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Abstract  

Insect pests pose significant challenges to vegetable crops, causing not only 

economic losses but also compromising the quality of our food. Shockingly, 

up to 20 % of globally produced goods fall victim to these insidious invaders. 

While chemical insecticides have historically bolstered food production, they 

come with notable drawbacks, including handling risks, residue concerns and 

negative impacts on non-target species and the environment. Though they 

have not yet completely replaced chemical insecticides, biopesticides are 

becoming key in reducing pesticide overuse and promoting safer, residue-free 

food and environments. Derived from plants and microorganisms, 

biopesticides offer a safer alternative, ranging from plant extracts to 

microbial agents such as bacteria, fungi, viruses and nematodes. Additionally, 

insect hormones and semiochemicals, along with silica-based mineral 

products like activated clay and rice husk, contribute to eco-friendly pest 

control solutions. Cutting-edge nano biopesticides also deliver unparalleled 

pest control with precision targeting and excellent environmental credentials. 

In this comprehensive exploration, we delve deep into the myriad forms of 

biopesticides, their commercial availability, modes of action and the 

advantages and disadvantages in vegetable pest management. Crucially, we 

illuminate the path toward integrating biopesticides into holistic pest 

management strategies, which can lead to healthier crops, increased yields 

and more sustainable agricultural practices. By emphasizing biopesticides, 

we can promote environmental safety and support a greener future in 

agriculture. 
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vegetables; insect pests; biopesticides; sustainable management 

Introduction  

Agricultural pests, including weeds, arthropods, mollusks, plant pathogens 

and vertebrates, significantly reduce crop output and quality. The rise in 

pest-related agricultural losses has resulted in a 40 % decrease in potential 

world crop yields. Insect pests alone contribute to an estimated 10.8 % of 

global agricultural losses, leading to an annual decline in agricultural 

output valued at approximately $470 billion (1). Vegetable cultivation faces 

significant challenges from insect infestations, including fruit flies, 

diamondback moths, mites, chili thrips, brinjal shoots and fruit borers and 

tomato fruit borers. Insect pests are responsible for 15-20 % of productivity 

losses in India’s primary food and cash crops (2). These figures underscore 
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the urgent need to adopt sustainable pest management 

practices and highlight the importance of eco-friendly 

alternatives to conventional pesticides in the agricultural 

sector. 

Biopesticides offer numerous benefits: they are cost

-effective, environmentally friendly, employ a sustainable 

and targeted mode of action, leave behind no residues 

and do not contribute to greenhouse gas emissions. 

However, despite their environmental advantages, 

biopesticides also face several limitations. They often have 

a short shelf life, degrade quickly under unfavourable 

conditions and may exhibit inconsistent efficacy in the 

field. Their slower action and narrow pest-specific focus 

can limit their use in large-scale agriculture, where rapid 

and broad-spectrum control is often necessary (3). 

Biopesticides work through mechanisms such as inhibiting 

and destroying the plasma membranes of pathogens and 

pests as well as interfering with protein translation. As a 

result, farmers increasingly rely on chemical pesticides to 

enhance crop production by managing diseases and pests, 

which are often composed of host-specific polymers. 

However, the overuse of these pesticides poses significant 

threats to aquatic ecosystems, harming fish and other 

marine life. 

In contrast to synthetic pesticides, biopesticides are 

highly precise in targeting specific hosts, have a shorter 

shelf life are less persistent in soil and the environment 

and are made from sustainable raw materials, despite 

several limitations that have affected their acceptability 

and commercialization (4). Over the past few decades, the 

development of affordable and effective management 

options for pests and pathogens has greatly benefited 

from the exploration of medicinal plants, antimicrobial 

peptides, natural products and essential oils (5).  

Despite advancements in biological pest 

management strategies and the growing recognition of 

biopesticides as eco-friendly alternatives to synthetic 

pesticides, there remains a significant gap in their 

widespread adoption and commercialization. Key 

challenges include the fragmented and underdeveloped 

research on integrating biopesticides with other biological 

control methods, such as the synergistic use of 

entomopathogens, botanicals and nano-biopesticides. 

Additionally, further investigation is needed into innovative 

delivery systems, including nano-encapsulation and other 

formulations, to enhance the stability, efficacy and 

marketability of biopesticides. Addressing these challenges 

is crucial for promoting the effective use of biopesticides in 

sustainable agriculture. 

The main objective of the current study is to 

understand the latest advancements in sustainable 

vegetable pest management, with a particular emphasis on 

novel biological methods. These methods include 

entomopathogens, botanicals, insect growth regulators, 

semiochemicals, inert ash materials and nano-biopesticides 

to promote sustainable farming (Fig. 1). This study involves 

examining the various forms of biopesticides, their 

commercial availability, mechanisms of action and their 

respective advantages and disadvantages. 

2. Microbial pesticides 

Microbial pesticides are compounds used to manage pests 
and are derived from microorganisms, including bacteria, 

fungi, protozoa, viruses and algae (6). 

2.1. Biopesticides derived from bacteria 

Bacillus spp. are extensively used as biological control 

agents in agriculture, functioning through both direct and 

indirect mechanisms. The direct processes include 

nutrient supply, hormone level modulation and the 

Fig. 1. Biopesticides in insect pest management: This figure represents a flowchart depicting the types of biopesticides. The category includes Microbial 
(viruses, bacteria, nematodes and fungi), botanicals, semio-chemicals (pheromones and allelochemicals), nano biopesticides and IGRs. Each category is illus-
trated with a corresponding image that represents its mechanism or source. 
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secretion of chemical compounds to combat plant 

infections. Indirect strategies involve inducing resistance 

and enhancing plant growth. Bacillus spp. contribute to 

plant development by supplying nutrients, modulating 

hormones, providing resistance to pathogens and 

promoting overall plant growth (7, 8). Bacillus-based 

biopesticides play a crucial role in managing agricultural 

pests while simultaneously improving soil quality and 

health as well as enhancing overall crop growth, yield and 

quality (9). Commercial bacterial biopesticides products 

have been widely utilized in the management of vegetable 

pests (Table 1). 

2.1.1. Bacillus thuringiensis (Bt) as an effective microbial 
control agent 

Bacillus thuringiensis (Bt), a gram-positive bacterium, is a 

well-known bacterial insecticide that has been 

commercially developed for pest management. Bt acts as 

an insecticide through the production of poisonous 

parasporal crystals and endospores. When ingested by 

insects, these substances dissolve in the alkaline 

environment of the midgut, releasing delta-endotoxin, a 

protein that is lethal to insects (10), as shown in Fig. 2. Bt is 

the most recognized bacterial insecticide and has been 

developed into various commercial products (11, 12). 

Business firms and government research institutes 

collaborate to ensure the widespread availability of Bt 

products in India. Indigenous Bt isolates, such as DORBt-1, 

DORBt-5, PDBCBT1 and NBAIIBTG4, have been developed 

and commercialized using solid-state and liquid 

fermentation technologies (13). The effectiveness of liquid 

Bt formulations has been demonstrated in controlling 

pests like H. armigera in pigeon peas and sunflowers 

across various regions of India (14). Researchers have 

isolated diverse Bt strains from different ecological niches 

in India, which exhibit promising insecticidal activity 

against various pests (15, 16). 

2.2. Biopesticides derived from fungi 

Entomopathogenic fungi (EPF) play a crucial role in global 
biological pest control. Mycoinsecticides operate through 

6 stages of action: attachment, germination, penetration, 

invasion, reproduction and host death (17), as shown in 

Fig. 3. 

No. Entomopathogenic bacteria Commercial name Target pest Reference 

1. Bacillus sphaericus VectoLex, VectoMax Melolontha (92) 

2. Bacillus thuringiensis var. israelensis Tacibio, Vectobac®, Teknar®, Bactimos® Melolontha melolontha (92) 

3. Bacillus thuringiensis var. Kurstaki 
Dipel®, Javelin®,Thuricide®, Worm 

Attack®, Killer®, Biobit 
Plutella xylostella        

Helicoverpa armigera (93) 

4. Burkholderia spp. 
Yorker, Paceilomyces, Paecil, Pacihit, 

Bio-Nematon 

Tetranychus urticae (94) 

Riptortus pedestris  
Spodoptera exigua (95) 

5. Streptomyces spp. 
Neomycin, streptomycin, cypemycin, 

grisemycin, bottromycins and 
chloramphenicol 

Spodoptera litura (96) 

Table 1. Commercial bacterial products used in insect pest management.  

Fig. 2. Mode of action of bacterial biopesticides: This figure illustrates the mode of action of Bacillus thuringiensis (Bt) as a biopesticide. This process 
demonstrates how Bt targets pests while being safe for crops. 
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2.2.1. Types of mycoinsecticides 

2.2.1.1. Beauveria spp. 

Studies have shown that commercial formulations of B. 

bassiana-based mycoinsecticides are robust and effective 

against lepidopterans. B. bassiana, which does not favor 

any specific host has proven effective in crops such as 

maize, coffee, beans, cabbage, potatoes and tomatoes. 

Scanning electron microscopy (SEM) investigations on 

greasy cutworm larvae demonstrated that B. bassiana 

infected them (18). The colonization of B. bassiana as an 

endophyte in natural tomato plants resulted in significant 

mortality of whiteflies, Bemisia tabaci (19). Furthermore, B. 

bassiana has been observed to be effective against various 

aphid species, including Lipaphis erysimi, Rhopalosiphum 

padi, Brevicoryne brassicae and Schizaphis graminum at 

concentrations ranging from 10^6 to 10^8 spores/mL (20). 

2.2.1.2. Verticillium spp. 

Lecanicillium attenuatum has been found to be effective 
against Plutella xylostella (21). Certain variants of L. 

psalliotae have been discovered to be harmful to insect pests, 

such as thrips, when associated with the cardamom plant. 

Following insect feeding and injury, L. psalliotae was 

observed to react to the volatile compounds generated by 

cardamom (22). Additionally, some Lecanicillium isolates 

demonstrated reduced efficacy against tomato whiteflies at 

higher temperatures, highlighting the need to select isolates 

that are resistant to environmental stressors before 

commercial formulation (23). 

2.2.1.3. Metarhizium spp. 

Metarhizium exhibits a narrower host range compared to 

Beauveria, being able to infect approximately 200 insect 

species across seven orders. It can be found in gnats, thrips, 

flies, root weevils and beetles (24). The effectiveness of the 

fungus is influenced by various factors, including the timing 

of conidia application, application temperature, fungus 

strain, culture medium and application technique (25). 

Environmental elements such as light, pH, temperature, 

metal toxicity, nutrient availability and reactive oxygen 

species (ROS) impact the growth and maturation of 

Metarhizium. Exposure to UV radiation and extreme 

temperatures has been shown to decrease the 

pathogenicity of the fungus (26). 

The goal of this study was to apply genetic 
engineering to enhance the method of action of 

Metarhizium (27). Various types of commercial fungal 

biopesticide products were utilized in the management of 

insect pests in vegetable crops (Table 2). 

2.3. Biopesticides derived from viruses 

Several viruses have been approved for insect pest 

management, with ongoing research aimed at identifying 

and evaluating novel viruses (28). There are over 60 

insecticides on the market based on baculovirus (29). Prior 

to advancements in molecular biology, baculoviruses were 

classified into 2 major categories: Nucleopolyhedroviruses 

(NPVs) and Granuloviruses (GVs), based on the structure of 

their occlusion bodies (30). NPVs developed for insect pest 

control include those targeting major caterpillar pests such 

as Helicoverpa spp., which damage cotton and other field 

crops as well as Spodoptera spp., which affect vegetable 

crops and occasionally Orgyia spp. in forest areas (31). NPVs 

cause infections that eliminate significant pests, including 

Spodoptera litura and Helicoverpa armigera (32), with the 

mode of action of NPVs illustrated in Fig. 4. 

Fig. 3. Mode of action of entomopathogenic fungi: This figure depicts the infection process of fungal biopesticides targeting insect pests. The process 
illustrates how fungal biopesticides control pest populations through infection and reproduction. 
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As for Granuloviruses, the potato tuberworm GV is 

one of the most commonly used viruses as a microbial 

biocontrol agent worldwide (33). The diamondback moth, 

Plutella xylostella, has also been effectively controlled using 

GV (13). Additionally, commercial products containing 

entomopathogenic viruses for vegetable pest management 

are listed in Table 3. 

2.4. Biopesticides derived from nematodes 

The families Heterorhabditidae and Steinernematidae 

include the most widely used and effective species of 

entomopathogenic nematodes (EPNs) (34). These 

nematodes, such as Heterorhabditis spp. and Steinernema 

spp., are associated with symbiotic bacteria from the 

families Xenorhabdus and Photorhabdus respectively, 

which are lethal parasites of many soil-dwelling insect pests 

(35). The mode of action of EPNs is depicted in Fig. 5. In vitro 

experiments examining the effects of Steinernema 

carpocapsae Mex and Heterorhabditis indica LN2 on Agrotis 

ipsilon third instar larvae after 72 h resulted in mortality rates 

of 80.0 % and 83.3 % respectively. According to a study, 

Steinernema thermophilum was the first species recognized 

as harmful to lepidopteran eggs (36). 

2.5. Botanical pesticides 

Botanical pesticides are derived from plants and are used to 

kill, repel or deter pests (37), as shown in Fig. 6. In addition to 

their role in plant growth and development, plant secondary 

metabolites are essential for resistance to both abiotic and 

biotic stresses. These compounds also play a part in 

metabolic processes that regulate plant tolerance (38). Most 

botanical pesticides are applied to control insect pests, 

which has been the focus of numerous studies. The growing 

popularity of plant-based insecticides, especially in organic 

farming, is driven by concerns over chemical pesticides. 

These concerns include pesticide residues in crop yields, the 

development of insecticide-resistant pests and the 

resurgence of previously minor pests becoming major 

threats (39). Research has shown that EC formulations 

containing solvent extracts from Strychnos nux-vomica L. 

exhibit oviposition deterrence against Plutella xylostella L. 

Among these formulations, the highest oviposition 

deterrence was observed in EC formulations containing 

chloroform extracts from the fruit rind of S. nux-vomica L. at 

a 2 % concentration (40). Various sources of phyto-pesticides 

and their active ingredients for the effective management of 

vegetable pests have been listed (Table 4). 

No Entomopathogenic fungi Commercial name Target pest Reference 

1. Beauveria bassiana Baeuvesterk, Agritek, B2 Plus, Green 
Beauveria, Biogaurd 

Thrips tabaci 

Bemisia tabaci 
(97) 

Brevicoryne brassicae 

Rhopalosiphum padi 
(98) 

Bemisia tabaci (84) 
Leucinodes orbonalis (99) 

Earias vittella (83) 
2. Beauveria brongniarti Holotrichia serrata (100) 

3. Verticillium lecanii Bio Vertivill, Green Verticill, Verticoz - P 
Lipaphis erysimi (101) 

Leucinodes orbonalis (99) 

4. Metarhizium anisopliae Bio Meta Cure, Green Meta, Plant’s Buddy 
Lipaphis erysimi (101) 

Melolonthamelolontha (102) 
Tetranychus urticae (103) 

Table 2. Commercial fungal products applied in insect pest management.  

Fig. 4. Mode of action of entomopathogenic viruses: This figure illustrates the infection process of a virus within an insect larva. This process highlights 
how viral biopesticides target insect larvae. 
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No. Entomopathogenic virus Commercial name Target pest Reference 

1. Nuclear Polyhedrosis Virus Sun Bio Hanpv, Heli – cide, Helicop, Spodo - cide 

S. litura (104) 

Helicoverpa armigera (105) 

2. Granulosis virus Pieris brassicae (106) 

Table 3. Commercial viral products utilized in insect pest management.  

Fig. 5. Mode of action of entomopathogenic nematodes: This figure depicts the life  cycle of EPNs, focusing on how they infect and re produce within 
insect hosts. 

Fig. 6. Mode of action of botanicals: This figure illustrates the mode of action of botanical biopesticides. These mechanisms showcas e how botanical 
compounds can control pest populations through non-toxic, natural means. 
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2.6. IGRs as biopesticides 

Insect growth regulators are substances that interfere with 

an insect's ability to grow, develop and undergo 

metamorphosis. This category also includes synthetic 

versions of insect hormones such as ecdysoids and 

juvenoids (41). 

2.6.1. Chitin synthesis inhibitors (CSIs) 

Chitin synthesis inhibitors (CSIs) are a class of chemicals 

that disrupt the synthesis of chitin, thereby interfering 

with the moulting process and killing insects before they 

reach adulthood. In a study testing four CSIs against okra 

jassids, their effectiveness in reducing weight, inhibiting 

growth and development and the mode of entry into the 

insects' bodies was evaluated. The results showed that, 

except for chitosan, all selected CSIs were effective in 

halting the growth and development of jassids, exhibiting 

both systemic (translaminar) and contact activity (42). 

2.6.1.1. Mode of action of CSIs 

CSIs significantly inhibit chitin synthesis in embryos, larvae 

or pupae during critical stages of new cuticle 

development. This disruption in the essential chitoprotein 

structure of the insect’s exoskeleton severely impairs the 

moulting process, causing the fragile cuticle to desiccate, 

ultimately leading to the insect's death (43). 

2.6.2. Juvenoids (Juvenile hormone mimics) 

One class of insect growth regulators is juvenile hormone-

based pesticides, which disrupt the insect’s developmental 

process (44). Juvenoids, a class of chemicals that mimic 

juvenile hormones, inhibit metamorphosis. Juvenile 

hormones, produced by neurosecretory cells are 

byproducts of fatty acid synthesis (45). 

2.6.2.1. Mode of action of Juvenoids 

Juvenoids are synthetic counterparts of juvenile hormones 

(JH) and exert an anti-metamorphic effect on insect 

larvae. Typically, these substances prevent insects from 

progressing beyond the larval stage, causing additional 

moults that result in the formation of "super larvae," 

intermediates between the larval and pupal stages or 

malformed pupal-adult forms, ultimately leading to death. 

Juvenoids also act as ovicidal and larvicidal agents, 

disrupting diapause and preventing insect emergence. 

Reports suggest that juvenoids can originate from plants, 

higher animals, bacteria, fungi, yeast and protozoa (41). 

2.6.3. Anti-juvenile hormone or precocenes 

Juvenoids work by destroying the corpora allata, thus 
blocking the production of juvenile hormones (JH). When 

applied to juvenile insect stages, they cause the insects to 

bypass 1 or 2 larval instars and develop into small, 

premature adults. These adults die quickly and are 

incapable of reproduction or oviposition (41). 

Table 4. Source of botanicals with active ingredients comprising insecticidal properties.  

No Scientific name 
Common 

name Active ingredient Target pest Reference 

1. Justicia adhatoda Malabar nut 

Salicylic acid, salicylic acid, docosanoic acid, 
stigmasterol, campesterol, sitosterol and 

sitosterol-D-glucoside, diterpenoids, ridods 
and triterpenoids 

Spodoptera litura (107) 

2. Calotropis acia Milkweed 
Saponins, alkaloids, flavonoids, sugars, 

terpenoids, phenols, glycosides, tannins, 
steroids, Cardenolides, 

Lipaphiserysimi, 
Coccinellaseptempunctata (107) 

3. Ocimumtenuiflorum Holy basil 
eugenol, ursolic acid, Isothymusin, CA, sinapic 

acid and Rosmarinic acid 
Aphis sp., Tetranychus spp., 

B. tabaci. (107) 

4. Carica papaya Papaya 

Carpaine, pseudocarpaine, dehydrocarpaine, 
quercetin 3-(2Grhamnosyl-rutinoside) 

kaempferol 3-(2G-rhamno-sylrutinoside), 
quercetin 3-rutinoside, myricetin 3-

rhamnoside, kaempferol 3-rutinoside, 
quercetin, kaempferol 

Spodoptera litura (107) 

5. Azadirachta indica Neem 
Azadirachtin, nimbin, nimbanene, 6-desacetyl 
nimbinene, nimbandiol, nimbolide, ascorbic 

acid, n-hexacosanol 

Aphis spp., Tetranychus 
spp., B. tabaci,       

H. armigera, Meloidogyne 
incognita 

(37) 

6. Curcuma longa Turmeric Ar-turmerone and turmerone Spodoptera litura (108) 

7. 
Chromolaena 

odorata Siam weed 

Essential oils, Flavonoid aglycones, 
quercetagetin, kaempferol,  acacetin, 

naringenin,  chalcones, quercetin,  luteolin,  
and sinensetin, terpenes and terpenoids, 

saponin and  tannins, organic compound as 
well as pyrrolizidine, phytoprostane 

compound, phenolic acids 

Meloidogyne incognita (108) 

8. Derris elliptica Derris Rotenone 
Aphis spp., Diabrotica 

undecimpunctata, 
Tetranychus urticae 

(108) 

9. Thymus citriodorus Lemon thyme Rosmarinic acid M. incognita, M. javanica (108) 

10. Zingiber officinale Ginger Sesquiterpenes 
B. tabaci, Caliothrips 

fasciatus (108) 

11. 
Cymbopogon 

citratus Lemon grass Citronellal Helicoverpa armigera (109) 
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2.6.3.1. Mode of action of precocenes 

The introduction of exogenous juvenile hormone (JH) can 

counteract the effects of precocenes. Precocenes appear to 

work by inhibiting the biosynthesis of JH (41). 

2.6.4. Ecdysteroids 

Moulting hormone (MH), also known as ecdysone, is 

secreted by the prothoracic glands. In insects, moulting 

occurs only in the presence of ecdysone. In adult insects, 

ecdysone levels decline and are eventually eliminated. 

Synthetic substitutes for ecdysone are available and when 

applied to insects, they cause the cuticles to rupture, 

resulting in the insect's death. These substances accelerate 

development by bypassing several typical processes, 

leaving the epidermis without a waxy coat or scales. When 

administered at a concentration of 200 mg/kg, ecdysteroids 

inhibited feeding in the larvae of Mamestra brassicae and 

Pieris brassicae. At a concentration of 100 mg/kg, 

ecdysteroids inhibited sap-sucking in the adults of 

Spiloscelis pandurus, D. fulvoniger and Dysdercus koenigii 

(46). 

2.6.4.1. Mode of action of ecdysteroids 

In insects, ecdysteroids regulate both metamorphosis and 

ecdysis. If these reactions are triggered at the wrong time or 

stage, they can lead to irregular development, altered 

ecdysis patterns, feeding deterrence and ultimately death 

(46). 

2.7. Semiochemicals as biopesticides 

Semiochemicals are chemical signals produced by an 

organism that influence the behavior of individuals, either 

within the same species or between different species (47). 

Plants emit chemical cues to attract pollinators or serve 

other purposes, which pests may exploit to their advantage 

(48). 

2.7.1. Pheromonal biopesticides 

Insects use molecules known as pheromones to 

communicate with other insects of the same species. These 

compounds are often structurally similar to those found in 

tastes and smells (49). A table of commercial pheromone-

based biopesticide products and their main components 

used in vegetable pest management is provided (Table 5). 

2.7.2. Pheromone inhibitors 

Semiochemicals can disrupt communication channels 

among insect pests, making them a promising approach for 

integrated pest management (IPM) programs (50, 51). 

Females may also utilize pheromone antagonists to 

enhance their fertility. For instance, female Helicoverpa 

armigera Hübner (Lepidoptera: Noctuidae) use the 

pheromone antagonist (Z)-11-hexadecenol to prevent non-

optimal matings and maximize their reproductive success. 

2.8. Mineral based biopesticides 

Mineral-derived pesticides primarily consist of silicon-based 

compounds, such as inert dust, which are chemically 

inactive yet exhibit insecticidal properties. These 

substances function by physically damaging the insect's 

cuticle, leading to desiccation and ultimately resulting in 

the insect's death. The mode of action of inert dust is 

illustrated in (Fig. 7). 

2.8.1. Diatomaceous earth (DE) 

Diatomaceous earth (DE) is a dust that comes in various 

colors, including grey, yellow, white and red. It consists of 

fossilized diatoms, which are single-celled algae primarily 

composed of amorphous silicon dioxide and exist in various 

shapes and sizes. DE products are produced by mining 

diatom sediments, which are then crushed into a fine dust 

containing silicon dioxide. To accommodate different 

environmental conditions during application, it is 

recommended to use DE as an adjuvant rather than as an 

active ingredient (52). A decrease in the population of thrips 

nymphs and the observed damage to brinjal and tomato 

plants has been noted. Similarly, a decline in the number of 

whitefly nymphs was specifically observed in tomato plants 

(53). 

2.8.2. Fly ash 

Fly ash, a byproduct of burning coal or lignite in thermal 

power plants, comprises amorphous ferro-alumino silicate, 

making it similar to soil, albeit with lower organic carbon 

and nitrogen content. It can be utilized for various 

agricultural purposes. Herbal insecticides can be 

formulated using fly ash, such as combinations of fly ash 

with 10 % turmeric dust and fly ash with neem seed kernel. 

The most effective mixture against various test insects, 

including Spodoptera on okra and Epilachna on brinjal, was 

found to be 10 % turmeric dust combined with fly ash. This 

was followed by fly ash mixed with 10 % dust of Vitex, 

Eucalyptus and Ocimum (54). Additionally, a pesticide dusting 

mixture containing up to 40 % fly ash served effectively as a 

dispersion to address the agglomeration issue associated 

with crushed white clay. It also proved to be time-efficient, 

saving energy, labor and natural resources, without 

adversely affecting the quality and yield of brinjal (Solanum 

melongena) and tomato (Solanum lycopersicum) in the trials 

(55). 

No. Crop Pest Pheromone Pheromone component Reference 

1. Tomato Helicoverpa armigera 
Sex Pheromone 

(Helilure) (Z) 11 hexadecanal + (Z) hexadecanal (97:3) (110) 

2. Tomato Spodoptera litura Sex Pheromone (Z, E), 9,11 tetradecanyl acetate + (Z, E) 9,12-dienyl (111) 

3. Tomato Tuta absoluta 
Sex Pheromone 

(TLM lure) 
(3E, 8Z, 11Z)-3, 8, 11- etradecatrien-1-xyl acetate (112) 

4. Crucifers Trichoplusiani Sex Pheromone (Z)-7-dodecen-l-ol acetate (113) 

5. Cucurbits B. cucurbitae Marking Pheromone 4-(4-hydroxyphenyl) 2-butanone acetate (114) 

Table 5. Commercial pheromone-based products in insect pest management. 
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2.8.3. Rice husk 

In brinjal, the use of rice husk and rice husk biochar 

treatments resulted in a plant height increase of 24.60 % 

and 16.95 % respectively, compared to the control 

treatment. Additionally, the populations of jassids, 

whiteflies and borer insects were significantly lower in the 

plants treated with rice husk and rice husk biochar. The 

reductions were recorded at 33.68-60.62 % for jassids, 

19.23-50.92 % for whiteflies and 16.03-75.64 % for borer 

insects, compared to the control group (56). The research 

findings indicated that a rice husk ash level of 48 g per 

polybag was effective in increasing plant height and 

promoting earlier flowering. Furthermore, a rice husk ash 

concentration of 72 g per polybag proved to be an efficient 

method for enhancing the number of plant branches and 

fruits (57). 

2.9. Nanotechnology in pest management 

2.9.1. Bio-derived green nanoparticles 

Compared to chemical and physical methods, the 
biological approach provides a more sustainable means of 

synthesizing nanoparticles. Various plant parts-including 

leaves, stems, roots, shoots, bark, flowers, seeds and their 

metabolites-have been shown to be effective in producing 

nanoparticles with insecticidal and pesticidal properties 

(58, 59). In addition to these plant parts, bacteria, fungi 

and waste materials can also be utilized for nanoparticle 

synthesis. This bio-based approach employs a bottom-up 

strategy, utilizing dropping and stabilizing agents to 

facilitate the synthesis process. The synthesis of 

nanoparticles through biological systems involves three 

key steps: selecting a suitable solvent medium, choosing a 

reliable and environmentally friendly reducing agent and 

selecting a non-toxic substance to serve as a capping 

agent, which stabilizes the resulting nanoparticles. This 

process yields nanoparticles with unique and enhanced 

properties, making them valuable in biomedical and 

related fields (60). Furthermore, polymeric nanoparticles 

act as carriers for bio control agents, helping to combat 

biotic stress in plants (61, 62). The mode of action of 

nanopesticides is illustrated in Fig. 8. 

2.9.2. Botanical-derived nanomaterials against pests 

Green-synthesized silver nanoparticles (Ag NPs) derived 
from neem extracts at a concentration of 1200 ppm 

demonstrated remarkable efficacy against third instar 

nymphs and adults of Bemisia tabaci (63). The role of gut 

protease activity in Helicoverpa armigera is modulated by 

leaf extracts from the banyan tree (Ficus benghalensis) 

and the peepal tree (Ficus religiosa) when used to 

fabricate Ag NPs (64). Foliar application of titanium 

tetrachloride nanoparticles, loaded with neem gum 

extracts at a concentration of 100 ppm, reduced damage 

caused by Spodoptera litura and Helicoverpa armigera by 

decreasing the activity of detoxifying enzymes in the 

midgut of larvae (65). In a greenhouse experiment, 

spraying faba bean leaves with silica dioxide (SiO2) 

nanoparticles resulted in 100 % mortality against 3 distinct 

aphid species, namely Acyrthosiphon pisum, Aphis 

craccivora and Myzus persicae, at a concentration of 50 ppm 

(66). Similarly, nanocapsules containing eucalyptus 

extract achieved 100 % mortality of Myzus persicae at the 

highest concentration of 50 mg/mL after 48 h of exposure 

(67). 

Fig. 7. Mode of action of inert dust: This figure illustrates the mode of action of inert dust. These actions highlight how botanical  compounds manage 
pests using natural, environmentally friendly methods. 
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2.9.3. Nano microbials 

Nanoparticles of zinc, silver and copper are commonly 

used as antibacterial agents in agriculture (68). The 

population of Tuta absoluta, commonly known as the 

tomato pinworm was significantly reduced under field 

conditions through the use of Bacillus thuringiensis (Bt) 

nanoencapsulation, which was created by high-pressure 

homogenization of 100 % glycerol and 2.5 % surfactant 

(69). The Bt Cry1Ab protein, which operates independently 

of midgut receptors and can avoid modifications caused 

by changes in these receptors, may penetrate the midgut 

cells of Agrotis ipsilon more effectively when 

functionalized with amino acid-functionalized fluorescent 

nanocarriers (70). 

2.9.4. Nanopheromones and Nanoparapheromones 

Pheromones are naturally occurring volatile molecules 

used in eco-friendly biological pest control methods. 

However, they are susceptible to wind and rain and their 

stability is compromised by photo-oxidation, auto-

oxidation and isomerization. Artificially produced para 

pheromones mimic the effects of natural pheromones. The 

most commonly used para pheromone is methyl eugenol, 

which is derived from clove leaves and primarily attracts 

tephritid fruit flies, including Bactrocera species. Male 

annihilation strategies are employed to regulate 

Bactrocera dorsalis by attracting males to methyl eugenol. 

A methyl eugenol-based min-u-gel formulation was 

developed for spot application in California's male 

annihilation program to eradicate Bactrocera dorsalis. 

Additionally, geraniol-loaded chitosan/gum arabic 

nanoparticles attracted the whitefly, B. tabaci, by acting as 

a 

semiochemical, which could potentially be used in trap 

systems (71). 

3. Biotechnological Tools in Pest Management

Gene editing technologies like CRISPR/Cas9 have 

revolutionized pest management by enabling precise 

modifications to the genetic makeup of pests. This 

technique enhances the development of resilient pest 

populations while minimizing off-target effects, thereby 

promoting both the efficiency and safety of creating pest-

resistant strains. Furthermore, it marks a new era of 

genetic precision, fostering sustainable coexistence 

between agriculture and nature for future generations 

(72). RNA interference (RNAi) technology has transformed 

pest management by specifically targeting genes essential 

for pest survival, providing a control method that avoids 

harming non-target organisms or the environment. 

Engineered RNA molecules can be used as biopesticides 

and applied to crops or fields, ensuring targeted pest 

control while protecting beneficial insects, plants and 

animals. Successful case studies, such as the use of RNAi 

against Colorado potato beetles (73), aphids (74) and 

caterpillars (75), highlight RNAi’s effectiveness and its 

potential for sustainable, targeted pest management in 

agriculture. 

4. Economic aspects 

Recent field trial findings demonstrated that Bacillus 

thuringiensis (Bt) was effective against Helicoverpa 

armigera (14, 76, 77), Earias vittella (78) and the 

diamondback moth (79). In the case of Beauveria 

bassiana, it proved effective against H. armigera (80, 81), E. 

vittella (82) and Bemisia tabaci (19). Additionally, field trials 

showed that entomopathogenic nematodes (EPNs) were 

effective against fall armyworms (83) and low-ground 

Fig. 8. Mode of action of nano pesticides: This figure illustrates the mode of action of nano pesticides. These mechanisms demonstrat e how nano pesti-
cides provide natural pest control solutions. 
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pests (84). Synthetic pesticides exhibited the highest 

effectiveness, resulting in the lowest pest populations, the 

highest cost-benefit ratios and the greatest marketable 

yields. In contrast, biopesticides were the least effective, 

showing higher pest populations, lower cost-benefit ratios 

and reduced yields (82, 85-90). Biopesticides offer a lower 

environmental impact due to their reduced toxicity, target 

specificity and biodegradability, making them safer for 

non-target species and ecosystems. They minimize residue 

buildup and the risk of pest resistance, thereby promoting 

sustainable pest control. However, proper application is 

essential to avoid potential non-target effects and ensure 

efficacy (91). 

Conclusion  and Future Prospects 

The future of vegetable pest management focuses on 
sustainable, eco-friendly techniques, with biopesticides 

derived from plants, microbes and minerals providing a 

natural alternative to chemical pesticides. Growing 

concerns about soil degradation, climate change and the 

adverse effects of chemicals are driving the incorporation of 

biopesticides into integrated pest management (IPM) 

strategies. Key factors in enhancing the efficacy, specificity 

and adoption of biopesticides include regulatory 

frameworks, research and education. As the biopesticide 

market expands, competition encourages innovation. 

Further research on bio-carrier combinations and 

biopesticide compatibility is essential, while advancements 

in precision agriculture and nanotechnology will enhance 

pest management efficiency and sustainability. Although 

the introduction of synthetic pesticides initially mitigated 

significant crop losses caused by pests, their negative 

environmental impacts have prompted a shift toward 

biological alternatives. Biopesticides offer significant 

advantages in terms of environmental safety, 

biodegradability, effectiveness and integration into 

integrated pest management programs, making them 

increasingly essential to pest control systems. The adoption 

and integration of biopesticides into traditional agricultural 

practices are influenced by several factors, including the 

global transition toward sustainable agriculture, supportive 

regulations, ongoing research and development efforts, 

educational initiatives, market expansion, crop-specific 

solutions and advancements in technology. As a critical 

component of sustainable agriculture, biopesticides are 

expected to significantly reshape insect pest management 

in vegetables, promoting a more resilient and 

environmentally sustainable agricultural sector. Realizing 

the full potential of biopesticides requires collaboration 

among farmers, policymakers and industry stakeholders. 

This cooperative effort is crucial for effectively leveraging 

biopesticides while balancing environmental stewardship 

and ensuring food security. However, several challenges 

hinder the large-scale adoption of biopesticides, including 

the high cost of refined commercial products, the inability 

to meet global market demands, variations in standard 

preparation methods and guidelines and difficulties in 

determining the correct dosage of active ingredients. 

Additionally, biopesticides are sensitive to various 

environmental factors have limited stability and act more 

slowly compared to conventional pesticides. Despite these 

challenges, there is optimism that ongoing research and 

technological advancements will address these limitations 

in the future. 
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