdust and 

rice straw. Among them, Proportion I was the pure rice 

chaff treatment and the yield was the lowest, only 0.05 kg 

m-2 (Fig. 1). This result indicated that using only rice chaff 

as the main compost substrate had the disadvantage of 

insufficient nutrients and was not suitable for the mycelial 

growth of S. rugosoannulata. This finding is consistent 

with the study conducted by (2). The yields of proportion G 

and H were 4.62 kg m-2 and 5.17 kg m-2 respectively (Fig. 1). 

This difference in yield could be attributed to the addition 

of rice chaff, which enhances the permeability of the main 

compost substrate. The improved permeability is benefi-

cial for the formation and growth of fruit bodies. 

Economic benefits       

In terms of cultivation cost, the proportion cost of propor-

tion F was 75.55 CNY m-2 due to the high labor cost      

(Table 3). The cost of proportion A is second only to that of 

proportion F, at 73.65 CNY m-2 (Table 3). This is that be-

cause rice straw (higher price than wood chips) is the main 

compost substrate in proportion A, and the high cost is 

associated with manual picking. The cost of the main com-

post substrate for proportion E was the lowest (54.25 CNY 

m-2) (Table 3). This is because rubber sawdust was primari-

ly used in proportion E, which has a lower unit price. The 

cost of proportion H, G and I gradually decreased with the 

decrease in rice chaff addition. Conversely, the cost of pro-

portions B, C and D gradually decreased with the increase 

in rubber sawdust addition. From a net return perspective, 

only proportions D, E, F and H were profitable. Among 

them, proportion F had the highest net return, reaching 

21.57 CNY m-2, followed by Proportion E with a net return 

of 11.65 CNY m-2 (Table 3). The high net return of propor-

tions F and E, which is low-cost and provide sufficient nu-

trients. Although the cost of proportion H is high, its yield 

is also high, resulting in profit similar to that of proportion 

D. In this experiment, the cost and profit of proportion D 

were relatively average. Proportions A, B, C, G and I are not 

profitable. Proportions A and I involve treating pure rice 

straw and pure rice chaff separately. However, these pro-

portions have low yields and high costs, making them un-

Proportion 
Energy use 
efficiency 

(EUE) 

Energy productiv-
ity (EP, kg·MJ-1) 

Human energy 
profitability 

(HEPF) 

A 0.1bcd 0.022bcd 2.01bc 

B 0.07d 0.016d 1.81c 

C 0.15bc 0.032bc 2.35abc 

D 0.16b 0.034b 2.66ab 

E 0.09cd 0.020cd 1.98bc 

F 0.27a 0.057a 3.00a 

G 0.14bc 0.031bc 2.30abc 

H 0.16b 0.035b 2.49abc 

I 0.7*10-2e 0.04*10-2e 0.07d 

Table 4. Energy use efficiency, energy productivity and human energy profita-
bility under different proportions of compost substrates for intercropping 
Stropharia rugosoannulata under rubber forests.  

Means followed by different lowercase letters are significantly different ac-
cording to the least significant difference (LSD) test at a significance level of 
0.05. The letters A-I stand for the different compost substrates proportions.  
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profitable. Additionally, the price of S. rugosoannulata sig-

nificantly affects the benefit-to-cost ratio. Therefore, an in-

depth analysis of market dynamics, pricing and strategies 

for reducing management and production cost must be 

conducted to increase the economic viability and competi-

tiveness of intercropping S. rugosoannulata under rubber 

forests. 

Energy efficiency       

In terms of the energy input for 2MCS (proportions A-E), 

proportion E had the highest energy input (477.58 MJ m-2) 

due to its main component, rubber sawdust. The energy 

per unit weight of rubber sawdust was higher than that of 

straw. Proportion A had the lowest energy input (397.08 

MJ m-2). The energy input of proportions A-D gradually 

decreased with the decrease in the proportion of rubber 

sawdust. When considering the energy input for 3MCS 

(proportions F-I), proportion F had the highest energy in-

put at 445.20 MJ m-2, while the energy input of the other 

proportions was similar. From the perspective of energy 

composition of different production methods, compost 

substrates are typically the primary source of energy con-

sumption in crop production (24, 25). In our study, the 

spawn substrate ranked second only to the compost sub-

strate in terms of energy input. Generally, the mass of the 

compost substrate and spawn substrate accounted for 

more than 90 % of the total energy consumption (Fig. 4). 

However, the compost substrate used in this experiment 

primarily consists of renewable agricultural and forestry 

straw, such as sawdust straw. The chemical fertilizers used 

in this study accounted for only 0.19 to 0.23 % (Fig. 4). The 

high consumption of non-renewable resources, such as 

diesel and machinery, in agricultural production has signif-

icantly reduced economic benefits and farmers' income. 

Additionally, this resource depletion has also had an im-

pact on ecological and energy security (26, 27). However, 

the energy input of diesel and machinery in this study is 

low, approximately 0.03 % and 1.03 % respectively (Fig. 4). 

Reducing the use of fuel and machinery in the production 

of S. rugosoannulata can not only bring higher economic 

benefits to farmers but also mitigate environmental pollu-

tion.  

 From the perspective of energy input form, indirect 

energy input accounts for 94.16-96.23 % of the total energy 

input, which is higher than the 3.77-5.84 % of direct energy 

input (Fig. 4). The main reason for the higher proportion of 

indirect energy input is the extensive use of compost sub-

strates, which are also utilized in the production of other 

types of edible fungi (28). In terms of energy renewability, 

all renewable energy inputs are much higher than non-

renewable energy inputs (Fig. 4). Non-renewable energy, 

as a significant component of total energy input, can have 

detrimental effects on the environment and pose serious 

threats to the sustainability of agricultural ecosystems 

(29). Therefore, under-forest cultivation of S. rugosoannu-

lata in a forest cultivation mode can ensure ecological and 

energy security. It can also promote the development of 

renewable energy in agricultural production activities and 

increase the utilization of renewable energy in agricultural 

resource production. As a result, it directly or indirectly 

reduces reliance on non-renewable energy in agriculture 

and minimizes the environmental impact. The EUE, EP and 

HEPF of S. rugosoannulata under-forest cultivation mode 

are mainly affected by the proportion of S. rugosoannulata 

cultivation and labor input. In this study, the EUE, EP and 

HEPF of proportion F were higher than those of other pro-

portions (Table 4). This is because the substrate energy 

input of proportion F was lower than that of other propor-

tions, while the energy output was higher than that of oth-

er proportions.  

 

Conclusion  

In conclusion, proportions D, F and H demonstrate greater 

comprehensive benefits. This is attributed to their higher 

yields, economic benefits and EUE, coupled with lower 

energy input requirements. Proportions D, F and H provide 

adequate nutritional requirements for the growth of S. 

rugosoannulata due to the balanced proportions of rice 

straw and rubber sawdust. Additionally, the optimal pro-

portion of rice chaff in proportion F enhances the permea-

bility of the compost substrate, further augmenting the 

yield. 

 Therefore, planting S. rugosoannulata under rubber 

forests proves to be an effective intercropping technique 

that enhances the overall benefits of rubber tree planta-

tions. Coordinating the relationship between various in-

puts and improving their efficiency will further enhance 

the overall benefits of the rubber forest intercropping sys-

tem.   
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