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Abstract

Abiotic stresses, including drought, extreme temperatures, salinity and nutrient deficiencies, significantly reduce global crop productivity,
posing major challenges to food security, particularly in arid and semiarid regions. Climate change intensifies these stresses, emphasizing
the need for resilient agricultural systems. Intercropping has emerged as a sustainable strategy to mitigate these impacts by enhancing
soil moisture retention, regulating root-zone temperatures and optimizing nutrient acquisition. For instance, legume-cereal systems like
maize-pigeon pea improve drought resilience, while peanut-maize intercropping enhances iron (Fe) and phosphorus (P) nutrition in
calcareous soils. Agroforestry practices, such as wheat intercropped with alfalfa, increase water use efficiency and reduce soil salinity.
These approaches offer practical solutions for smallholder farmers to adapt to climate change while improving crop tolerance to abiotic
stresses. This study evaluates various intercropping systems to identify optimal practices tailored to specific environmental conditions,
supporting food security and sustainable agricultural practices. By promoting agricultural sustainability, intercropping provides a

pathway to mitigate the effects of climate change and secure global food production.
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Introduction

Abiotic stresses such as drought, salinity and extreme
temperatures are the most severe factors limiting plant
growth and crop productivity worldwide. These stresses pose
significant challenges to current agricultural systems,
particularly in the context of climate change. Reports indicate
that 70% of yield reductions are caused by abiotic factors
such as drought and salinity, with climate change
exacerbating their effects (1, 2). Global warming amplifies
drought conditions by altering rainfall patterns, increasing
evaporation rates and reducing water availability, especially
in arid and semiarid regions. Furthermore, rising
temperatures affect agriculture by modifying cropping
seasons, increasing irrigation demands and intensifying heat
stress on crops (3). Salinity, in particular, is a major abiotic
stress limiting crop productivity in these regions (4, 5), with
estimates showing that at least 900 million hectares, or 7% of
the world's total land area, are affected (6).

Drought, characterized by an extended water shortage
caused by insufficient precipitation, significantly affects soil
moisture, water availability and overall ecosystem balance.
This reduction in soil humidity disrupts plant growth and the

water cycle. Tools like the standardized precipitation index
(SPI1) and Palmer drought severity index (PDSI) are commonly
used to assess the severity and duration of droughts by
measuring deviations in precipitation and soil moisture
compared to historical data (7).

During drought, water loss intensifies due to increased
evaporation and transpiration. Evaporation removes water
from the soil and other surfaces, while transpiration releases
water into the atmosphere through plant processes. Under
arid conditions, high evaporation rates significantly reduce
soil moisture, amplifying the effects of drought. At the same
time, plants may increase water uptake through
transpiration, further depleting soil water reserves. The FAO-
56 Penman-Monteith equation is widely used to calculate
evapotranspiration and determine crop water needs (8, 9).
The expansion of drought-affected regions is closely linked to
rising global temperatures, which accelerate evaporation and
transpiration rates. These processes rapidly drain surface and
soil water, creating a self-reinforcing cycle that exacerbates
soil dryness and crop stress. In arid and semiarid areas,
prolonged dry periods and reduced rainfall worsen the
situation, as evaporation outpaces the replenishment of soil
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moisture. This cumulative impact heightens water scarcity
and causes severe agricultural losses (10, 11).

Edaphic factors such as soil pH, relative water content
(RWC), nutrient availability and water holding capacity (WHC)
are critical in enhancing plant resilience against abiotic stresses
like drought, salinity and heat. Soil pH influences nutrient
availability and microbial activity, with most essential nutrients
being optimally available in a pH range of 6 to 7. Extreme pH
levels can lead to nutrient deficiencies or toxicities, while
neutral pH conditions support microbial communities that
enhance nutrient cycling and plant health (12). Similarly, RWC
is a key indicator of a plant’s hydration status and ability to
tolerate water stress. Higher RWC ensures proper physiological
processes, including photosynthesis and nutrient transport,
allowing plants to maintain growth under drought and heat
stress (13). Nutrient availability is equally vital for stress
resistance, as macronutrients like nitrogen (N) and potassium
(K) and micronutrients like selenium and zinc support
metabolic processes and antioxidant production, which
mitigate oxidative damage caused by abiotic factors (14).

Additionally, WHC contributes to drought resilience
by enabling soils to retain moisture longer, providing a
buffer against water scarcity. Soils with higher WHC also
promote deeper root development, improving water and
nutrient access, which enhances stress tolerance (15).
Together, these edaphic factors create a supportive
environment for plant growth under adverse conditions,
emphasizing the importance of soil management in
mitigating the effects of abiotic stresses.

Salinity refers to the amount of soluble salts in soil or
water, which is crucial in determining soil health and plant
growth. It is typically assessed by measuring a saturated soil
extract's electrical conductivity (EC), expressed in deci
Siemens per meter (dS/m) at a standard temperature of 25°C.
Soils are categorized as saline when their EC exceeds 4 dS/m,
a threshold that negatively impacts crop productivity (16).

Saline and sodic soils differ significantly in their salt
composition, physical structure and effects on plant growth.
Saline soils contain high concentrations of soluble salts,
with EC values above 4 dS/m, a pH below 8.5 and an
exchangeable sodium percentage (ESP) less than 15. The
primary issue in saline soils is osmotic stress, which restricts
water absorption by plant roots. In contrast, sodic soils are
characterized by high sodium (Na) ion concentrations (ESP
> 15), leading to poor soil structure due to the dispersion of
clay particles, reduced water infiltration and an alkaline pH
exceeding 8.5 (17, 18).

Salinization of agricultural soils arises from various
factors, significantly affecting soil management and crop
productivity. Continuous saline irrigation water causes salts
to accumulate in the root zone, reducing soil fertility and
inhibiting plant growth (19). Poor drainage systems can
result in waterlogging, hindering salt leaching and
worsening salinity (20). Overuse of chemical fertilizers also
contributes to the accumulation of salts in the soil (21).
Additionally, natural processes, including the weathering of
salt-containing parent materials and the upwelling of saline
groundwater, play a major role in this process (22). Arid and
semiarid regions are particularly susceptible due to limited
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rainfall and high evaporation rates, which concentrate salts
in the soil (16).

Salinization is an increasing concern, particularly in
Africa and Asia, as it disproportionately impacts arid and
semiarid regions. Globally, more than 833 million hectares of
land, or 8.7% of the world's total land area, are salinity-
affected. Of these, 85% are in arid zones such as deserts and
steppes. Countries like Sudan and Egypt are particularly
affected in Africa, while heavily irrigated nations such as India
and Pakistan face similar challenges in Asia. Moreover,
between 20% and 50% of irrigated soils in these regions are
salinity-contaminated, threatening food production for over
1.5 billion people worldwide (23) (Fig. 1). In Africa, salinity and
drought affect over 40 million hectares of arable land
annually, contributing to an estimated 15-20% reduction in
crop yield, particularly in regions like the Horn of Africa and
North Africa. In Asia, drought affects more than 30% of
agricultural areas, with salinity impacting over 60 million
hectares, causing yield losses valued at billions of dollars
each year (23, 24). Alongside salinization, severe water stress
caused by drought is another pressing issue. In Africa, 44% of
agricultural land experiences water scarcity, with millions
reliant on farming heavily impacted. This issue is especially
dire in areas such as the Horn of Africa, where repeated
droughts have led to significant agricultural losses and
escalating food insecurity. Similarly, between 25% and 30%
of agricultural land in Asia is severely affected by drought,
particularly in countries such as India and China, where
prolonged dry periods disrupt water resources and crop
yields (24).

In addition to drought and salinity, soil and crop
canopy temperatures influence plant growth and
production (25, 26). Sustainable farming techniques, such as
intercropping, have been identified as effective strategies to
mitigate the effects of abiotic stresses. Intercropping
systems enhance crop performance by improving
physiological and biochemical traits, particularly under
stress conditions (27). Additionally, diversifying cropping
systems aids in managing year-to-year climate variability
and supports the resilience of agricultural systems (28). For
example, (29) demonstrated that strip intercropping maize
with alfalfa significantly improved production compared to
monocropping systems (Fig. 2).

Intercropping also contributes to biotic stress
management, protecting against pests, diseases and yield
losses (30). Crop mixtures enhance genetic and species
diversity within agroecosystems, which helps control pests
and diseases (31). Furthermore, intercropping is a sustainable
alternative for improving plant nutrient absorption,
surpassing methods like rhizosphere fertilization and
intensive water management (32). However, implementing
effective intercropping systems requires careful selection of
compatible crop species to minimize competitive inhibition
while maximizing agronomic and economic benefits. This
review explores the various roles of intercropping systems in
addressing food and environmental security challenges. It
also evaluates intercropping's contributions to nutrient
acquisition, crop tolerance to abiotic stresses and sustainable
agricultural practices.
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Fig. 1. The map shows different colors representing soil salinity levels, based on conventions commonly used for this type of representation.
Green indicates areas with low salinity or non-salinized soils, while yellow corresponds to moderate salinity. Orange signals high salinity, often
associated with degraded or at-risk areas. Red/purple regions are those severely affected by salinization, reflecting a critical level of
degradation. Finally, blue may represent irrigated areas or groundwater influencing soil salinity.

Methodology

The methodology of this article is based on a comprehensive
analysis of different intercropping strategies and their role in
abiotic stress tolerance, including drought, salinity, extreme
temperatures and nutritional deficiencies. We conducted an
exhaustive review of the scientific literature to identify
relevant research regarding the effect of intercropping on
tolerance to various abiotic stresses. We examined
experimental studies conducted on various crops and diverse
environments to understand the underlying mechanisms
involved in plant responses to these stresses.

Furthermore, we investigated various intercropping
practices, such as strip intercropping, row intercropping,
mixed intercropping and relay intercropping, to determine
the advantages and limitations of each approach in terms of
abiotic stress tolerance. We also evaluated the impact of
planting density and specific genotype combinations on
abiotic stress tolerance within the framework of
intercropping. Finally, we synthesized the results of the
reviewed studies to provide practical recommendations to
farmers and policymakers on the effective use of
intercropping to enhance crop resilience to abiotic stresses in
the context of climate change.

Additionally, we highlighted key terms such as
tolerance, salinity, climate change, temperature, water stress
and intercropping as keywords in this article review.

Results
Role of intercropping in abiotic stress tolerance

Drought tolerance: Drought remains one of the most
pressing challenges to plant growth and agricultural
productivity. Predictions indicate that the frequency and
severity of extreme drought events will increase, presenting
significant risks to ecosystems worldwide (33). Global
warming exacerbates drought conditions by altering rainfall
patterns, increasing evaporation rates and reducing water
availability, especially in arid and semiarid regions (1, 3).
These changes heighten water stress on crops, further
compounding the challenges posed by drought (10, 11).
Intercropping has emerged as a viable (Fig. 2 and Table 1)
and sustainable approach that can boost crop yields, offer
natural shading and efficiently use water resources (34).
Despite the higher planting density in intercropping systems
compared to monoculture maize and the potential for
increased competition for water, these systems do not show
a greater tendency for drought-induced yield reduction (35).
In areas with ample water availability, intercropping has
significant potential to meet the demands of high-yield
monoculture systems (36). This technique also minimizes
water loss through evaporation. It has been widely adopted
to mitigate wind erosion, increase water and light use
efficiency and create a more favorable soil moisture
environment for crop development (37).
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Fig. 2. Intercropping of tomato with maize was carried out at the Multidisciplinary Faculty of Nador (Morocco) (Photo taken by Mourad Baghour).

Previously, a study showed that in the semiarid region
of India and under uneven and deficit rainfall situations, the
production of the soybean/pigeon pea intercropping system
is higher than in monoculture of either soybean or pigeon pea
(38) (Table 1). In temperate environments, the wheat-
soybean (Triticum aestivum L.-Glycine max L. Merr.) double-
crop system often improves radiation and water's capture
and use efficiency and exploits a greater fraction of the
potential environmental productivity (39). Recent studies
have highlighted the development of environmentally
friendly planting methods, such as sole forage cropping and
forage intercropping, for forage production (40). The authors
demonstrated that strip intercropping of spring wheat and
alfalfa can serve as an effective and sustainable strategy in
arid regions, enhancing irrigation water efficiency, increasing
grain and forage yields and boosting net income.

It has been reported that intercropping is crucial in
improving physiological and biochemical traits under
drought conditions (27). Maize-pigeon pea intercropping can
produce the same amount of food on less land in drought and
non-drought scenarios without reducing the drought
resilience of low-input smallholder maize systems (35). The

benefits of maize-pigeon pea intercropping over monocultures
during drought may also stem from its positive effects on soil
hydrology and fertility. It was reported that intercropping and N
addition influenced the transcript levels of six genes
responsible for encoding enzymes in the non-enzymatic
antioxidant cycle (34). The genotype-specific interactions
observed in intercropping underscore the importance of
selective breeding focused on creating well-suited cultivars for
maize and potato intercropping. Additionally, it was shown
that below-ground interactions may play a more significant
role than above-ground interactions, with potatoes exhibiting a
stronger competitive ability than maize when intercropped
(41).

Moreover, the rhizosphere microbiome can significantly
influence plant health by improving plants' tolerance to abiotic
stress (42). Wheat-maize intercropping has been shown to
outperform monocropping in physiological, biochemical and
molecular traits under rain-fed, water-limited conditions.
Intercropping led to notable improvements in chlorophyll
fluorescence and gas exchange parameters such as Fo/Fm,
PS-Il  efficiency, photosynthesis, stomatal conductance,
carbon capacity and the activities of antioxidant enzymes

Table 1. The agronomic benefit of different types of intercropping systems for plants grown under drought stress.

Intercropping system Country Agronomic benefits References
Maize-Pigeonpea Tanzania Enhanced land use efficiency. (35)
Jujube/Cotton China Reduced soil temperature and e;/fgpotransplratlon, improved water-use (37)
efficiency.
Soybean-Pigeonpea India Increased yields from soybeantglr;(:apr:g:on pea and enhanced drought (38)
Increased grain yield and glucose.
Wheat-Soybean Argentina Enhanced economic and environmental outcomes. (39)
Improved spatial and temporal diversity.
Spring wheat-Alfalfa China Increased irrigation ef'flaency. (40)
Improved forage yield.
Winter faba bean-Winter wheat Germany Increased the yield of winter faba bean, optimized water resource use and (43)

finally enhanced drought tolerance.
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compared to monocropping systems (27). Regulating osmotic
adjustment under water stress is a key factor in drought
tolerance. In many plant species, the buildup of compatible
osmolytes like proline and sugars is a vital strategy for
enhancing drought resilience (43, 31). Under drought stress, the
upregulation of the proline synthesis gene P5CR1 and the
proline degradation gene ProDH downregulation led to proline
accumulation (27). A genetically modified drought-tolerant
sugarcane variety was shown to secrete and accumulate
substantial rhizosphere and soil nutrients, contributing to a
distinct rhizosphere bacterial community in soybean
intercropped with drought-tolerant sugarcane, compared to
those intercropped with wild-type sugarcane (43). Recent
reports indicate that intercropping treatments significantly
boost antioxidant capacity by enhancing the activities of
enzymes like superoxide dismutase, peroxidase, catalase and
ascorbate peroxidase while simultaneously reducing lipid
peroxidation by lowering malondialdehyde (MDA) levels (43). In
studying the effects of intercropping on specific secondary
metabolites, it was found that certain health-promoting
phytochemicals, such as glucosinolates, can be enhanced
through intercropping systems (27). Additionally, intercropping
has been identified as an effective strategy for managing
drought stress by boosting carotenoid concentrations and
improving water-use efficiency.

Temperature Tolerance

Mediterranean agriculture faces major climate change and
sustainability challenges. Global warming and climate
change are causing an alarming increase in the frequency and
intensity of different abiotic stresses, such as heat and cold
waves. Changes in soil and canopy temperatures could
negatively affect plant growth and crop productivity (25). The
intercropping system is a cheap and simple alternative that
helps to reduce the ambient temperature (44). Soil
temperature changes depend on atmospheric temperature
fluctuations and are impacted by cropping systems. The soil
temperature stability of intercropping is significantly higher
than that of monocropping (Table 2). Suitable soil
temperature aids gas exchange between the soil and the
atmosphere, enhances microbial activity from the soil and
enhances root activity (37).

Intercropping systems create a more favorable
microenvironment for plant growth by mitigating temperature
extremes, conserving soil moisture and enhancing light
interception (Table 2). In faba bean-wheat intercropping (45),
intercropping improves the microclimate by reducing relative
humidity while increasing canopy temperature and light
transmittance (46). Similarly, during the summer, the
extensive canopy of a main crop like cotton (Jujube-Cotton
intercropping)(47) reduces air movement and temperature,
which decreases evaporation and raises relative humidity
(48). Intercropping systems can lower light-intensity air and
soil temperatures while enhancing the plants' capacity to
capture radiation energy (Table 2).

Conversely, intercropping can reduce sunlight
intensity and air temperature while increasing canopy
humidity (46). In safflower-chickpea intercropping (49), the
canopy temperature was reduced by 2.17°C and 2.88°C for
safflower and chickpea, respectively, due to the shading
provided by safflower. This reduction was attributed to
increased land coverage, improved soil moisture retention,
reduced soil surface evaporation, enhanced water use
efficiency and higher canopy humidity (50). Research on the
mitigating effects of multi-variety intercropping and mixed
cropping during the flowering stage has shown that high-
temperature tolerance is significantly improved through
appropriate  variety combinations and row-spacing
adjustments (51). In arid regions, agricultural practices that
reduce surface soil temperature, such as increasing canopy
density, straw mulching and intercropping, can lower soil
respiration and boost grain yield (52). It was concluded that
soil amendment with raw garlic stalk significantly reduced
malondialdehyde content in eggplant leaves, demonstrating
the potential of garlic-based strategies to enhance the
antioxidative defense system and mitigate oxidative stress in
monocropped eggplant (53), which can lessen the damage to
eggplant and enhanced the plants' resistance to high
temperatures and other stresses (54).

Salinity tolerance

Salt stress significantly affects plant growth and crop
productivity, especially in arid and semiarid regions, where
soil salinity seriously threatens food security (43). Over 39% of
the world’s drylands are impacted by saline soils in various

Table 2. The agronomic benefit of different types of intercropping systems for plants grown under temperature stress.

Intercropping system Country Agronomic benefits References
Sweet corn-Cauliflower Indonesia Reduced the air temper?ture ofthe caullflom{er canopy. (44)
Increased leaf area, dry weight and yield of cauliflower plants.
- Increased the yield of wheat and faba bean. Increased the canopy temperature and
Faba Bean-Wheat China transmittance of light. (45)
. Increased the yield of wheat and faba bean.
Faba Bean-wheat China Increased the canopy temperature and transmittance of light. (46)
. . Stabilized soil temperature.
Jujube-Cotton China Reduced water loss by evaporation. Increased cotton crop yield. 47
Jujube-Cotton China Reduced root zone temperature under jujube and cotton. (48)
Chi Increased leaf area index and chlorophyll content. Improved received light
Safflower-Chickpea Iran percentage and canopy temperature. (49)
Safflower-Chickpea Iran Increa§ed lgaf area index and chlorophyll content (50)
Enhanced received light percentage Improve canopy temperature.
Garlic stalk with Eggplant China Reduced malondialdehyde content in eggplant leaves, enhanced antioxidative (53)

defense system, mitigated oxidative stress in monocropped eggplant.
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subhumid, semiarid and arid regions (55, 56 ). Salinity is a
major abiotic stress limiting crop productivity in these
regions, with estimates showing that at least 900 million
hectares, or 7% of the world's total land area, are affected (6).
The limited rainfall and high evaporation rates in these areas
exacerbate salt accumulation in the soil, further intensifying
the impact of salinity (16). These conditions significantly
hinder crop productivity and soil health, especially in arid and
semiarid regions where water scarcity compounds the
challenges posed by salinity (23). Intercropping, a traditional
agricultural system (Table 3), is vital in such resource-limited
environments, offering efficient resource use and resilience
against abiotic stresses, including salinity (57). Cropping
patterns influence soil salinity, particularly their effects on
water balance and leaching processes during intercropping
periods (58). Additionally, intercropping can improve soil
nutrient status and regulate Na/K homeostasis, enhancing
salt tolerance in peanuts (59).

Research has demonstrated the benefits of various
intercropping systems for improving soil salinity and
enhancing crop resilience to salt stress. In the hulless barley-
pea mixed-cropping system, N and P application rate
adjustments influence rhizosphere soil microbial diversity,
potentially enhancing nutrient use efficiency and biomass
production (60). The wheat-mustard intercropping system
improves growth and photosynthetic performance in India,
contributing to enhanced crop productivity and efficient
resource utilization, as observed under controlled conditions

(61). In another context, in Tunisia, combining salt-sensitive
tomato plants (Solanum lycopersicum L.) with the salt-tolerant
halophyte Arthrocaulon macrostachyum proved effective in
reducing soil salinity and boosting tomato productivity. This
strategy also optimized water use, mitigated osmotic stress
and stabilized growth hormone levels in tomatoes, making it a
sustainable solution for reclaiming saline soils (62). Shifting
focus to China, intercropping soybean (Glycine max) with
Suaeda salsa in saline soils promoted soybean development by
lowering salt stress, balancing ion concentrations in the soil
and enriching the rhizosphere microbial community. This
approach significantly enhanced soybean biomass and
reduced Na levels in the roots, presenting a valuable method
forincreasing crop performance under saline conditions (63).

Similarly, in Italy, salt-sensitive lettuce (Lactuca sativa
L.) was intercropped with salt-tolerant Salsola soda in a
hydroponic system, which improved the nutritional profile of
S. soda. However, this system heightened abiotic stress on
lettuce by intensifying resource competition for light and CO,,
underscoring its limitations under specific salinity levels (64).

In Iran, a mixed cropping system involving Kochia
scoparia, Sesbania aculeata and Cyamopsis tetragonoliba
demonstrated considerable physiological and yield
improvements under saline irrigation. This practice enhanced
K uptake, reduced cell damage and improved salt resilience,
particularly for Kochia, which thrived under high salinity (65).
Meanwhile, in India, combining bioinoculants with
intercropping reduced the impact of salinity and drought

Table 3. The agronomic benefit of different types of intercropping systems for plants grown under salinity stress

Intercropping System Country Agronomic Benefits References
Increased the yield. Enhanced land use efficiency. Stimulated the
Sweet Basil-Jatropha India biological activity in the rhizosphere soil. Improved soil properties in (56)
terms of soil pH, electric conductivity and organic carbon.
Rhizosphere chemistry improvement by peanut root. Decreased the
Peanut-Maize Turkey concentrations of Na in the shoots of maize and barley. Improved Fe, (58)
Zn and Mn nutrition of peanut.
. Improved soil nutrient status and increase salt tolerance, Regulated
Peanut-Sorghum China sodium/K homeostasis in peanut. (59)
- - Improved nitrogen and phosphorus application enhances rhizosphere
Hulless Barley and Pea mixed China microbial diversity, promoted better soil health and nutrient efficiency. (60)
Improved growth and photosynthetic performance of wheat and
Wheat-Mustard India mustard, leading to enhanced resource utilization and crop (61)
productivity in intercropping systems.
Tomato (Solanum lycopersicum) and Tunisia Reduced soil salinity, improved tomato productivity, optimized water (62)
Arthrocaulon macrostachyum use, mitigated osmotic stress.
. . Enhanced soybean biomass, reduced sodium content in roots and
Soybean (Glycine max) and Suaeda salsa China improved rhizosphere microbial diversity. (63)
Lettuce (Lactuca sativa) and Salsola Ital Improved nutritional quality of S. soda , but increased abiotic stress on (64)
soda Y lettuce.
Kochia scoparia, Sesbania aculeata and Iran Increased leaf K, reduced cell damage and improved salt tolerance, (65)
Cyamopsis tetragonoliba particularly for Kochia.
Bioinoculants and intercropping India Mitigated salinity and drought stress and promoted sustainable (66)
systems agriculture through soil microbe-plant interactions.
. - Improved soil organic matter, ammonium and nitrate levels, reduced
Maize (Zea mays L.) and Legumes South Africa bulk density and enhanced soil fertility. (67)
. - Enhanced salt accumulation around S. salsa roots, reduced nutrient
Maize (Zea mays L.) and Suaeda salsa China competition, boosted maize growth. (68)
Peanut (Arachis hypogaea) and China Improved rhizosphere soil properties, enhanced enzymatic activity and (69)
Sorghum (Sorghum bicolor) microbial diversity under saline stress.
Peanut-Sorghum China Increased the production of metabolites responsible for stress (73)

tolerance.
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stress while supporting sustainable farming practices. This
technique enhanced plant resilience through beneficial
interactions between soil microbes and crops, highlighting
its potential for restoring degraded lands (66).

Turning to South Africa, intercropping maize (Zea
mays L.) with legumes like chickpea and mung bean
improved soil health in both rainfed and irrigated settings.
The system increased organic matter, ammonium and nitrate
levels while decreasing soil bulk density, showcasing the soil
fertility benefits of legume integration (67). In China,
intercropping maize with Suaeda salsa further demonstrated
its utility by enhancing salt accumulation around the
halophyte's roots and reducing nutrient competition. The
application of nitrate N further boosted maize growth and
improved the system's efficiency in rehabilitating saline soils
(68).

Finally, intercropping peanuts (Arachis hypogaea) with
sorghum (Sorghum bicolor) in China also demonstrated
transformative effects on soil properties and microbial
diversity under saline stress. This approach enhanced
enzymatic activity, soil nutrient content and microbial
structure, ultimately improving peanut vyield and
environmental adaptability (69).

These intercropping systems highlight the potential of
combining halophytes with traditional crops, promoting soil
desalination, improving mineral nutrition and increasing
yields. For example, halophytes like Salicornia and
Arthrocaulon absorb salts from the soil, enhancing soil
desalination and boosting crop yields (70, 71). Intercropping
with these plants also triggers various metabolic and
signaling pathways that help crops adapt to saline
conditions, such as enhanced sugar metabolism and the
accumulation of protective metabolites (72). Furthermore, it
has been shown to increase the production of metabolites
responsible for stress tolerance (73).These findings
demonstrate the effectiveness of intercropping systems in
mitigating the adverse effects of salinity and improving
agricultural productivity in saline-prone areas.

Nutrient Deficiency Tolerance

Diversified cropping systems, including crop rotation and
intercropping, are commonly employed to enhance the
nutritional status of various plant species. Intercropping is a
promising strategy to increase resource use efficiency and
reduce carbon emissions, contributing to the sustainability of
agriculture (74). Soil pH, a critical edaphic factor, plays a
pivotal role in nutrient availability and microbial activity, as
most essential nutrients are optimally available in a pH range

of 6 to 7 (12). Neutral pH conditions further support microbial
communities that enhance nutrient cycling and plant health
(13), providing a foundation for intercropping systems to
thrive.

Recent findings indicate that the increase in crop
productivity in alternate intercropping systems is linked to
enhanced canopy photosynthesis and nutrient uptake by
root systems associated with rhizosphere microbes (75). In
these systems, root interactions between species reduce
competition through spatial and temporal differentiation in
root distribution while facilitating the uptake of nutrients
such as N, P and micronutrients (76). Intercropping between
grasses and dicots has been shown to impact the availability
of micronutrients in the rhizosphere of both species (77). For
example, Fe deficiency chlorosis in peanuts can be alleviated
by intercropping with maize in calcareous soil (78). These
researchers observed that intercropping altered Fe
concentration, pH, Olsen-P and N levels in the peanut
rhizosphere at various growth stages, playing a key role in
regulating Fe nutrition in peanuts grown in calcareous soils (79)
(Table 4).

Similarly, changes in rhizosphere processes, such as
Fe availability, pH and Olsen-P, could enhance Fe nutrition in
intercropped peanuts (80). Peanut/maize intercropping also
boosted the uptake of Zn, P and K in peanut shoots and Fe
and Zn content in peanut seeds (81). Likewise, maize/peanut
intercropping improved peanut's Fe nutrition (Table 4).

The enhancement of Fe nutrition in dicots, particularly
those prone to Fe deficiency under stress, through
intercropping with grasses, may result from root interactions
and the creation of favorable rhizosphere conditions by grass
exudates. Intercropping facilitates the mobilization and
absorption of K, P and micronutrients via rhizosphere
interactions, improved soil micro-ecology and increased
microbial populations and enzyme activity in the soil, which
are critical for higher crop yields (79).

Legume-cereal intercropping is gaining interest
worldwide as a method to optimize mineral resource use. In
these systems, increased crop functional diversity stimulates
root/rhizosphere activities, leading to greater microbial
diversity and promoting morphological and biochemical
changes that improve shoot biomass and nutrient uptake
(82). For example, plants capable of mobilizing P facilitated
the conversion of sparingly soluble inorganic P in the soil by
releasing carboxylates, protons, or enzymatically hydrolyzing
organic P via root or microbial phosphatase enzymes, making
P available to intercropped plants lacking this capability (72).

Table 4. The agronomic benefit of different intercropping systems for plants grown under nutrient deficiency

Intercropping system Country Agronomic benefits References

Tomato with the halophyte Spain Stimulated sugar and starch metabolisms in tomato (71)

Arthrocaulon macrostachyum ’

Maize-Peanuts China Increased th'e expression of AhFRO1 ar\d AhYSL1 genes. (78)
Improved the iron nutrition of peanuts in calcareous soils.

Chinese Milk Vetch-Rape China Improved soil microbial community in rhizosphere. (80)

Cotton-Peanut China Increased productivity via enhanced canopy photosynthesis and nutrient uptake. (82)
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By analyzing the effect of cotton-maize intercropping
on rhizosphere properties, P bioavailability and the
expression of key genes involved in P availability, it was
concluded that intercropping increased P bioavailability by
altering rhizosphere microbial composition and functional
gene expression (73). Additionally, compared to monoculture,
alternate intercropping boosted N uptake by 8.8%, P by
10.9% and K by 8.5% in cotton and 6.4%, 9.2% and 8.8%,
respectively, in peanuts (78). Both alternate and traditional
intercropping methods led to increased partitioning of 13C-
labeled photoassimilate to reproductive organs.

Intercropping systems involving legumes also
promote symbiotic N fixation, reducing N requirements by
26% without sacrificing yields (83). A study on the response of
soil microbial genes involved in N cycling in intercropping
systems revealed that the abundances of ammonia
monooxygenase genes, such as archaea-amoA in ammonia-
oxidizing archaea and nitrogenase Fe protein (nifH), were
significantly higher in intercropping systems, thereby
promoting N transfer from soil to crops, increasing N use
efficiency and lowering nitrous oxide (N.O) emissions (44).
Moreover, intercropping influences the accumulation of
minerals and secondary metabolites, which can affect the
nutritional quality of crops through interspecific competition
and complementation (78).

Conclusion

The intercropping system is a recently adopted strategy to
enhance crop tolerance to biotic and abiotic stresses. Its
effectiveness depends not only on the pedoclimatic
conditions of each region but also on the specific crop
combinations and the nature of the stress factors involved.
Four primary intercropping patterns have been identified:
i) strip intercropping, ii) row intercropping, iii) mixed
intercropping and iv) relay intercropping. Additionally,
factors such as plant density and specific genotype
combinations play a critical role in optimizing the benefits
of intercropping under varying stress conditions.
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