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Abstract   

Digital Soil Mapping (DSM) presents a highly scalable and efficient 

alternative to traditional soil analysis, which is typically limited by its labor-

intensive processes, time constraints and low spatial resolution. By utilizing 

advanced computational techniques such as machine learning and remote 

sensing, DSM overcomes these limitations and improves the accuracy, 

efficiency and scalability of soil property assessments. This study, 

conducted across Tamil Nadu, India, applied DSM and Random Forest (RF) 

models to predict 2 key soil properties: pH and Soil Organic Matter (SOM). 

We employed Conditioned Latin Hypercube Sampling (cLHS) for optimized 

sampling point selection and utilized the Boruta algorithm to identify the 

most relevant covariates for accurate modeling. The RF models were fine-

tuned using a comprehensive grid search, with the optimal configuration 

spanning from 500 to 2000 trees (ntree) and mtry from 1 to 11. The best-

performing model was found with 2000 trees and mtry set to 1 yielding 

superior prediction for SOM and pH with Root Mean Square Error (RMSE) 

values of 0.71 and 0.60 respectively, showcasing a high level of predictive 

accuracy. Our findings emphasize the critical role that remote sensing 

indices play in predicting SOM, while pH was influenced by both terrain 

features and remote sensing data. In comparison to previous studies, this 

research offers novel improvements in both sampling optimization and 

model configuration, leading to enhanced predictive performance. These 

results hold significant potential for sustainable land-use planning, 

agricultural productivity and environmental management. 
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Introduction   

The pH and Soil Organic Matter (SOM) are critical indicators of soil health 

and play a pivotal role in determining soil fertility, nutrient availability and 

ecosystem functioning. Soil pH governs nutrient availability, microbial 

activity and overall soil fertility, while SOM is essential for maintaining soil 

structure, water retention and nutrient cycling. These properties directly 

influence crop productivity, nutrient management strategies and 

environmental sustainability (1-3). Conventional soil mapping methods, 
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rooted in manual field surveys and expert knowledge, 

have long been the cornerstone of soil characterization, 

but they are increasingly limited by labor-intensive 

processes, time inefficiencies and low spatial resolution (4, 

5). These methodologies are characterized by their 

inherent limitations in both spatial resolution and 

predictive accuracy (5). Recognizing these limitations, the 

field of soil science has experienced a paradigm shift with 

the emergence of Digital Soil Mapping (DSM). DSM 

employs advanced computational methodologies, 

including remote sensing and machine learning 

algorithms, to create high-resolution soil maps that 

effectively capture the intricate variability of soil across 

landscapes (4, 6). Mapping, whether conventional or 

digital, holds immense importance in various fields, 

including agriculture, environmental management and 

land-use planning. Soil properties, such as texture, pH and 

organic matter content are crucial in determining soil 

fertility, nutrient availability and ecosystem functioning 

(2). Accurate soil maps provide valuable insights for 

optimizing agricultural practices, mitigating 

environmental degradation and supporting sustainable 

land management decisions (5). In the domain of soil 

mapping, DSM has surfaced as a potent instrument for 

addressing the constraints of conventional mapping 

methodologies. It leverages a diverse array of data 

sources, including remote sensing imagery, topographic 

data and ancillary environmental variables, to model soil 

properties at high spatial resolutions (6). Machine learning 

(ML) algorithms have become integral components of 

DSM, offering robust tools for modeling complex soil-

environment relationships. ML techniques, such as 

Random Forests, support vector machines and artificial 

neural networks, are proficient in capturing nonlinear 

patterns and interactions inherent in soil datasets (7, 8). 

These algorithms learn from data to identify predictive 

relationships between soil properties and environmental 

covariates, enabling accurate soil mapping across diverse 

landscapes (9). Accurate mapping of soil pH and SOM 

using DSM and machine learning techniques provides 

essential insights for optimizing agricultural practices, 

mitigating soil degradation and preserving ecosystem 

services (3, 10). Understanding the spatial distribution and 

variability of soil pH and SOM is paramount for addressing 

global challenges such as food security, climate change 

adaptation and biodiversity conservation (3, 10-12). 

Therefore, expediting advanced soil mapping technologies 

and interdisciplinary research efforts are crucial for 

promoting sustainable soil management practices and 

safeguarding soil health for future generations (11-15). In 

this study, we aimed to emphasize the importance of soil 

pH and SOM in soil health assessments, demonstrating the 

potential of machine learning and DSM in advancing our 

understanding of soil-landscape interactions. By 

leveraging recent computational advances, spatial data 

analysis and machine learning techniques such as Random 

Forest modeling, we aim to provide a comprehensive 

framework for characterizing soil variability, with critical 

importance to sustainable land management practices. 

 

Materials and Methods 

Study area 

The study area encompasses the state of Tamil Nadu in 

India, spanning a geographical extent from approximately 

8.07°N to 13.58°N latitude and 76.30°E to 80.34°E longitude, 

characterized by diverse terrain and climatic conditions (Fig. 

1). The altitude ranges from sea level along the coastal 

plains to approximately 2700 m in the Nilgiri, Anaimalai and 

Palani Hills, with geological formations including 

sedimentary rocks, granites, gneisses and schists. The 

climate varies from tropical along the coast to semi-arid and 

arid inland, with mean annual rainfall ranging from around 

750 mm to approximately 1000 mm and mean annual 

temperatures ranging from 24 °C to 32 °C. These 

environmental factors contribute to the presence of various 

soil types, such as red soils, black soils, alluvial soils and 

lateritic soils, across the region, highlighting its ecological 

diversity and significance for research endeavors. 

Optimized Sampling Point Selection 

Sampling point selection for this study, conducted in Tamil 

Nadu, India was based on the Conditioned Latin Hypercube 

Sampling (cLHS) method, following the approach outlined 

by Minasny and McBratney (16). The choice of cLHS was 

driven by its efficiency, accuracy and cost-effectiveness in 

selecting spatially representative samples. cLHS is a 

stratified random procedure known for its ability to 

efficiently sample variables from their multivariate 

distributions, ensuring comprehensive environmental 

coverage with fewer sampling points, thus reducing field 

costs and time without compromising accuracy. 

Implemented using the 'cLHS' package in R, this method 

allows for the optimization of sampling by drawing a sample 

size (n) from multiple variables while maximizing the 

stratification for each variable. This makes cLHS particularly 

suitable for digital soil mapping, where diverse 

environmental conditions must be represented with a 

limited number of sampling points. By selecting a minimal 

yet highly representative number of samples, cLHS 

enhances the accuracy of the predictions while being cost-

efficient. Environmental variables considered in the 

sampling process included land use and land cover (LULC), 

agricultural land suitability (AESR), soil suborder, digital 

elevation model (DEM), terrain parameters, road network 

data and Normalized Difference Vegetation Index (NDVI). 

Incorporating ancillary information on covariates improved 

the stratification and consequently, the representativeness 

of the selected sampling points. This approach ensured that 

the diversity of environmental conditions within the study 

area was accurately captured while minimizing the cost and 

effort required for field sampling. The cLHS methodology 

guided the determination of the optimum number of 

spatially located samples necessary to cover the entire 

feature space. A total of 191 sampling points (Fig. 2) were 

meticulously selected using this method, ensuring robust 

representation of the environmental diversity within the 

study area. By using cLHS, the study was able to achieve a 

balance between spatial coverage and sampling efficiency, 

ultimately leading to more reliable results while optimizing 

resources. 
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Fig. 1. Map of the study site and the distribution of sampling location. 
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Figure 2: Presentation of Environmental Covariates  
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Soil data and descriptive statistics 

pH and Soil Organic Matter (SOM) analysis followed 

rigorous laboratory protocols. Soil samples were 

systematically collected from the study area in Tamil 

Nadu, India. pH was meticulously measured in a 1:2.5 soil-

to-water suspension using a calibrated pH meter (17). Soil 

Organic Matter content was determined employing the 

Wet digestion method (18), incorporating wet oxidation 

followed by titration. Additionally, the Shapiro-Wilk test, 

recognized for its importance in assessing data normality, 

was utilized (19). Statistical parameters including mean, 

median and quartiles were calculated to elucidate data 

distribution characteristics (Fig. 3). 

Environmental covariates: 

Environmental covariates, crucial for understanding 
landscape dynamics and predicting soil properties, were 

sourced from Google Earth Engine, with a uniform spatial 

resolution of 30 m. Landsat 8 and Shuttle Radar 

Topography Mission (SRTM) indices were employed for 

comprehensive analysis. Landsat 8 data provided valuable 

information on surface reflectance, while SRTM data 

contributed terrain and elevation details, both of which 

are essential for digital soil mapping (20, 21). These 

datasets, processed and analyzed through the Google 

Earth Engine platform, allowed for consistent, high-quality 

spatial data across the study area. Fig. 2 illustrates all the 

covariates employed in this investigation. Landsat 8 

provided 17 indices: Blue (BL), Red (RD), Green (GR), Near 

Infrared (NIR), Chlorophyll Vegetation Index (CVI), Crop 

Moisture Index (CMI), Brightness Index (IB), Difference 

Vegetation Index (DVI), Ferrous Mineral Index (FMI), Iron 

Oxide Index (IOI), Normalized Difference Vegetation Index 

(NDVI), Normalized Difference Water Index 1 (NDWI1), 

Normalized Difference Water Index 2 (NDWI2), Ratio 

Vegetation Index (RVI), Soil Adjusted Vegetation Index 

(SAVI), Soil Redness Index (SRI) and Transformed 

Normalized Difference Vegetation Index (TNDVI). 

Additionally, SRTM provided 7 indices: Slope (SL), Aspect 

(AS), Topographic Wetness Index (TWI), Profile Curvature 

(PIC), Planar Curvature (PRC), Ridge Top Flatness (RTF) 

and Valley Bottom Flatness (VBF). These indices, with their 

uniform spatial resolution, facilitate a comprehensive 

analysis of soil-landscape relationships and enhance 

predictive modeling accuracy. 

Environmental covariate selection: 

Before constructing the Random Forest model, 

environmental covariate selection was conducted using the 

Boruta algorithm implemented in R with the Boruta 

package. The Boruta algorithm, introduced (22), is a feature 

selection method designed to identify relevant variables in 

datasets for predictive modeling tasks. The algorithm 

operates iteratively, comparing the importance of each 

predictor variable against that of random shadow variables 

created by shuffling the data, thereby distinguishing truly 

informative variables from random noise. Boruta evaluates 

variable importance based on the degree of statistical 

significance compared to shadow variables, considering the 

null hypothesis that there is no difference in importance 

between the original predictors and the shadow variables.  

 To assess variable importance, Boruta calculates Z-

scores for each variable, indicating its relative importance 

compared to shadow variables. Variables with Z-scores 

exceeding a predetermined threshold (typically set at 1.96 

for a significance level of 0.05) are deemed important and 

retained for further analysis. The Boruta algorithm 

iteratively removes unimportant variables and re-evaluates 

the remaining variables until all predictors are either 

confirmed as important, rejected as unimportant, or remain 

undecided. This iterative process continues until a stable set 

of relevant variables is identified. The robustness and 

reliability of the Boruta algorithm have been demonstrated 

in various studies (22, 23). It provides a powerful tool for 

feature selection, particularly in the context of high-

dimensional datasets such as those encountered in 

environmental modeling. 

  In this study, the Boruta algorithm was applied to the 

environmental covariates dataset to identify the subset of 

variables most relevant for predicting soil properties. The 

selected covariates were then used as input features for 

building the Random Forest model, enabling more efficient 

and accurate prediction of soil parameters. This 

methodology ensures that only the most informative 

environmental covariates are incorporated into the 

predictive model, enhancing its performance and 

interpretability while minimizing the risk of over fitting. 

Random forest model: 

The Random Forest algorithm remains a prominent 

ensemble learning technique widely employed in both 

classification and regression tasks. Its methodology involves 

constructing numerous decision trees during training, 

where each tree is grown using a bootstrapped sample of 

the training data. At each node of the tree, a random subset 

of predictor variables is considered for splitting, introducing 

randomness to the process and aiding in the decorrelation 

of individual trees (24). 

 Random Forests also offer insights into feature 
importance through measures such as the Mean Decrease in 

Accuracy (MDA) or Mean Decrease in Gini Impurity. 

Additionally, the out-of-bag (OOB) error estimation method 

is utilized for internal validation during training, where the 

model's performance is assessed using data not included in 

the bootstrap sample. This OOB error serves as an unbiased 

estimate of the model's performance and aids in hyper 

parameter tuning and model selection (25, 26). The 

combination of OOB error estimation and feature 

importance calculation enhances the interpretability and 

robustness of Random Forest models, making them a 

popular choice for predictive modeling tasks in various 

domains. 

Optimisation and performance: 

To optimize the Random Forest model's hyperparameters, a 

comprehensive grid search strategy was implemented, 

varying the number of trees (ntree) from 500 to 2000 and the 

number of variables randomly sampled as candidates at 

each split (mtry) from 1 to 11. This grid search approach was 

complemented by a robust five-fold cross-validation, 

repeated three times, to ensure reliable estimation of model 

https://plantsciencetoday.online


5 

Plant Science Today, ISSN 2348-1900 (online) 

performance and generalization ability. During each 

iteration of cross-validation, the model's performance was 

meticulously evaluated using fundamental statistical 

metrics, including R-squared (R²), root mean squared error 

(RMSE) and mean absolute error (MAE), providing 

comprehensive insights into the model's predictive 

accuracy and goodness-of-fit (26). 

 Furthermore, the Prediction Interval Coverage 

Probability (PICP) metric was employed to quantify the 

uncertainty in model predictions. PICP represents the 

proportion of observations that fall within the prediction 

interval, with higher PICP values indicating better prediction 

interval coverage and consequently, greater reliability of the 

model's uncertainty estimates (26). By incorporating the 

PICP metric, the assessment of model reliability and risk 

management is enhanced, ensuring robust predictions and 

informed decision-making. 

 In addition to hyper parameter optimization and 

uncertainty assessment, correlation heatmaps (Fig. 3) were 

constructed to visualize the relationships between soil 

properties (e.g., pH and soil organic matter) and 

environmental covariates. These heatmaps provide intuitive 

graphical representations of the strength and direction of 

correlations between variables, facilitating the identification 

of potential predictors and elucidating their relationships 

with the target variables (26, 27). This comprehensive 

approach, integrating cutting-edge methodologies with 

rigorous evaluation techniques, ensures the reliability and 

interpretability of the Random Forest model for predicting 

soil properties in diverse environmental settings.  

 

Results  

Descriptive statistics: 

Table 1 displays summary statistics detailing the attributes 

of the 191 samples. The distribution of pH and Soil Organic 

Matter (SOM) based on quartile values reveals distinctive 

patterns. For pH, the interquartile range (IQR) extends 

from 6.4 to 0.61, indicating moderate right-skewness. With 

a median pH of 7.36 slightly below the mean of 7.11, the 

distribution leans towards lower pH values. A broad range 

spanning from 3.96 to 9.09 accentuates notable variability 

within the dataset. 

 Conversely, SOM distribution exhibits pronounced 

right-skewness, evident from an IQR spanning 7.85 to 1.62. 

The median SOM value of 1.05 % is notably lower than the 

mean of 1.33 %, suggesting a skew towards lower SOM 

levels. The extensive range from 0.03 % to 6.51 % signifies 

substantial variability in organic matter content across 

samples. The Shapiro-Wilk normality test was conducted 

on the pH and Soil Organic Matter (SOM) data.  

 For the pH data, the test resulted in a p-value of 

approximately 1.328e-05, which is significantly less than 

the conventional alpha level of 0.05. Similarly, for the SOM 

data, the p-value was found to be less than 2.2e-16, also 

significantly smaller than the alpha level. These small p-

values provide strong evidence against the null hypothesis 

of normality, suggesting that neither the pH nor the SOM 

data follow a normal distribution. Consequently, it may be 

advisable to explore alternative statistical approaches that 

do not rely on the assumption of normality when analyzing 

these datasets. 

 

Figure 3.Visualization of the Correlation Matrix and Data Distribution for pH(a) and SOM(b). 
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Covariate selection: 

The figure illustrates the outcomes of variable selection 

conducted using Boruta's algorithm. The blue box plots 

depict the Z scores of 3 shadow attributes: the minimum 

(shadowMin), average (shadowMean) and maximum 

(shadowMax). Meanwhile, the red and green box plots 

represent the Z scores of the rejected and confirmed 

attributes respectively. 

 For the prediction of soil pH, the analysis involved 24 

variables, including 17 spectral indices and 7 terrain 

attributes. Among these, 11 variables were deemed relevant 

for pH prediction, namely Red, NDVI, IOI, RVI, IB, DVI, CVI, 

FMI, SAVI, RTF and NDWI1(Fig. 4a). Conversely, 11 variables 

were rejected and two were initially designated as tentative. 

The 'TentativeRoughFix' function was employed to resolve 

this issue, ultimately resulting in the rejection of the 2 

tentative variables. 

 Regarding the prediction of Soil Organic Matter 

(SOM), the initial analysis considered 11 variables as 

relevant, including NDVI, IOI, RVI, IB, FMI, RTF, NDWI1, 

TNDVI, SRI, PIC and PrC (Fig. 4b). Eight variables were 

rejected, while the remaining 5 variables (SAVI, Slope, CVI, 

TWI and NDWI 2) were designated as tentative. 

Subsequently, the 'TentativeRoughFix' function was utilized 

to address this situation, leading to the rejection of the 5 

tentative variables. 

Environmental covariates importance: 

In the investigation, a thorough exploration of 

environmental covariates to forecast Soil Organic Matter 

(SOM) and pH was conducted utilizing advanced machine 

learning techniques. Through post hoc analysis, facilitated 

by importance plots generated from Random Forest 

models, invaluable insights into the individual contributions 

of each covariate to the model's predictive accuracy were 

gained. Notably, in the context of pH prediction, it has been 

observed that the topographic index RTF played a pivotal 

role, serving as a reflection of the landscape's physical form 

and exerting a substantial influence on soil acidity. 

Furthermore, our analysis highlighted the significant impact 

of spectral indices such as IOI, FMI, CVI, IB, RVI and NDVI on 

pH prediction, underscoring the relevance of vegetation and 

soil attributes in determining soil pH levels (Fig. 5a). 

a 

b 

Fig. 4. Boruta algorithm selection results for predicting pH (a) and SOM (b) based on environmental covariates. 

 Mean Median Mode SD Kurtosis Skewness Range Minimum Maximum 1st 
quartile 

3rd 
quartile 

pH 7.11 7.36 7.6 1.01 -0.53 -0.50 5.13 3.96 9.09 6.4 0.61 

SOM 1.33 1.05 0.79 1.19 6.70 2.38 6.48 0.03 6.51 7.85 1.62 

Table 1: Descriptive statistics for 191 samples 
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 Conversely, when it came to predicting SOM content, 

our findings revealed a distinct set of influential predictors. 

Remote sensing indices including RVI, NDVI, NDWI 1, IB and 

TNDVI emerged as key determinants, indicating the critical 

role of vegetation health in organic matter accumulation 

(Fig. 5b). Despite their lesser influence, indices capturing 

additional aspects of vegetation health and landscape 

morphology, such as FMI, IOI, RTF, PrC, SRI and PIC, still 

made significant contributions to SOM prediction. This 

nuanced understanding prioritizes the importance of 

leveraging comprehensive environmental data and 

harnessing the power of machine learning to unravel 

complex soil-landscape relationships for the purpose of 

effective digital soil mapping. 

Model performances and uncertainty: 

The hyper parameter tuning results for the Random Forest 

(RF) model, as depicted in Fig. 6, illuminate the optimal 

configurations for predicting Soil Organic Matter (SOM) 

and pH levels. Notably, the combination of ntree = 2000 

and mtry = 1 yielded the lowest Root Mean Square Error 

(RMSE) values for both SOM (0.71) and pH (0.60), 

outperforming the default value of mtry, which is typically 

set at p/3 (28). Surprisingly, while the automated hyper 

parameter tuning identified mtry = 1 as optimal, diverging 

from the default value, it consistently led to superior 

model performance across both SOM and pH predictions. 

  

b 

Fig. 5. Importance of environmental covariates for predicting pH (a) and SOM (b) Levels. 

Fig. 6. RF model tuning for a) pH prediction and b) SOM prediction. 

a 
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 Further insights from the tuning process 

underscored that increasing the number of predictor 

variables (p) directly correlated with elevated RMSE 

values, indicative of increased prediction error. Moreover, 

while varying ntree values exhibited minimal impact on 

RMSE outcomes, the results remained consistent across 

different numbers of predictors. 

 Subsequently, leveraging the optimal mtry and 

ntree values derived from hyperparameter tuning, we 

conducted a five-fold cross-validation to develop robust 

RF models for SOM and pH prediction. The performance 

evaluation, summarized in Table 2 and scatter plots (Fig. 

7), showcased the RF model's proficiency in predicting 

SOM (R2 = 0.7929, RMSE = 0.707 %, MAE = 0.4733 %) and pH 

(R2 = 0.7630, RMSE = 0.6012, MAE = 0.4651 %). These 

outcomes comparable with the previous reports (29-31) 

and reinforced the efficacy of automated hyper parameter 

tuning in enhancing RF model performance. 

 Uncertainties in pH and Soil Organic Matter (SOM) 

predictions are intrinsic to modeling and crucial for 

interpreting results. While models aim to mirror reality, 

they inherently involve simplifications and uncertainties 

stemming from various sources, including input data 

variability and modeling assumptions. The Prediction 

Interval 90 % (PI90) maps offer insights into prediction 

uncertainty, indicating minimal uncertainty overall but 

slight variations in regions influenced by factors like river 

drainage and forest cover (Fig. 8). These nuances 

underscore the complexity of soil properties, emphasizing 

the need for refined modeling approaches to capture these 

intricacies effectively. 

 To address uncertainties, ongoing efforts are 

essential in refining models, validating data and enhancing 

modeling techniques. Incorporating additional data 

sources, refining algorithms and validating outputs against 

independent datasets can improve the reliability and 

accuracy of predictive models. These endeavors are 

critical for advancing our understanding of soil-landscape 

interactions and guiding sustainable land management 

practices. 

 Despite these challenges, the Random Forest (RF) 

model demonstrated confidence in its predictions, 

reflecting the robustness of the model. Moving forward 

continued optimization and refinement of modeling 

techniques hold promise for advancing our understanding 

of soil properties and enhancing prediction accuracy. 

Spatial prediction of SOM and pH: 

The spatial depiction of SOM and pH distributions, 

illustrated in Fig. 9, showcases the variability across the 

study area. SOM concentrations span from 0.5 % to 4.5 %, 

exhibiting a heterogeneous distribution devoid of 

discernible patterns. Regarding soil acidity, the pH values 

range from 5.5 to 8.0, indicating acidic to alkaline 

environment (Fig. 9b).  

 RMSE MAE R2 

pH 0.60 0.47 0.76 

SOM 0.71 0.47 0.79 

Table 2: RF model performances (5-fold cross-validation) for pH and SOM 
prediction 

 

Fig. 7. Scatter plots for observed vs. RF-model predicted values for a) pH and b) SOM. 

 

  Fig. 8. 90th prediction interval map for a) pH and b) SOM. 
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 Visual examination of the mapping results 

elucidates a clear correlation between SOM and pH levels. 

Regions with elevated SOM content tend to exhibit lower 

pH values, indicative of relative soil acidification. This 

correlation aligns with previous research, which elucidates 

that the decomposition of organic matter releases organic 

acids, consequently lowering soil pH (2). 

 These findings underscore the importance of 
considering the interconnectedness of various soil quality 

parameters in soil management practices. Notably, 

initiatives aimed at augmenting SOM through organic 

matter management may inadvertently lead to soil 

acidification. Hence, a comprehensive approach is 

warranted to balance the advantages and potential 

drawbacks of diverse management strategies.  

 

Discussion 

The application of Random Forest (RF) models for 

predicting Soil Organic Matter (SOM) and pH has shown 

promising results, with strong model performance metrics, 

particularly R² values of 0.7929 for SOM and 0.7630 for pH. 

These findings align with previous research that also 

reported strong predictive capacity using RF models for 

similar soil properties. A study demonstrated the success 

of RF models in predicting SOM, reporting R² values within 

a similar range (30). In this study, the prediction accuracy 

for both SOM and pH indicates the robustness of RF 

models in handling complex datasets with multiple 

environmental covariates (30). 

 The significant role of vegetation indices such as 

NDVI, RVI and NDWI1 in predicting SOM has been well-

documented in prior studies. A study reported that NDVI 

serves as a critical indicator of SOM due to its sensitivity to 

vegetation cover and productivity (31). Our findings are 

consistent with this, as regions with higher NDVI values 

corresponded to areas of greater SOM content, further 

underscoring the close relationship between vegetation 

and SOM levels. This correlation highlights the importance 

of remote sensing data in providing reliable indicators for 

mapping soil properties (32-34). Conversely, topographic 

factors such as slope and Ridge Top Flatness (RTF) were 

more relevant in predicting soil pH. Another study also 

reported similar findings, where slope and other terrain 

features played a critical role in influencing soil pH due to 

their impact on water movement and nutrient leaching 

(32). In our study, higher slopes were associated with 

lower pH values, likely due to increased runoff and 

leaching of base cations. This finding is further supported 

by another study, who found that terrain significantly 

affects soil acidity levels (21). 

 The RF model demonstrated strong performance 

with Root Mean Square Error (RMSE) values of 0.707 % for 

SOM and 0.6012 for pH, consistent with the results 

obtained who used RF models to predict soil properties 

with RMSE values in the same range (29). The low RMSE 

values observed in this study indicate that the model 

effectively captured the spatial variability of SOM and pH 

across the study area (35-39). Moreover, the application of 

the Prediction Interval Coverage Probability (PICP) metric 

provided insight into model uncertainty, revealing only 

slight variations in areas influenced by river drainage and 

forest cover (40, 41). These minimal uncertainties are 

consistent with the findings of another study (42), where 

water bodies and forested regions introduced more 

variability into the model predictions due to their unique 

environmental characteristics. The vegetation indices 

NDVI, RVI and IB, which contributed significantly to SOM 

prediction in this study, have also been emphasized in 

previous research. A study highlighted the role of 

vegetation in organic carbon sequestration, where higher 

vegetation density typically leads to greater SOM 

accumulation (11). The close correlation between these 

vegetation indices and SOM in our study reinforces the 

importance of vegetation cover in soil carbon dynamics 

(43-46). Furthermore, it was noted that landscape features, 

such as slope and topography, significantly affect soil 

properties, which is in line with our findings on pH 

prediction (5). 

 Accurate SOM and pH mapping is critical for 

optimizing agricultural productivity, as these soil 

properties have direct implications for crop yield and soil 

health. For example, low SOM levels, as observed in areas 

with values below 1.5 %, can lead to poor soil structure, 

lower nutrient retention and decreased water-holding 

 

Fig. 9. Spatial prediction of a) pH and b) SOM. 
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capacity, ultimately reducing crop yields. A study 

emphasized the importance of maintaining sufficient SOM 

levels to enhance soil fertility and improve agricultural 

sustainability (3). In regions identified with low SOM levels 

in this study, management strategies such as the 

incorporation of organic amendments and the use of cover 

crops could be employed to increase SOM and enhance 

soil fertility. Similarly, soil pH plays a crucial role in 

determining nutrient availability. In areas with pH levels 

above 7.5, nutrient availability, particularly for phosphorus 

and micronutrients like iron and zinc, may be limited (47). 

It was indicated, managing soil pH through the application 

of sulfur or other acidifying agents can help optimize 

nutrient availability for crops (40). This is particularly 

relevant in the alkaline soils identified in this study, where 

pH management will be necessary to ensure optimal crop 

productivity. 

Limitations and Future Research 

Although RF models performed well in this study, some 

limitations need to be addressed. First, the dataset used in 

this study was region-specific, which may limit the 

generalizability of the findings to other regions with 

different environmental and climatic conditions. Future 

research could focus on applying RF models in diverse 

agro-ecological zones to assess their broader applicability. 

Additionally, expanding the dataset by incorporating more 

soil samples and environmental covariates could improve 

the model's predictive accuracy and reduce uncertainties. 

Moreover, other machine learning techniques, such as 

support vector machines and deep learning models, could 

be explored in future studies to compare their 

performance with RF models in predicting soil properties. 

As noted by a research, incorporating more advanced 

remote sensing data, such as hyper spectral imaging, may 

also enhance the accuracy of soil property predictions 

(12). Further research could also explore the use of these 

models in the context of climate change adaptation, as soil 

properties like SOM and pH are likely to be influenced by 

changing environmental conditions. This could help to 

ensure that soil management practices are sustainable 

and resilient in the face of future climate challenges (43).  

 

Conclusion   

This study showcases the efficacy of DSM and machine 

learning techniques in predicting soil properties, pH and 

SOM, using remote sensing and topographic data. The 

integration of advanced computational methods allows 

for high-resolution soil mapping and provides valuable 

insights into soil variability across landscapes. While 

challenges exist in model performance for pH prediction, 

our findings underscore the importance of continued 

refinement and optimization of modeling approaches to 

capture the complexity of soil-landscape relationships 

accurately. Moving forward, investing in advanced soil 

mapping technologies and interdisciplinary research 

efforts will be crucial for promoting sustainable soil 

management practices and safeguarding soil health for 

future generations. 
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