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Abstract

Biochar is a widely used soil amendment that can improve soil physical
properties like aggregation. However, little information is available regard-
ing how pig manure biochar improves soil structure formation and organic
carbon content in clay soil. This short-term field experiment (120 days) in-
vestigated the impacts of biochar on soil organic carbon (SOC) and aggre-
gate stability (MWD) coupling with microbial biomass carbon (MBC) in clay
soil under Pumpkin (Cucurbita maxima L.). The experiment consisted of five
treatments as follows: (i) Control as no biochar (To), (ii) inorganic fertiliza-
tion (triple super phosphate) at 2 t ha* (T4), (iii) biochar at 4 t ha! (T2), (iv)
biochar at 8 t ha' (Ts) and (v) biochar at 16 t ha! (T,). Results showed that
large macroaggregates were increased by 1.9, 2.2 and 2.7 times higher, while
MWD was increased by 53, 75 and 103 % in the T,, Ts and T4 treatments, re-
spectively, upon biochar incorporation as compared to T, (P < 0.01). The
SOC was increased significantly with all treatments compared to To (P < 0.001).
Moreover, MBC and GRSP were enhanced by 4.5 and 1.25-fold, respectively,
with only T, biochar treatment (P < 0.001), while T, treatment had no impact
on MBC and GRSP (P > 0.05). SOC, MBC and GRSP were significantly correlat-
ed with MWD (P < 0.05), while iron oxides had no impacts on MWD (P > 0.05).
The study indicates that biochar, particularly at 16 t ha, can potentially
enhance MWD, boosting microbial activity and SOC in clay texture soils of
southeast Bangladesh.
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Introduction

Biochar, a carbon-rich material that originated from the thermal decompo-
sition of biomass via pyrolysis, has been extensively studied for its benefi-
cial impacts on the environment. Biochar is considered a suitable habitat
and source of food for microbial communities and can enhance microbial
function, thereby stabilizing soil structure (1). Soil fungi stabilize the larger
soil particles, while bacteria interact to attach clay plus silt-size small soil
mineral particles together. Soil microbial decomposition of organic amend-
ments produces extracellular polysaccharide substances (EPS) coupling
with low molecular weight metabolites, which can facilitate the stability of
soil aggregates (2, 3). Biochar amendment considerably positively impacts
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soil structure formation (4). Biochar enhances soil aggre-
gation through the interactions between the biochar sur-
face C functional groups and soil minerals surface func-
tional groups (5).

Applying biochar promotes the growth and activity

of soil fungi by providing a higher carbon-to-nitrogen ratio,
which is crucial for stabilizing soil aggregates. Fungal hy-
phae serve as a transitory binding agent, improving aggre-
gation by interweaving and entangling soil particles (6).
Fungal hyphae, particularly mycorrhiza fungi, can turn
over rapidly for about 5-6 days and then the glomalin-
related soil protein (GRSP) is released from dead mycelium
(7). GRSP is closely associated with the walls of mycorrhi-
zal fungal hyphae and spores and also plays a key function
in enhancing aggregation by glueing soil particles together
(8).
Soil aggregate formation after organic amendment incor-
poration also varies with soil clay mineralogy. The 2:1-type
clay minerals, such as vermiculite and montmorillonite,
promote soil aggregation through clay-organic matter
bridge, while 1:1-type minerals, such as kaolinite, promote
aggregation through mineral-mineral interaction (9). How-
ever, the impacts of biochar derived from different sources
such as straw, wood and various waste materials on aggre-
gation in the range of soil texture have been reported. In
Bangladesh, pig farming produces a huge amount of ma-
nure, which leads to environmental pollution (10). Produc-
tion of pig manure biochar might be an alternative option
to minimize environmental pollution and improve sustain-
able soil management (10). However, the impact of bio-
char derived from pig manure remains largely illusive in
clay-textured soil. Moreover, the published short-term re-
ports of biochar addition on aggregation are largely incon-
sistent (10). For example, biochar influences positively or
negatively, while no impact on aggregation is also report-
ed in clay texture soil (11, 12, 13). These conflicting out-
comes require investigating how biochar influences aggre-
gate stability and SOC stock in clay soil. In the current in-
vestigation, it has been hypothesized that the biochar ap-
plication would enhance the water stability of soil aggre-
gates by enhancing SOC and boosting microbial activity
under Pumpkin (Cucurbita maxima). The fruit type of
pumpkin is a berry known as a pepo under the family Cu-
curbitaceae. The global production of pumpkins in 2022
was 23 mt, while in Bangladesh, it was 18-20 t/acre. In
Bangladesh, it is widely cultivated over the country). The
specific objectives of the current study were to determine
the influence of biochar on the stability of soil aggregates,
to measure the microbial activity under biochar applica-
tion and to quantify the soil organic carbon after biochar
application. The current study will explore the sustainable
soil management approach to enhance crop productivity
coupling with aggregation upscaling the soil carbon stor-
age.

Materials and Methods
Soil and biochar

The study field was located under the experimental sites of

2

Khulna University, Khulna, Bangladesh, specifically at co-
ordinates 22°48' N latitude and 89°32' E longitude. The soil
experimented with during the current investigation was
classified as Typic Haplaquepts (14). The precipitation and
temperature of the study area were 28 °C and 1280 mm,
respectively. The biochar applied in this study was com-
mercially obtained from Sanken Corporation, based in
Hachimantai, Japan. It was manufactured through a spe-
cialized baking process using an oven at temperatures be-
tween 600°C and 700°C for ten minutes. This experiment
used pig manure as raw material to manufacture the bio-
char. The final product exhibited a particle size of less than
10 mm. For further processing, it was mechanically
crushed into smaller fragments and passed through a
mesh containing 0.5 mm openings (15). The initial soil and
biochar properties before implementing the experiment
are presented in Table 1.

Table 1. The properties of initial soil and biochar before imposing the experi-
ment.

Properties Results
Soil pH 8.00
Electrical conductivity (EC) 3.83dS/m
Total N 1.60 g/kg
socC 8.59 g/kg
Initial soil
Sand (2.00-0.05 mm) 7.12%
Silt (0.05-0.002 mm) 34.11%
Clay (<0.002 mm) 58.76 %
. 0.14, 0.58, 0.56, 0.65,
/:‘r"fj"sble K.Na, Ca, Mg, S 0.09 and 0.03 g/kg,
respectively
pH 8.24
EC 4.13dS/m
Carbon (C) 9.17+0.02 %
Biochar
Nitrogen (N) 0.541+0.03%
C/N Ratio 16.67 £0.06
Source Pig manure
Experimental design

The short-term field experiment started in February 2022
and continued for 120 days (4 months). The completely
randomized design (CRD) was used to allocate the study
plots because the soil properties did not differ spatially.
The experiment consisted of five treatments: (i) control
(TO; no biochar application), (ii) inorganic fertilizer (TSP,
triple super phosphate) at 2 t ha! (Ty), (iii) biocharat 4
t hat (T,), (iv) biochar at 8 t ha! (Ts) and (v) biochar at
16 t ha'(T4). Each treatment was replicated thrice and the
plot size was 0.5 x 0.5 m2. The biochar and inorganic ferti-
lizer were incorporated on the surface of the respective
plots and then mixed manually on the surface soil at a
depth of 0-15 cm. The study plots were cultivated with
pumpkin (Cucurbita maxima L.), popular locally during
this season. It grows in all the districts of Bangladesh, but
plenty of pumpkins are produced in Khulna, Jessore,
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Kustia, Chittagong and Dhaka. To maintain soil moisture
content at field capacity during the growth period, the soil
was irrigated every five days to replenish the water loss.

Soil sampling

The post-harvest samples were collected after the harvest
of pumpkins (after 120 days). Five topsoil samples (0-15
cm depth) were collected from each study field. Then,
these five samples were mixed to make a composite soil
sample. This way, fifteen composite samples were pre-
pared from seventy-five individual samples of the respec-
tive study field. Then, the samples were subjected to air-
dry, crushed by a hammer and sieved by 4 for wet sieving
and 2 mm mesh for biological and chemical analyses.

Soil sample analyses
Soil physicochemical characteristics

The samples' soil pH and electrical conductivity (EC) were
determined using a soil-water ratio 1:2.5 (16). The total
nitrogen concentration of the soil was determined using
the Kjeldahl digestion procedure (17). Available soil mag-
nesium (Mg), calcium (Ca) and potassium (K) were extract-
ed with an ammonium acetate (1 M) solution at neutral
pH, with a soil extractant ratio of 1:10 (17). Following the
extraction, the concentration of K, Ca and Mg in the extract
was determined using an Atomic Absorption Spectropho-
tometer (AAS, Shimadzu model AA-7000, Tokyo, Japan).
The available soil S was extracted by a potassium dihydro-
gen phosphate (KH,PO.) solution with a soil: extractant
ratio of 1:10. The available soil sulfur (S) was extracted
using a potassium dihydrogen phosphate solution with a
soil: extractant ratio of 1:10. The S content in the leachate
was determined using the turbidity method (18). Soil avail-
able P was extracted at pH 8.5, using a 0.5 M sodium bicar-
bonate (NaHCOs) solution and phosphorus was measured
using the ascorbic acid blue colour method (18, 19).

Soil aggregation

The water stability of soil aggregate was determined by the
wet sieving method as proposed by Elliott (20). The soil
samples were placed on a 2 mm sieve and submerged in
pure water for five minutes to pre-wet the aggregates. After
pre-wetting, the aggregates on the 2 mm sieve were kept
submerged under 1 cm of water and the sieve was stacked
on top of 0.25 mm and 0.053 mm sieves. After that, the
sieve stack was manually raised and lowered 50 times in a
2-min period within a 3 cm water column. The fractions left
on each sieve were gathered and dried for 24 hours at 40°C
in an oven. The following four water-stable aggregate size
fractions were separated: (i) 2-5 mm (large macro-
aggregates), (ii) 0.25-2 mm (small macro-aggregates), (iii)
0.053-0.25 mm (micro-aggregates) and (iv) < 0.053 mm
fractions. The aggregate stability indicated by mean
weight diameter (MWD) was calculated as per the Equation
1 formula:

MWD =I1 %W,

Xi is the mean diameter of each aggregate fraction,
Wi is the mass proportion of the aggregate fraction remain-
ing on each sieve and n is the number of fractions.

Soil organic carbon (SOC) and microbial biomass car-
bon (MBC)

Soil organic carbon was quantified using the standard pro-
cedure proposed (21). Shortly, air-dried soil samples
(about 2 g) were oxidized with potassium dichromate and
sulfuric acid solution, with the leftover chromic acid solu-
tion titrated with ferrous sulfate to determine SOC con-
tent. The chloroform fumigation-extraction (CFE) method
was used to estimate MBC (22). At first, a 10 g soil sample
was split. One part was fumigated in dark conditions
(24 hrs at 25 °C) with ethanol-free chloroform. The remain-
ing non-fumigated soil portion was extracted using potas-
sium sulfate solution (20 mL of 0.5 M) and then shaken for
30 min (180 rev. min). The same extraction procedure was
followed for fumigation. The SOC levels in fumigated and
non-fumigated extracts were measured by following the
oxidation procedure (21). MBC was calculated based on
SOC differences between fumigated and non-fumigated
extracts (22).

Iron (Fe) oxides

The determination of free iron oxide (Fepcs) was carried out
using the Dithionite Citrate Bicarbonate procedure (DCB)
(23). Amorphous or oxalate extractable iron (Feo) was ex-
tracted using an ammonium oxalate (0.2M) under acidic
conditions at pH 3.0, maintaining a soil: solution ratio of
1:50. The samples were placed in a dark environment and
shaken in a reciprocating shaker for 4 hrs (24, 25). The or-
ganically bound Fe (FeO) oxide extraction was conducted
by sodium-pyrophosphate at pH 8.5 with 2 hrs of shaking
(24). The extractants’ Iron (Fe) concentration was analyzed
using an AAS (AAS, Shimadzu model AA-7000, Tokyo, Ja-
pan).

Glomalin-related soil protein (GRSP)

The soils’ GRSP content was obtained using a 50 mM cit-
rate solution, following the method outlined by Wright and
Upadhyaya (8). The Bradford dye-binding assay measured
the extracted protein, with bovine serum albumin as the
standard. Briefly, 0.25g of air-dried soil, measuring <2 mm
in size, was mixed with 2 mL of a 50 mM sodium citrate
solution (at pH 8.0) and subjected to autoclaving at 121°C
for 90 min. Following autoclaving, soil particles were re-
moved by centrifugation at 10000 g for 10 min. This pro-
cess was repeated five times until a clear, colourless su-
pernatant was acquired. After extraction, the supernatants
were combined and stored at 4°C for subsequent analyses.

Statistical analysis

The statistical analyses were conducted using SPSS 13.
The effects of biochar addition on MWD, SOC, GRSP, vari-
ous Fe oxides and soil nutrients were investigated using
one-way ANOVA. The treatment mean (n = 3) was com-
pared using the least significant difference (LSD at P < 0.05)
analysis. The Origin 16.0 software (OriginLab, USA) per-
formed linear regression to investigate the association
between MWD and other parameters (SOC, MBC, GRSP and
poorly crystalline Fe oxides).
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Results
Soil aggregation

The impacts of biochar and inorganic fertilizer application
on aggregate size distribution are displayed in Fig. 1. The
significant fraction of aggregates was < 0.053 mm (~48 % of
total mass). In contrast, the lowest fraction was 2-4 mm
aggregate (~11 % of total mass) among the treatments (Fig. 1).
Biochar application significantly increased the 2- 4 mm
aggregates in the expanse of < 0.053 mm aggregates com-
pared to the control treatments (P < 0.05). Large
macroaggregates (2- 4 mm) were improved to 10, 11 and
14 % in the T,, T3 and T4 biochar treatments, respectively,
upon biochar incorporation compared to control (5 %)
(P < 0.05). Biochar and inorganic fertilizer applications did
not impact microaggregate formation, while biochar appli-
cations reduced the silt and clay size aggregates compared

K 2-4mm[ ]0.25-2 mm [ 0.053 - 0.25 mm Il < 0.053 mm
60

aA aA

50 -
40
30
20 1

10

The proportions of aggregates (%)

T2

Treatments

Fig. 1. The proportions of soil aggregates after biochar, inorganic fertilizer
and control treatments. The vertical bars represent the standard deviation of
three replicates (n = 3). Lowercase letters denote significant differences at P<
0.05 among the treatments for each aggregate size. Different capital letters
indicate significant differences at P < 0.05 under the same treatments among
the different aggregate size fractions. The T0, T1, T2, T3 and T4 denote the
control, inorganic fertilizer (TSP) at 2 t ha*, biochar incorporation at 4 t ha*, 8
thal, and 16 t ha! treatments.

to the control (P > 0.05). The MWD was increased signifi-
cantly with inorganic fertilization and biochar incorpora-
tion compared to the control (Fig. 2; P < 0.01). The biochar
application in the Ty, Tz and T4 treatments significantly
increased the MWD by 53, 75 and 103 % compared to con-
trol (P < 0.01). There was no significant impact of inorganic
fertilization (TSP at 2 t ha!) and lower rates (4 and 8 t ha'!)
of biochar application were observed (P > 0.05).

4
. 0.8
E T
ab
0.6
é R T
. | |
E I |
E 0.4 i
S c
a T
] 1
20
Y 0.24
s
=1
g
E 0.0 T T T T T
TO T1 T2 T3 T4
Treatments

Fig. 2. The water stability of soil aggregates after biochar, inorganic fertilizer
and control treatments. The vertical bars represent the standard deviation of
three replicates (n = 3). Different lowercase letters denote significant differ-
ences at P <0.01 among the treatments. The TO, T1, T2, T3 and T4 represent
the control inorganic fertilizer (TSP) at 2 t ha'*, biochar incorporation at 4 t ha-
1 8tha?, and 16 t ha' treatments.

SOC concentration

The SOC content under different rates of biochar and inor-
ganic fertilizer incorporation is listed in Table 2. The SOC
contents were increased with increasing the biochar appli-
cation rates in the order of To < T2 < T1 < T3 < T4. After impos-
ing the biochar (T,, Tz and T4) and inorganic fertilizer (T.)
application, the SOC contents were increased by 25, 21, 29
and 38 % in the Ty, T2, T and T, treatments, respectively,
compared to the control treatments (P < 0.001). The distri-
bution of SOC in the soil aggregate size fraction is dis-
played in Fig. 3. In each treatment, SOC content was in-
creased with increasing aggregate size (P < 0.05). Applying
biochar significantly increased the SOC content in aggre-
gates > 2 mm compared to the control. Specifically, the
SOC levels in the > 2mm aggregates exhibited a marked
increase of 47 % in the T; and T4 biochar treatments. Con-
versely, applying biochar incorporation did not result in
notable changes in SOC content within aggregate fractions
<0.25 mm. Finally, we found a strongly significant and line-
ar relationship between the MWD and SOC (Fig. 4A;
P <0.001; R2=0.62).

MBC and GRSP content

Soil MBC and GRSP were increased compared to the con-
trol after adding all the biochar treatments (Table 2). MBC
was enhanced by 4.5 times, while GRSP was increased by
1.23 times higher after 16 t ha? (T4) biochar addition
(P < 0.001). On the other hand, there were no impacts of
inorganic fertilizer, 4 and 8 t ha? biochar treatments on

Table 2. SOC, MBC and GRSP after four months of biochar and inorganic fertilizer application.

Treatments
Soil Properties
To T: T2 Ts Ts
SOC (g/kg) 9.75+0.19¢ 12.23+0.19b 11.7940.22b 12.55+1.27ab 13.44+0.29a
MBC (g/kg) 0.02+0.01b 0.05+0.03ab 0.05+0.03ab 0.07+0.02ab 0.09+0.04a
GRSP (g/kg) 1.46+0.15b 1.36+0.25b 1.33+0.27b 1.72+0.21ab 1.81+0.28a

Values are means + SD (standard deviation), n = 3. Lowercase letters in the row indicate significant differences among treatments (P <0.001). The To, T, T2, Tz and
T, denote the control, inorganic fertilizer at 2 t ha, biochar incorporation at 4t ha, 8 t ha, 16 t ha™ treatments, respectively.
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] MBC and GRSP (P > 0.05). A significant positive relationship
2_'4“““ 0:25 -2 mm B 0.053 - 0.25 mm [ <0.083mm | ot yoon the MWD and GRSP (Fig. 4B; P < 0.05; R? = 0.29)
- and the MWD and MBC (Fig. 4(D); P < 0.05; R* = 0.41) were
i observed.
o0 20 4 an . .
G aA . Soil nutrient content
8 aAB The study found that adding biochar and inorganic fertiliz-
E 151 abA oA abA N er enhanced the nutrient content compared to the control
2 bA_ 5 but was insignificant, except for available Ca and Mg (Table 3).
S 10- B Biochar increased available Mg content by 109 % in T, and
2 T, treatments relative to the control (Table 3). The availa-
§” ble Ca content was reduced by 1.4, 1.5, 1.4 and 1.5-fold
S 31 upon T1, T,, Ts and T, treatments, respectively (P < 0.05).
E The contents of available S and total N showed an increase
0 2 N B in the order of To < T> < T4 < T1 < T3, but no significant differ-
To T3 T4 ence was observed among the treatments (P > 0.05).
Treatments Fe oxide content

Fig. 3. The distribution of SOC in the four aggregate size fractions of control,
inorganic fertilizer and different rates of biochar input. The vertical bar repre-
sents the standard deviation of three replicates (n = 3). Lowercase letters
denote significant differences at P < 0.05 among the treatments for each
aggregate size. Different capital letters indicate significant differences at P <
0.05 under the same treatments among the different aggregate size fractions.
The To, Ty, T2, Ts and Tarepresent the control inorganic fertilizer (TSP) at 2 t ha?,
biochar incorporation at4 t ha, 8t ha?, and 16 t ha! treatments.

Biochar treatments did not significantly impact different
iron oxides and their ratio (P > 0.05; Table 4). The biochar
application significantly increased the concentration of
FeO except for T4 Furthermore, the relationship between
MWD and Feo oxides was non-significant (Fig. 4C); P > 0.05).

0.8 0.8
Y =0.07x - 0.34 (A) Y =0.22x + 0.136 (B)
R? =0.62 O R*=10.29 O
0.6{ P<0.001 0.6{ P<0.05
z oY @
H 0 Q
g 0.4 0.4 80
= O
0.2 0.2
0.0 T T T 1 0.0 T T T T 1
0 5 10 15 20 0.0 0.5 1.0 1.5 2.0 25
SOC (gkg ™) GRSP (gkg ™)
0.87 Y =0.40x+0.39 (C) 0.87 Y =2.17x- 0.36 (D)
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_ P> 0.05 P<0.05
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Fig. 4. The relationship between MWD and SOC, MWD and GRSP, MWD and poorly Crystalline Fe oxides and MWD and MBC.
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Table 3. Changes in soil nutrient content upon different biochar and inorganic fertilizer application rates.

Treatments
Nutrients (g/kg)
To T: T2 Ts Ta
Available Na 0.57+0.14a 0.90+0.14a 0.82%0.14a 0.90+0.14a 0.82+0.14a
Available K 0.14+0.01b 0.18+0.01a 0.16+0.01ab 0.18+0.01a 0.16+0.01ab
Available Ca 4.91+0.78a 3.45+0.10b 3.28+0.08b 3.45+0.10b 3.28+0.08b
Available Mg 0.98+0.02b 1.45+0.30ab 2.06+0.35a 1.45+0.30ab 2.06+0.35a
Available S 0.21+0.03a 0.32+0.05a 0.31+0.03a 0.32+0.05a 0.31+0.03a
Available P 0.25+0.03a 0.13+0.09a 0.20+0.01a 0.13+0.09a 0.20+0.01a
Total N 0.56+0.03a 0.70+0.10a 0.62+0.07a 0.70+0.10a 0.70+0.07a

. Values are means + SD (standard deviation), n = 3. Lowercase letters in the row indicate significant differences among treatments (P < 0.05). The To, T1, T2, Tz and
Ta denote the control, inorganic fertilizer at 2 t ha?, biochar incorporation at 4t ha, 8t ha?, 16 t ha? treatments, respectively.

Table 4. Extractable Fe-oxides in the soil under biochar, inorganic fertilizer and control treatments.

Treatments
Different Fe oxides
To T: T. Ts Ta
Feocs (g/kg) 2.98+0.05a 2.83+0.21a 2.8610.17a 2.71+0.11a 2.89+0.15a
Feo (g/kg) 0.18+0.01b 0.20+0.01a 0.20+0.01a 0.2240.01a 0.17+0.01b
Fer (g/kg) 0.05+0.00a 0.05+0.00a 0.05+0.00a 0.05+0.00a 0.05+0.00a
Feo / Fencs 0.06+0.00bc 0.07+0.00b 0.06+0.00bc 0.08+0.00a 0.06+0.00c

. Values are means + SD (standard deviation), n = 3. Lowercase letters in the row indicate significant differences among treatments (P <0.05). The To, T, T2, Tz and
T, denote the control, inorganic fertilizer at 2 t ha, biochar incorporation at 4 t ha, 8t ha, 16 t ha! treatments, respectively.

Discussion
Effects of biochar on SOC and aggregation

In the current short-term field study, we observed that
adding biochar led to a significant increase in macroaggre-
gates, SOC and MWD compared to control. (P < 0.001). We
also found a substantial and positive relationship between
MWD and SOC, which indicates a strong influence of SOC
on aggregate stability in the current study. The positive
influence of biochar incorporation on SOC and MWD
agreed with study reports that biochar application in-
creased aggregation by 16.4 + 2.5 % compared to control
regardless of biochar properties, soil and experimental
conditions (4, 26). Research indicates that biochar applica-
tion at 16 t ha* significantly increased the SOC and MWD
but not below 8 t ha? (26). The proportion of macro-
aggregate enhanced upon biochar input from 10 to

40 t ha™(27). Our current study found that the proportion
of macro-aggregates and MWD was increased with biochar
application from 4 to 16 t ha’. The impact of biochar addi-
tion on aggregation may depend on biochar properties
and pyrolysis temperature (4). For exam-ple, wood biochar
with higher pyrolysis temperature (> 600 °C) has higher
favourable impacts on the aggregation than other plant-
derived biochar (cereal straw, grain residue, manure). It
has been widely suggested that aggregation is increased
with the improvement of SOC, which might be due to the
proliferation of microbial activity upon biochar incorpora-
tion (28). Biochar promotes microbial activity, which pro-
duces mucilage and hyphae, leading to the connection of
micro-aggregates to macro-aggregates in the interface
between soil particles and Biochar (28). Research indicates
that extracellular polysaccharides produced upon microbial

degradation of biochar are glue-like materials that have
the potential to bind soil particles together (29). Moreover,
research showed that the higher water stability of soil ag-
gregates in polysaccharide treatments is due to the en-
meshments of soil particles (30). In general, Biochar pos-
sesses a relatively higher C/N ratio, which is a favourable
condition for the growth of fungi (31). Fungal hyphae and
plant roots can intertwine with soil particles, potentially
leading to increased MWD (32). The unique features of bio-
char include a highly porous structure, greater cation ex-
change capacity and specific surface area, which can facili-
tate aggregation by absorbing different minerals and OM
with different molecular sizes and chemical properties
(33). We also found that the aggregate fractions of 2-4 mm
and 0.25-2 mm contained a higher proportion of organic
carbon compared to the <0.25 mm fractions (Fig. 3), which
aligns with previous studies (34, 35). Applying stable **C
isotope labelling techniques, macro-aggregates tend to
accumulate newly added *C more than micro-aggregates
(36). The more significant carbon accumulation in the
macro-aggregates is due to the larger pores in macro-
aggregates. In contrast, the lower carbon content in the
micro-aggregates results from a greater surface area to
volume ratio and more C loss during wet sieving due to
shorter transfer pathways (35). The interaction of micro-
aggregates through the cementing action of organic mat-
ter results in the formation of macro-aggregates, accumu-
lating more carbon content in macro-aggregates (32).

GRSP and aggregation

In the current study, we found that applying biochar in-
creased the soil GRSP (Table 2), in agreement with the find-
ings of various studies (36,37, 38). The biochar significantly
increased the GRSP synthesis, while Yuan et al. (38) found
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that biochar increase the GRSP coupling with soil carbon
sequestration. In the current study, biochar incorporation
increased the MBC (Table 2) by supplying the nutrients and
carbon for the soil microbial community, which may stimu-
late fungal activity, growth and GRSP production (36, 37).
Biochar application increased the abundance of a special-
ized group of GRSP-producing fungi (arbuscular mycorrhi-
za) in soil, thus increasing GRSP production (38). Arbuscu-
lar my-corrhiza fungi degrade the complex chemical struc-
ture of biochar, which is rich with aromatic C and lignin,
resulting in higher GRSP synthesis (39). Arbuscular mycor-
rhiza hyphae contribute to increased GRSP storage in soil.
The main processes for GRSP buildup in soil involve the
turnover of arbuscular mycorrhiza hyphae, with GRSP be-
ing released from the decaying mycelium (7). Arbuscular
mycorrhiza hyphae have a rapid turnover rate, with a cal-
culated half-life of 5-6 days, resulting in higher GRSP accu-
mulation in the soil (16). Furthermore, we found a positive
relationship between GRSP content and aggregate for-
mation (Fig. 4B); P < 0.05; R*=0.29). Previous research find-
ings have reported a positive relationship between GRSP
and aggregation (40, 41). GRSP, produced from arbuscular
mycorrhiza hyphae, is an essential binding material for soil
particles together into larger aggregates, thus enhancing
the MWD (8, 42). GRSP has been shown to increase water-
stable aggregates, which are more erosion-resistant and
contribute to improved soil quality (43). The hydrophobic
properties of glomalin contribute to forming water-
resistant soil aggregates (44). GRSP is a novel bioflocculant
enriched with essential elements such as Fe (Fe** and Fe®*),
Ca%, Mg, K, Zn?, Cu?* and Mn?" (16). These cations en-
hance biogeochemical processes by promoting soil parti-
cle flocculation (45). Furthermore, Fe and GRSP participate
in flocculation with soil particles depending on the charge,
absorption and bridging mechanism between GRSP and
soil mineral particles (46). The mechanism through which
GRSP bridges particles is influenced by its variety of func-
tional groups and higher molecular weight, which create
multiple sites for binding during flocculation and aggrega-
tion (47). GRSP includes the carboxyl (-CO0-), amide (-CO
-NH), hydroxyl (-OH), carbonyl (C- 0-0-) and primary
amine (-NH,) groups (46). These specific functional groups
play a crucial role in linking mineral particles, facilitating
the formation of larger clusters during the aggregation
process (47). GRSP binds the soil minerals to micro-
aggregates (diameter < 0.25 mm) and then stable macro-
aggregates by following the aggregates hierarchy (32).

Fe oxides and aggregation

In our current study, biochar incorporation did not signifi-
cantly impact iron oxides (P > 0.05; Table 4). Consequently,
we did not observe a significant relationship between
amorphous iron oxide and MWD (P > 0.05; ), which contra-
dicts the findings of research (Fig. 4C) (48). A positive rela-
tionship between amorphous iron oxide and MWD (r = 0.67;
P < 0.05) and the organic amendment incorporation pro-
motes the conversion of crystalline Fe to amorphous Fe
oxides and enhances soil aggregation (48). The soil miner-
alogy in the current investigation was dominated by illite
and montmorillonite, which might be the reason for the
absence of any correlation between amorphous iron

oxides and aggregate stability (49).

Conclusion

Applying biochar in the clay soil significantly increased soil
macroaggregate formation, thus promoting the stability of
soil aggregates. Moreover, biochar at 16 t ha™ significantly
enhanced the current investigations’ SOC, MBC and GRSP
significantly. The biochar incorporation enhanced the SOC
by boosting soil microbial activity, which plays a key role in
soil aggregation, followed by fungal synthesis GRSP. On the
other hand, Fe oxides had no impact on soil structure for-
mation and SOC stock in the soil of southwestern Bangla-
desh. The findings demonstrate that biochar application at
16 ton/ha significantly promote soil aggregtaion and soil
organic carbon stock boosting microbial activity in the clay
soils of Bangladesh.
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