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Abstract   

Natural growth and development of plants in cold arid regions are affected 
by drought stress, limited water availability and sandy soils, thereby 
reducing growth and productivity. This study was aimed at examining the 
combined effects of boron and zinc supplementation on the 
physicochemical responses of carrots in high-altitude cold desert 
environments using different concentrations of these micronutrients. 
Experiment was carried out in randomized block design (RBD) and 
treatment means were differentiated using the Tukey’s test at a 0.05 level of 
probability. It was observed that in comparison to control, the foliar 
application of Borax @ 0.1% + ZnSO4 @ 0.5% significantly improved root 
diameter, average root weight, yield, sucrose content, total sugar, 
sweetness index, and total sweetness index in carrots. The maximum 
chlorophyll content (9.29 CCI) in carrot leaf was observed by foliar 
application of Borax @ 0.2% + ZnSO4 @ 1.0%, which is statistically at par 
with foliar application of Borax @ 0.1% + ZnSO4 @ 1.0% (9.27 CCI). However, 
the highest glucose and fructose content was observed with a foliar 
application of Borax @ 0.1%. The highest nitrate (351.08 mg/100 g) content 
was recorded in the combined foliar application of Borax @ 0.1% + ZnSO4 @ 
0.5% (T5). Among the treatments, maximum values of sulphur (210.73 
mg/100 g) in carrot root were observed in Borax @ 0.2% + ZnSO4 @ 0.5%. 
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Introduction   

Daucus carota subsp. sativus (carrot) is a biennial herbaceous species 
belonging to the Apiaceae family, typically grown in the winter season (1). 
Carrots are a rich source of carbohydrates, fiber, vitamins (A, B1, B2, C), 
antioxidants, and minerals (2). Carrot consumption reduces the risk of 
diabetes, high cholesterol, cardiovascular disease, hypertension, and 
xerophthalmia and promotes wound healing (3). Carrots are less perishable 
crop and stored for longer period. Still, carrot production in the Trans-
Himalayan region of Ladakh faces many challenges due to extreme cold and 
soil characteristics. In such a climate, significant challenges are faced in 
agriculture in the form of drought stress, low temperature stress, poor 
fertility, high pH, and extremely coarse-textured sandy soil with an 
exceptionally low water holding capacity. 

 

PLANT SCIENCE TODAY 
ISSN 2348-1900 (online) 
Vol x(x): xx–xx 
https://doi.org/10.14719/pst.3754 

HORIZON  
e-Publishing Group 

Effect of zinc and boron on improved physiological traits, 
productivity and phytoconstituents of carrot grown at  
Trans-Himalayan region 
 

Vivek Kumar Tiwari1, Khushboo Kathayat2*, Narendra Singh1, Monisha Rawat2, Avnish Kumar Pandey3 & Shailendra K Dwivedi4 

 

1Vegetable Science Division, Defence Institute of High-Altitude Research-DRDO, C/O 56/APO, Leh-Ladakh-901205, India 

2Department of Horticulture, School of Agriculture, Lovely Professional University, Phagwara-144411, Punjab, India 

3Department of Fruit Science, College of Horticulture, Navsari Agricultural University, Navsari-396450, Gujrat, India 

4College of Horticulture, RVSKVV Campus, Madssaur-458001, Madhya Pradesh, India 

 

*Email: khushboo.22214@lpu.co.in, khushboo.pantnagar@gmail.com  

RESEARCH ARTICLE 

http://horizonepublishing.com/journals/index.php/PST/open_access_policy
https://horizonepublishing.com/journals/index.php/PST/open_access_policy
https://horizonepublishing.com/journals/index.php/PST/open_access_policy
https://horizonepublishing.com/journals/index.php/PST/indexing_abstracting
https://horizonepublishing.com/journals/index.php/PST/indexing_abstracting
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https:/doi.org/10.14719/pst.3754
http://horizonepublishing.com/journals/index.php/PST/open_access_policy
https://crossmark.crossref.org/dialog/?doi=10.14719/pst.3754&domain=horizonepublishing.com
http://www.horizonepublishing.com/
https://doi.org/10.14719/pst.3754
mailto:khushboo.22214@lpu.co.in
mailto:khushboo.pantnagar@gmail.com


TIWARI ET AL  2     

https://plantsciencetoday.online 

 Zinc and boron concentrations varied greatly 

depending on the soil type as well as between the various 

states. Coarse textured, calcareous, alkaline, or sodic 

sandy texture, high pH, and low inorganic matter are 

generally low in available zinc and boron (4). 

Micronutrients are involved in all aspects of plant 

metabolism, including cell wall formation, photosynthesis, 

chlorophyll production, enzyme activity, and nitrogen 

fixation (5). Micronutrients helps in accelerated nutrient 

absorption with the help of electron transport by 

maintaining a balance with other nutrients, therefore 

small doses of these micronutrients are required by the 

plants for their normal growth and development (6–8). 

Nutrient uptake by foliar application occurs substantially 

more quickly than that by roots. Foliar feeding supports 

the physiological functions of plants, ensures ideal growth, 

and significantly contributes to improved quality and 

increased yields (9).  

 Zinc is the most important micronutrient for plants 
since it is essential for various enzyme systems and 

synthesis of chlorophyll and carbohydrates (10). It helps in 

nitrogen fixation in soil and makes it available to plants in 

the form of nitrates (11). Globally, zinc scarcity is primarily 

present in coarse-textured, sandy, calcareous soils in arid 

and semi-arid areas (12). 

 Zinc deficiency can be effectively controlled with 2-

4 sprays of 0.5% ZnSO4 salt solution on standing crops 

(13). Foliar application of ZnSO4 helps maintain the 

chlorophyll and carbohydrate content of carrots (14, 15). 

Boron is the seventh fundamental element essential for 

plant growth, yield, and quality (16). It plays a vital role in 

various cellular processes such as the development of cell 

walls, cell elongation, cell division, cell wall strength, 

protein metabolism, tissue differentiation, sugar 

transport, and enhanced hormone transportation (17). 

Insufficient boron hinders plant growth, affecting multiple 

metabolic processes, including carbohydrate metabolism. 

Both zinc (Zn) and boron (B) are crucial for basic plant 

functions such as photosynthesis, carbohydrate 

metabolism, synthesis of proteins, and chlorophyll. Hence, 

lack of zinc and boron can reduce sink demand by slowing 

down growth and sugar transport, which can inhibit 

photosynthesis and hinder plant growth. 

 Zinc and boron applications have been reported to 

increase plants' nitrogen content and nitrate, thereby 

leading to enhanced growth and development (18). Zinc 

showed an antagonistic effect on phosphorus, whereas 

boron positively responded to phosphorus 

concentration. Anionic form of sulphur (SO4
2-) is the 

primary source of sulphur for plants, generally in minimal 

amounts in the soil. It is water-soluble, so readily leaches 

out of the soil. Sulphur is also a component of several 

secondary metabolites (SMs) of plants and is required for 

the plant’s physiological functions, growth, and 

development (19). Nitrate, phosphorus, and sulphur 

content were significantly influenced by several factorsi.e., 

genetic factors, soil type, environment factors, fertilizer 

application and rock weathering in Himalayas area. The 

application of zinc and boron is correlated with nitrate, 

phosphorus, and sulphur concentrations.  

 Due to the increasing demand from consumers for 

carrot root, higher yield and high-quality root has become 

a priority (20). Plant metabolic activities are influenced by 

foliar application of zinc sulphate and boron, significantly 

impacting the growth development and quality. Hence, 

foliar spraying of micronutrients is an effective alternative 

technique that can boost yield while lowering 

environmental risks. Sufficient study on the role of boron 

and zinc in enhancing production of vegetables in high-

altitude Ladakh region of Trans-Himalayas has not been 

observed. Since carrot is a major cash crop grown in 

Ladakh and is an important vegetable that responds well 

to micronutrient application, this study can provide 

insights into the foliar spray of boron and zinc at different 

concentrations in soil to improve the physicochemical 

traits of crops grown. Hence, this study was conducted in 

the Trans-Himalayan region to investigate the influence of 

foliar zinc and boron application at different 

concentrations on the physical and biochemical 

constituents of carrots.  

 

Materials and Methods 

Experimental location, soil nutrition, and climatic 

condition 

Field experiments were conducted at the Vegetable 
Research Experiment Station (11526±32.30 ft. amsl), 

Defence Institute of High Altitude Research-DRDO, Ladakh 

during the summer season in 2020–2021 and 2021–2022. A 

total of 32 different shrubs and small herbs, belonging to 

25 families, have been recorded as edible, either as 

vegetables, medicine, or both, used directly or indirectly 

(21). The soil pH was estimated before the experiment and 

was determined as the highest value of soil pH having 

7.76±0.2. The type of soil was sandy loam having EC-

1.36±0.13 ms/cm, organic carbon-0.64±0.01%, and 

available P-6.03±3.4 ppm and K-132.25±7.4 ppm, Zn-

1.41±0.2 ppm, Fe-2.38±0.3 ppm, B-2.04±0.1 ppm, Cu-

1.04±1.0 ppm, Mn-0.58±0.2 ppm. However, Zn and boron 

contents are also based on soil type; for example, sandy 

soils contain relatively less nutrients, whereas clay soils 

are enriched. 

 The soils of the experimental field were sandy, 

coarse textured and poor water holding capacity (22). High 

altitude, low humidity, maximum radiation level (6-7 Kwh/

mm), longer photoperiod, and one cropping season in a 

year (May-October) were characteristic of the area. 

Temperature data was recorded in weather acquisition 

system of DIHAR-DRDO (Table 1). 

Experimental details and crop management 

Zinc sulphate (ZnSO4) and borax (Na2B4O7.10H2O) were 

used as sources for zinc and boron elements, respectively. 

There were 9 treatments, including the control and its 

applied foliar application in the field. The treatments were 

T0 (Control, i.e. only soil application of a recommended 

dose of FYM), T1-Borax @ 0.1%, T2-Borax @ 0.2%, T3-ZnSO4 

@ 0.5%, T4-ZnSO4 @ 1.0%, T5- Borax @ 0.1% + ZnSO4 @ 
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0.5%, T6- Borax @ 0.2% + ZnSO4 @ 1.0%, T7- Borax @ 0.1% 

+ ZnSO4 @ 1.0%, T8- Borax @ 0.2% + ZnSO4 @ 0.5%. The 

experimental field was ploughed with a tractor and the 

removal of stubbles and weeds was done and then a 

recommended dose of FYM (250 q/ha) was applied to the 

plots. The present experimental layout was a split plot in 

randomized block replicated thrice. Carrot var. Early 

Nantes seeds were sown in the 2nd week of June and 

harvesting was done in the 1st week of November. First 

irrigation was applied immediately after sowing of seeds 

and subsequent irrigation was given at 6-7 day interval. 

The carrot was cultivated organically and micronutrients 

were sprayed twice after 45 and 90 days of sowing with the 

help of hand operated pressure sprayer.  

Morphological and physiological attributes 

The carrots' leaf length, leaf width, and root length were 
measured with a scale and the root diameter was 

measured by vernier calliper. Average root weight and 

yield were recorded with the help of a digital weighing 

balance. All the growth and yield parameters were 

recorded at the time of harvesting. During harvesting, a 

random sample of 3 carrot plants from each subplot was 

taken, then immediately carried to the laboratory, where 

the roots were washed to remove any adhered soil 

particles. After that, plants were divided into tops and 

roots to measure root length (cm), root diameter (cm), 

root fresh weight (g), and yield/ha (q). Leaf anthocyanin 

and chlorophyll content were measured using a portable 

anthocyanin and chlorophyll meter at the time of 

harvesting (CCM-200 plus and ACM-200 plus, ADC 

Bioscientific, UK) for the 3 youngest completely expanded 

leaves per plant, and the mean of 3 plants from each 

subplot was recorded. The result was expressed as 

anthocyanin content index (ACI) and chlorophyll content 

index (CCI). 

Total soluble solid determination 

Total Soluble Solids (TSS) is an index of the concentration 

of soluble solids in vegetables. Carrot juice was extracted 

from the juicer-grinder machine and filtered through filter 

paper Whatman No. 1 and total soluble solids were 

determined by placing drop of carrot juice on the prism of 

hand refractometer (ERMA). Results were read and 

expressed as Brix (°B) (23). 

Total acidity determination 

Firstly, 10 mL juice was extracted and kept in measuring 

cylinder and then the volume was made with distilled 

water up to 100 mL. 10 mL filtrate was taken and 2-3 drops 

of phenolphthalein indicator were added. The filtrate was 

titrated with 0.1N NaOH untill the light pink colour appears 

(24). Total titratable acidity can be calculated as follows: 

(Acidity %= (titre value × normality of NaOH × 64 × volume 

make up × 100) / (aliquot taken × weight of sample × 1000)                                                                                    

(Eqn. 1) 

 The total titratable acidity was calculated in terms 

of citric acid and equivalent weight of citric acid is 64 g. 

The results were expressed in term of % acidity. 

Determination of inorganic anions (nitrate, phosphate, 

and sulphate) and soluble sugar (glucose, fructose, and 

sucrose) 

Inorganic anions and sugar were extracted in triplicate 
based on the following method (25, 26). 1 g of carrot 

sample was taken and homogenized at 15000 rpm in 

ultrapure (Type-I) water (DQ3, Millipore Waters, USA) for 2 

min using a tissue homogenizer (IKA, T10 basic ULTRA-

TURRAX, Germany). Homogenized samples were then 

sonicated using an ultrasonic bath (Ultrasonic cleaner 

YJ5120-1, India) (40ºC at 30 min for sugar profiling and 

55ºC at 40 min for inorganic anions) and then centrifuged 

at 15000 rpm for 15 min and filtered through Whatman No. 

1 filter paper. Further dilutions were carried out and the 

final diluted samples were passed through a 0.22 μm 

microporous membrane filter with a 25 mm diameter. The 

content of inorganic anions (nitrate, phosphate, sulphate) 

and sugar profiling (glucose, fructose, and sucrose) was 

analysed by an ion chromatography (IC) system (930 

compact IC Flex, Metrohm, Switzerland). Metro Sep A Supp 

5-250/4.0 anions column and RCX-30-7μm-250/4.1mm 

column were used for anion and sugar analysis, 

respectively. In the mobile phase, 3.2 mM Na2CO3, 1 mM 

Months 

Year, 2020 Year, 2021 

Temp. (oC) RH (%) Temp. (oC) RH (%) 

Max. Min. Max. Min. Max. Min. Max. Min. 

January -2.82 -14.06 76.32 36.11 0.26 -15.72 58.98 27.18 

February 3.50 -11.80 75.98 36.24 5.67 -10.07 51.86 19.89 

March 7.60 -5.63 37.69 29.82 9.01 -4.51 51.50 15.35 

April 13.60 1.98 43.98 11.99 10.65 -2.04 58.17 18.86 

May 17.65 3.96 44.45 20.68 18.44 4.88 48.33 14.83 

June 20.60 8.38 52.00 24.02 21.23 7.93 52.33 19.97 

July 25.52 12.50 38.94 18.09 25.88 12.70 57.63 21.17 

August 26.20 13.89 51.05 13.83 25.29 11.61 48.09 17.68 

September 23.96 8.59 44.30 12.72 24.16 8.05 49.01 23.71 

October 15.52 -2.59 33.42 10.07 14.75 -1.95 52.34 20.09 

November 5.78 -8.08 53.78 23.46 7.73 -9.23 46.74 15.96 

December 2.63 -12.23 59.52 23.79 2.60 -12.92 57.01 22.49 

Table 1.  Climatic conditions observed during period of trial.  
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NaHCO3, and 5% acetone were used as eluent for anion 

analysis with a 0.7 mL/min flow rate. 100 mM H2SO4 

solution was used as the suppressor solution for anion 

analysis. For sugar analysis, 0.1 M NaOH was used as an 

eluent with a flow rate of 1 mL/min. Nitrate, phosphate, 

and sulphate were detected using a conductivity detector 

and soluble sugars using an amperometry detector. The 

conversion of phosphate to phosphorus and sulphate to 

sulphur is multiplied by 0.436 and 0.333, respectively (25, 

26) 

Determination of sweetness index and total sweetness 

Determination of the sweetness index and total sweetness 

index was calculated by following formula (27). 

Total Sweetness Index (TSI)= (Glucose × 0.76) + (Fructose × 

1.50) + (Sucrose × 1.0)        (Eqn. 2) 

Sweetness Index (SI)= (Glucose × 1.0) + (Fructose × 2.30) + 

(Sucrose × 1.35)                    (Eqn. 3) 

Statistical analysis 

The experiment was designed using a randomized block 

design (RBD) with 3 replications. Using SPSS 22.0 (SPSS 

Corporation, Chicago, Illinois, USA), one-way analysis of 

variance tests (ANOVA) was conducted (28). Tukey’s 

multiple comparison test assessed the statistically 

significant difference during the harvested carrots at a 

significance level of p<0.05.  

 

Results and Discussion  

Growth parameters 

The effect of boron and zinc on the number of leaves per 
plant, leaf length, and leaf width of carrots is shown in 

Table 2. Pooled data showed that the maximum number of 

leaves/plants (13.16) was recorded in the foliar application 

of ZnSO4 @ 1.0% (T4). But all the treatments were found 

statistically at par except control (T0). Whereas, maximum 

leaf length (29.61 cm) and width (9.33 cm) were recorded 

in the foliar application of ZnSO4 @ 0.5% (T3) and ZnSO4 @ 

1.0% (T4), respectively. The lowest values of leaf length and 

width were found in the control (T0). The growth, yield and 

quality of plants are significantly influenced by the 

application of micronutrients such as boron and zinc. 

Boron and zinc are vital for several key processes, 

including protein synthesis, sugar transport, respiration, 

carbohydrate metabolism, and the regulation of plant 

hormones. 

Yield parameters 

The carrot root yield parameters were measured to check 

if there was an interference of treatment on their growth, 

development, and yield (Table 2). Evidently, the foliar 

application of zinc and boron significantly affects the yield 

and yield attributing character of carrots. Data recorded 

on root length as compared with control showed that the 

highest root length (17.25 cm) was recorded with the foliar 

application of ZnSO4 @ 1.0% (T4) followed by application 

of Borax @ 0.1% + ZnSO4 @ 1.0% (T7) and Borax @ 0.1% + 

ZnSO4 @ 0.5% (T5). This significant and positive increment 

in root diameter (34.59 mm) might be due to the 

application of Borax @ 0.1% + ZnSO4 @ 0.5% (T5). The 

average root weight and yield differed significantly by the 

application of micronutrients. However, the maximum 

average root weight (94.95 g) and yield (316.50 q/ha) were 

recorded with the foliar application of Borax @ 0.1% + 

ZnSO4 @ 0.5% (T5), which is statistically at par ZnSO4 @ 

1.0% (T4) and Borax @ 0.1% + ZnSO4 @ 1.0% (T7). While the 

lowest yield (205.53 q/ha) was recorded in control (Table 

2). These findings align with findings that increasing zinc 

fertilizer levels improved the root's length and diameter 

(29). 

Leaf anthocyanin and leaf chlorophyll content 

It is revealed from the data (Table 3) that all the 

treatments showed a non-significant effect on 

anthocyanin content during the field experiment. Thus, 

the maximum value (4.31 ACI) was found by foliar 

application of Borax @ 0.1% (T1). During the experiment, 

carrots treated with micronutrients were found to have 

more chlorophyll than untreated carrot leaves. The 

maximum chlorophyll content was recorded in the foliar 

application of Borax @ 0.2% + ZnSO4 @ 1.0% (T6), followed 

by treatments Borax @ 0.1% + ZnSO4 @ 1.0% (T7) and 

Borax @ 0.2% + ZnSO4 @ 0.5% (T8). While minimum was 

found in control. 

Treatments 
No. of leaf/

plant 
Leaf length 

(cm) 
Leaf width 

(cm) 
Root length 

(cm) 

Root 
diameter 

(mm) 

Average root 
wt. (g) Yield (q/ha) 

T0 9.72±1.3a 20.33±2.8a 7.00±0.3a 12.92±0.3a 24.99±0.4a 61.66±1.9a 205.53±3.9a 

T1 11.28±0.6ab 28.00±2.8b 8.56±0.3a 15.50±1.8ab 31.57±1.2bc 75.11±8.2ab 250.36±30.7ab 

T2 11.89±0.6ab 28.94±0.1b 9.06±1.3a 15.08±1.4ab 31.39±0.9bc 76.65±9.4ab 255.49±31.7ab 

T3 12.39±0.8ab 29.61±1.8b 9.67±1.4a 15.42±0.1ab 30.29±1.7b 78.67±5.8abc 262.21±21.1abc 

T4 13.16±0.3ab 29.17±0.7b 9.33±1.6a 17.25±0.4b 30.69±3.3d 89.93±3.6bc 299.74±8.8bc 

T5 12.34±2.8ab 29.17±0.9b 9.11±0.7a 16.83±0.4b 34.59±0.6cd 94.95±9.3c 316.50±27.4c 

T6 11.00±0.9ab 29.39±1.6b 8.55±0.3a 14.08±1.2a 30.18±1.0b 72.89±2.4ab 242.95±6.3ab 

T7 12.67±0.7ab 27.22±1.9b 8.61±0.8a 17.17±0.3b 29.78±1.5b 86.90±2.7bc 289.65±4.1bc 

T8 11.95±0.6ab 25.33±1.7ab 8.61±0.8a 15.50±0.9ab 32.07±0.2bc 79.33±7.7abc 264.41±26.1abc 

Table 2. Effect of preharvest application of zinc and boron on growth and yield parameters of carrot. 

*Different letters within each column indicate significant differences according to Tukey’s test (p= 0.05). All data are expressed as mean ± standard deviation, n= 
3. DW- Dry weight, FW- Fresh weight, mm= millimetre, g- gram, q= quintal, cm= centimetre. T0 (Control, i.e. only soil application of a recommended dose of FYM), 
T1- Borax @ 0.1%, T2- Borax @ 0.2%, T3- ZnSO4 @ 0.5%, T4- ZnSO4 @ 1.0%, T5- Borax @ 0.1% + ZnSO4 @ 0.5%, T6- Borax @ 0.2% + ZnSO4 @ 1.0%, T7- Borax @ 
0.1% + ZnSO4 @ 1.0%, T8- Borax @ 0.2% + ZnSO4 @ 0.5%. 
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Titratable acidity 

Biochemical analysis of the root revealed that pre-harvest 

foliar application of boron and zinc fertilizers either alone 

or in combination positively affected the root juice acidity. 

The highest acidity (0.37%) was observed in the foliar 

application of Borax @ 0.1%, which is at par with Borax @ 

0.2% + ZnSO4 @ 1.0% (T6). 

Total soluble solid (TSS) 

The preharvest foliar application of boron and zinc at 
different levels was found to have a significant effect on 

the total soluble solid in carrots (Table 3). Total soluble 

solid exhibited maximum (9.15°B) in carrots under foliar 

application of Borax @ 0.2% (T2), followed by ZnSO4 @ 

1.0% (T4) and Borax @ 0.2% + ZnSO4 @ 1.0% (T6). Whereas 

minimum TSS (8.55°B) of carrot was observed in control 

(T0). 

Nitrate, phosphorus and sulphur 

The nitrate content was significantly influenced (p˂0.05) 

by the foliar application of zinc and boron. The highest 

nitrate (351.08 mg/100 g) content was recorded in the 

combined foliar application of Borax @ 0.1% + ZnSO4 @ 

0.5% (T5), followed by T6, T4 and T3. While the lowest value 

of nitrate was observed in control. The maximum 

phosphorus was found in treatment Borax @ 0.2% + 

ZnSO4 @ 1.0% (T6) statistically at par with treatments 

ZnSO4 @ 0.5% (T3). However, a minimum value of 

phosphorous was observed in the foliar application of 

Borax @ 0.1% + ZnSO4 @ 0.5% (T5), followed by ZnSO4 @ 

1.0% (T4), which was at par with ZnSO4 @ 0.5% (T3). Among 

the treatments, maximum values of sulphur (210.73 

mg/100 g) were observed in foliar application of Borax @ 

0.2% + ZnSO4 @ 0.5% (T8), followed by ZnSO4 @ 0.5% (T3). 

The minimum sulphur content was recorded by applying 

Borax @ 0.2% (T2). 

Sugars 

The soluble sugars such as glucose, fructose, sucrose, total 

sugar, sweetness index, and total sweetness index are 

shown in Table 4. The treated carrot root significantly 

showed higher sugar content (p<0.05) when compared to 

the control. The highest glucose (17.90 g/100 g) and 

fructose content (7.86 g/100 g) were observed by foliar 

application of Borax @ 0.1% (T1). While the lowest glucose 

and fructose content was found in the control. Maximum 

sucrose content was recorded in the foliar application of 

Borax @ 0.1% + ZnSO4 @ 0.5% (T5), which was on par with 

Borax @ 0.2% + ZnSO4 @ 0.5% (T8). 

 The pooled data showed the highest total sugar 

(43.51 g/100g) in the foliar application of Borax @ 0.1% + 

ZnSO4 @ 0.5% (T5), followed by Borax @ 0.1% (T1). 

However, maximum sweetness index (60.02 SI) and total 

sweetness index (43.27 TSI) were observed in the foliar 

application of Borax @ 0.1% + ZnSO4 @ 0.5% (T5).  

 

Discussion  

Growth parameters 

Micronutrients are necessary for the development and 

continued existence of plant life, as well as for the 

nourishment of crops. They showed beneficial effects on 

the growth, production, and quality of carrots. Zinc and 

boron may positively influence number of leaves, leaf 

length and leaf width because they are essential in 

numerous physiological processes like chlorophyll 

formation, stomatal regulation, starch utilization and 

cellular functions. Various studies have shown that boron 

and zinc, when applied foliarly, increase the vegetative 

growth of carrots. Zinc is necessary for synthesizing 

tryptophan, a precursor to Indole acetic acid (IAA), and 

actively participates in creating auxin, a crucial growth 

hormone (30). A substantial increase in leaf area with the 

application of zinc was observed compared to the control 

(31, 32). The physiological processes of plants, such as cell 

elongation, cell maturation, meristematic tissue 

formation, and protein synthesis, essentially require boron 

(33, 34). The application of boron in carrots accelerates 

growth and crop productivity. The application of boron 

encouraged uptake of soil nitrogen in plants, which helped 

promote plant growth and development (35, 36). 

Treatments 
Leaf 

anthocyanin 
(ACI) 

Leaf 
chlorophyll 

(CCI) 

Titratable 
acidity       
(% FW) 

TSS            
(% FW) 

Nitrate  
(mg/100 g DW) 

Phosphorus 
(mg/100 g DW) 

Sulphur 
(mg/100 g DW) 

T0 3.21±0.1a 6.59±0.1a 0.30±0.0a 8.55±0.2ab 281.14±9.8a 383.88±7.1bcd 170.11±15.1b 

T1 4.59±0.5a 7.36±0.2b 0.39±0.0f 8.68±0.0ab 286.15±23.2ab 389.86±9.7cde 173.03±14.7b 

T2 3.93±0.3a 7.56±0.1ab 0.30±0.0a 9.15±0.3b 312.26±14.8abc 401.95±6.1ef 158.58±9.6a 

T3 3.67±0.1a 7.95±0.1c 0.32±0.0b 8.82±0.0ab 325.80±3.0cd 377.93±16.1bc 208.01±12.8d 

T4 4.31±0.2a 8.00±0.2c 0.35±0.0d 9.12±0.2b 326.92±11.2cd 375.71±21.4abc 203.15±2.2d 

T5 3.80±0.5a 8.45±0.3d 0.34±0.0cd 8.42±0.4a 351.08±2.9d 359.79±19.2a 177.76±11.3b 

T6 4.13±0.9a 9.29±0.0c 0.37±0.0e 9.08±0.2ab 327.93±11.5cd 417.21±11.3f 200.29±5.9c 

T7 4.19±0.8a 9.27±0.1c 0.30±0.0a 8.70±0.2ab 312.95±14.9abc 368.17±11.3ab 177.30±8.7b 

T8 3.94±0.5a 8.96±0.2c 0.33±0.0bc 8.90±0.3ab 319.81±10.6bcd 396.31±10.9de 210.73±3.9de 

Table 3. Effect of preharvest application of zinc and boron on biochemical parameter of carrot. 

*Different letters within each column indicate significant differences according to Tukey’s  test (p= 0.05). All data are expressed as mean ± standard deviation, n= 
3. DW- Dry weight, FW- Fresh weight, ACI- Anthocyanin content index, CCI- Chlorophyll content index. T0 (Control, i.e. only soil application of a recommended 
dose of FYM), T1- Borax @ 0.1%, T2- Borax @ 0.2%, T3- ZnSO4 @ 0.5%, T4- ZnSO4 @ 1.0%, T5- Borax @ 0.1% + ZnSO4 @ 0.5%, T6- Borax @ 0.2% + ZnSO4 @ 1.0%, T7

- Borax @ 0.1% + ZnSO4 @ 1.0%, T8- Borax @ 0.2% + ZnSO4 @ 0.5%. 
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Yield parameters 

Root length, diameter, and average root weight influence 

carrot yield and consumer preference. The data collected 

in Table 2 showed that using boron and zinc as foliar 

applications significantly increased carrot yields. Applying 

low quantity of elements significantly increased the 

length, diameter, fresh weight and root yield (20). This may 

be due to increase in chlorophyll pigments, plant's 

photosynthetic capacity, cell division and elongation (37); 

additionally, as seen in the current study, improved 

vegetative development was the cause of the increased 

root yield. Root development was decreased along with 

the reduction in the alcohol dehydrogenase enzyme under 

low zinc levels (38). Therefore, zinc sulphate treatment 

results in better root development or biomass (29). Using 

boron also encourages plants' roots to absorb nitrogen, 

which promotes plant growth (35, 39). 

Leaf chlorophyll 

Compared with the control, equivalent quantities of zinc 

and boron were applied to increase the chlorophyll 

concentration. Zinc and boron do not directly affect the 

synthesis of chlorophyll but can affect the concentration of 

different elements like iron and magnesium, which are 

required in chlorophyll formation. Low zinc or magnesium 

content may be correlated with a reduction in chlorophyll 

content (40). The leaves chlorophyll contents and net 

photosynthetic rate seemed to decrease with reduced zinc 

contents (41, 42). A different experiment demonstrated 

that exogenous zinc treatment of tomato plant leaves 

resulted in the accumulation of leaf chlorophyll content at 

both low and high concentrations (40). It was observed 

that the chlorophyll content of hydroponically grown 

Jatropha seedlings increased when Zn was applied @ 0.1 

and 0.5 mM, respectively (43). 

Leaf anthocyanin 

In the current investigation, no significant change occurs 

in leaf anthocyanin content of any of the treatments. 

Anthocyanins are secondary metabolic pigments that can 

rise in plants in reaction to oxidative stress, which can be 

brought on by several factors, including exposure to 

excessive metal concentrations (44, 45). Anthocyanins are 

generally thought to enhance plant antioxidant defence to 

maintain the normal physiological status of tissues that 

have been directly or indirectly affected by biotic or abiotic 

stresses (46, 47).  

Titratable acidity 

The improvement in titrable acidity may be attributable to 

the increased availability of micronutrients, particularly 

zinc and boron (48, 49). 

Total soluble solid 

The total soluble solid value in carrot root is greater when 

boron and zinc are applied in foliar form. The lowest value 

was observed in control (without micronutrients). Boron 

and zinc play crucial roles in the photosynthetic activities 

of the plant, which may explain the increase in qualitative 

parameters of carrot roots (50-52). This could be 

attributed to improved metabolic processes in total 

soluble solids, such as carbohydrates, organic acids, 

amino acids, and other inorganic compounds (15, 4, 53-

55). 

Nitrate 

The amount of nitrate in carrots was affected by the soil 

condition, plant's ability to absorb nutrients, number of 

soluble nutrients added to the soil, amount of light and 

temperature in the environment, and other factors. In 

various treatments, nitrogen availability to plants 

impacted nitrate content. In Ladakh, rock weathering, soil 

nitrogen content and low temperature at time of 

harvesting are the main factors influencing the nitrate 

level in carrot root (25). Vegetables are the major source of 

dietary nitrate (80%). It is also associated with beneficial 

health effects since nitrate represents an important 

alternative pathway to bioactive nitric oxide and its 

important physiological roles in human vascular and 

Treatments 
Glucose 

(g/100 g DW) 
Fructose 

(g/100 g DW) 
Sucrose              

(g/100 g DW) 
Total sugar 

(g/100 g DW) 
Sweetness index 

(SI DW) 
Total sweetness 
index (TSI DW) 

T0 14.56±0.3a 5.85±0.2a 13.37±1.2a 33.78±1.3a 46.07±2.0a 33.21±1.4a 

T1 17.90±0.5e 7.86±0.8ef 15.75±0.1b 41.51±0.7e 57.24±1.6ef 41.14±1.1e 

T2 16.66±0.2cd 6.92±0.3cde 15.82±0.4b 39.39±0.3cd 53.92±0.5bcd 38.85±0.3bcd 

T3 15.43±0.4b 6.03±0.3ab 13.88±0.8a 35.34±0.6a 48.04±1.1a 34.65±0.8a 

T4 15.15±0.2ab 6.07±0.2abc 16.33±0.1b 37.55±0.1b 51.16±0.3b 36.95±0.2b 

T5 16.34±0.1c 7.37±0.0def 19.81±0.2c 43.51±0.3f 60.02±0.4f 43.27±0.3f 

T6 16.58±0.2cd 6.66±0.1abcd 15.88±0.1b 39.12±0.3bc 53.34±0.4bc 38.47±0.3bc 

T7 17.15±0.2d 7.55±0.0ef 15.75±0.3b 40.45±0.6cde 55.78±0.7cde 40.11±0.5cde 

T8 15.31±0.1b 6.85±0.1bcde 18.81±0.2c 40.96±0.1de 56.45±0.2de 40.72±0.2de 

Table 4. Effect of preharvest application of zinc and boron on sugar content, sweetness index, and total sweetness index of carrot. 

*Different letters within each column indicate significant differences according to Tukey’s  test (p= 0.05). All data are expressed as mean ± standard deviation, n= 
3. DW- Dry weight, T0 (Control, i.e. only soil application of a recommended dose of FYM), T1- Borax @ 0.1%, T2- Borax @ 0.2%, T3- ZnSO4 @ 0.5%, T4- ZnSO4 @ 
1.0%, T5- Borax @ 0.1% + ZnSO4 @ 0.5%, T6- Borax @ 0.2% + ZnSO4 @ 1.0%, T7- Borax @ 0.1% + ZnSO4 @ 1.0%, T8- Borax @ 0.2% + ZnSO4 @ 0.5%. 
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immune function (56).  

Phosphorus 

Phosphorus (P) is vital to plant growth and is found in 
every living plant cell. It is involved in several key plant 
functions, including energy transfer, photosynthesis, 
transformation of sugars and starches, and nutrient 
movement within the plant (57). Phosphorus content was 
significantly influenced by pH level, soil type, 
environmental factors and application of fertilizer.  

 High concentrations of zinc decreased the 
phosphorous content, but the overall zinc content either 
increased or remained the same (58). Phosphorus may 
cause phosphorus-induced zinc shortage by interfering 
with zinc absorption, translocation, or use (59). 
Researchers hypothesized that plant roots contained 
phosphorus-zinc antagonists. The phosphorus absorption 
rate of boron-deficient plants rapidly increased upon 
addition, which may impact phosphate metabolism (60). 
The distribution of phosphate absorbed between roots 
and shoots is one of the more easily measurable outcomes 
of the phosphate metabolic pathway. Whereas, the lower 
phosphorus content of carrot was observed in application 
of zinc sulphate @ 1.0%, followed by zinc sulphate @ 0.5%.  

Sulphur 

The foliar application of zinc sulphate significantly 
influenced sulphur content in carrot root. It also plays an 
important role in synthesis of amino acids and proteins 
(61). It is also important to activate specific enzymes and 
vitamins, as well as to produce chlorophyll. After foliar 
treatment with zinc sulphate (15% sulphur), carrots may 
contain more sulphur. Depending on the availability of 
sulphur to the plant, different sulphate carriers in plants 
move sulphur from the rhizosphere to various plant 
tissues.  

 Sulphur helps amino acids maintain their shapes so 
that they are able to perform their roles in the human 
body. Unless there is severe protein deficiency or protein 
supplements with sulphur are consumed in large 
quantities, there is no risk of sulphur deficiency and 
toxicity (62).  

Sugar content  

Sugar yield, the most essential aspect of carrot cultivation, 
is influenced by root weight and sugar percentage. Several 
factors influence the quantity and quality of carrot root 
yield, including cultivar, type of weather and climate, 
planting and harvesting time, soil fertility and plant 
nutrition, particularly the type of fertilizer and timing of 
fertilization management and irrigation planning (63). 
Carbohydrate content in vegetables with roots and tubers 
typically ranges from 15% to 25% of  their fresh weight 
(64), mainly in sugars. The increased sugar content of 
vegetables enhances their sweetness, which indicates 
their quality and market value, as required for further 
processing and consumption. Foliar application of 
micronutrients like Zn and Boron significantly increased 
the amount of sugar (65). Applying zinc considerably 
increased the recoverable sugar production and 
morphophysiological responses of sugarbeet. Boron 

consumption significantly raises sugar levels due to 
increased glucose levels in root and phloem sap (66). The 
application of zinc tends to increase the sugar percentage 
in sugar beet (67, 68). Furthermore, sweetness is 
dependent on the type of sugar. Sucrose, fructose, 
glucose, and sorbitol are the primary sugars found in fruits 
and vegetables. There are variations in the sweetness of 
each sugar. Compared with glucose and sorbitol, which 
have only 0.8 and 0.6 sweetness, respectively, fructose has 
1.7 times that of sucrose. One widely used indicator of the 
acceptability of horticultural produce is the sweetness 
index and total sweetness index, which are based on the 
proportion of the particular sugar components (69).  

 

Conclusion   

Foliar application of micronutrients is most beneficial for 
plant growth and development. The growth, yield, and 
quality of plants are enhanced by the direct involvement 
of zinc and boron in plant metabolism. However, the 
combined treatment of Borax @ 0.1% + ZnSO4 @ 0.5% 
considerably improved root diameter, average root 
weight, and yield. Zinc and boron had a considerable 
impact on the vegetative parameters. Application of Borax 
@ 0.1% gave maximum reducing sugar content (glucose 
and fructose) all over the treatments but statistically 
similar values for reducing sugar were found in Borax @ 
0.1% + ZnSO4 @ 1.0%. whereas, Borax @ 0.1% + ZnSO4 @ 
0.5% significantly improved carrots' sucrose, total sugar, 
sweetness index, and total sweetness index. Results also 
indicated that the application of Borax @ 0.1% + ZnSO4 @ 
0.5% increased the yield and quality of carrots in the Trans
-Himalayan region. 
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