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Abstract  

Bacillus thuringiensis (Bt) is renowned for its insecticidal activity against a 

wide range of target pests. Bt formulations offer safe alternatives to chemi-

cal insecticides, effectively eliminating insects using toxins and enzymes 

such as chitinases and metalloproteases. This bacterium has transformed 

pest management through the development of genetically modified insect-

resistant crops, providing targeted protection. Beyond pest control,      

Bt serves as an alternative to antibiotics, fertilizers, bioremediation agents 

and for nanomaterial synthesis. While its effectiveness in insect control con-

tributes to sustainable farming practices, Bt further promotes plant growth 

as a biofertilizer and growth enhancer. Additionally, it plays various roles in 

medicine and environmental applications. Bacteriocins, proteins produced 

by Bt, exhibit high efficacy against pathogenic bacteria and demonstrate 

some fungicidal activity, offering potential applications in medicine and 

food preservation. Bt’s influence extends to environmental bioremediation, 

where it targets heavy metals and dyes. It is also involved in the synthesis of 

metal nanoparticles and exhibits anti-cancer activity by targeting various 

cancerous cells. Overall, Bt showcases a broad spectrum of activity across 

agriculture, medicine and environmental sectors, highlighting its potential 

to enhance crop productivity, improve human health and reduce environ-

mental pollution.   
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Introduction  

Since the 1960s, industrialized nations have extensively relied on synthetic 

chemical pesticides to manage pests and increase crop yields (1). However, 

the widespread use of artificial pesticides has sparked discussions regarding 

their environmental impact, effects on non-target organisms and the devel-

opment of resistance among major insect pests (2). Therefore, it is essential 

to adopt alternative methods for managing insect pests.  

 Currently, the use of microorganisms has emerged as an alternative 

for pest management, offering increased specificity and toxicity against tar-

get insect pests (3). Recently, there has been a notable increase in the use of 

biopesticides, which play a vital role in Integrated Pest Management.  
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Biopesticides can be classified as microbial, plant or ani-

mal-based biopesticides (4). One of the beneficial microor-

ganisms employed as a biocontrol agent is the ento-

mopathogenic bacterium, Bacillus thuringiensis (Bt) 

(Bacilliales : Bacillaceae). Bt is a common Gram-positive 

bacterium present in various environments, including soil, 

water, grain storage and decomposing insects (5, 6).  

 During the sporulation phase of its life cycle, Bt pro-

duces crystal proteins. As the bacterium prepares to form 

a spore, it also synthesizes these crystal proteins, which 

aggregate to form crystals or paracrystalline inclusions. 

These crystals are composed of Crystal (Cry) or Cytolytic 

(Cyt) proteins that are deposited alongside the bacterial 

spores. In addition to Cry proteins, Bt also produces Vege-

tative Insecticidal Proteins (VIP), which have different 

mechanisms of action and are secreted during the vegeta-

tive phase of the bacterium.  

 Bt-producing spores contain insecticidal protein 

crystals known as δ-endotoxins or Cry proteins (7). These 

crystals exhibit different shapes, like bipyramidal, spheri-

cal and cuboidal (8). When consumed by susceptible in-

sects, these proteins are activated in the alkaline environ-

ment of the insect midgut, binding to specific receptors on 

the insect cell membrane. This interaction disrupts epithe-

lial cells in the insect gut, primarily by creating pores in the 

cell membrane, ultimately leading to insect death (9). Alt-

hough Bt contributes to insect mortality, high concentra-

tion of the endotoxins is necessary for effective pest con-

trol (10).  

 Bt-based bioinsecticides are recognized for their 

selectivity and species-specific targeting of various insect 

species, providing a safe and environmentally friendly pest 

management option. The preferred term for these insecti-

cidal proteins has shifted to "pesticidal proteins" rather 

than Cry toxins or Bt toxins (11). Bt comprises a diverse 

family of subspecies classified as entomopathogens, found 

in various habitats and characterized by 72 antigenic 

groups (12). Based on amino acid sequence similarities, 74 

cry gene families (cry1–cry74) with a total of 770 different 

cry genes have been identified, along with 3 cyt families 

(cyt1–cyt3) which consist of 38 cyt genes. 

 Additionally, vegetative insecticidal proteins (Vips), 
produced during the vegetative phase of growth, include 

approximately 138 vip genes categorized into 4 groups 

(vip1–vip4). The specific activity of these proteins toward 

various pests, such as lepidopterans, dipterans, coleopter-

ans, hymenopterans and even other invertebrates like 

mites and nematodes, is determined by the contents of 

Cry, Cyt, Sip (secreted insecticidal proteins) and Vip pro-

teins (13-15).  

 Recent research has revealed additional capabilities 

of Bt strains, including the promotion of plant growth, re-

mediation of heavy metals, anti-cancer properties and 

antagonistic effects against plant and animal pathogenic 

microorganisms (Fig. 1). Efforts are ongoing to enhance 

these byproducts by developing new production tech-

niques and incorporating more potent Bt strains. This re-

view compiles the various roles exhibited by Bt and its 

potential applications. 

Fig. 1. Overall function of Bacillus thuringiensis.  
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Role of Bt as Bioinsecticide           

With the rising costs and risks associated with synthetic 

insecticides, advances in biotechnology have enabled the 

efficient development of microbial insecticides. Microbial 

pesticides, especially those developed using Bt, holds 

great promise for pest management. Bt-based products 

are the most widely as commercial biopesticides in the 

biocontrol industry, accounting for nearly 97 % of the 

global biopesticide market (16). Early Bt formulations, 

such as Sporeine and Thuricide, faced challenges in com-

peting with synthetic chemical insecticides due to their 

lower efficacy (17).  

 Bt-based biopesticides are available in different 

formulations viz., powder formulation, liquid formulation, 

nanoencapsulation, etc. Liquid formulations are cost-

effective and user-friendly but face stability issues. In con-

trast, powder formulations are more stable, although their 

production involves a complex and costly drying process. 

However, the addition of specific additives in powder for-

mulations improves stability while maintaining cost-

effectiveness (18).  

 Advanced Bt products with higher efficacy have 

been developed for pest control, targeting insect pests 

from orders such as Lepidoptera, Diptera and Coleoptera. 

The use of advanced methods facilitated the selection of 

strains with highly effective or novel toxin combinations, 

improving the specificity and efficacy of Bt-based bioinsec-

ticides (19). One of the key advantages of Bt as a bio-

insecticide is its environmental safety. Its low residual ac-

tion prevents contamination of water and soil, unlike 

chemical pesticides. Additionally, it is highly selective, 

making it safe for non-target organisms such as fish, birds 

and mammals (20).  

 Wettable powder formulations were developed viz., 

Belthirul and Biolep using Bt isolate KD2 combined with 

different compounds (21). Belthirul was found to cause    

78 % mortality in Helicoverpa armigera, while Biolep re-

sulted in 53 % mortality. It was prepared a freely-flowing 

WDG formulation using Bt strain DOR Bt-127, which was 

tested against Spodoptera litura (22). Furthermore, a new 

aqueous formulation developed from an indigenous strain 

of Bt. israelensis VCRC B646 proved effective in controlling 

mosquito vectors (23).  

 In addition to Cry and Cyt toxins, Bacillus thurin-

giensis (Bt) produces proteinaceous toxins, like Vip and Sip 

families, which also exhibits insecticidal activity targeting 

specific insect orders. Bt synthesizes various enzymes and 

compounds, including chitinases, metalloproteases, cytol-

ysins, antibiotics and β-exotoxins, all of which contribute 

to its virulence and host specificity.  

 Bt chitinases, members of the glycoside hydrolase 

18 (GH18) family, plays a critical role in degradation of chi-

tin, a major component of insect exoskeletons and peri-

trophic membranes. These enzymes are essential in chitin 

assimilation as a carbon source, contributing to Bt’s path-

ogenicity and potentially influencing host specificity by 

targeting diverse insect peritrophic structures (24, 25).  

 Metalloproteases aid in toxin penetration through 

barriers like chitin-rich peritrophic membranes and mucin 

layers during infection. These enzymes, belonging to the 

M60, M6, M9 and M73 families, enhance Bt's adaptability 

and pathogenicity across various stages of infection. For 

example, Enhancin-like Metalloproteases (M60 family) de-

grade intestinal mucin, increasing the effectiveness of the 

Cry1Ac toxin (26). InhA Metalloproteases (M6 family) neu-

tralize insect immune peptides, help Bt escape phagocyto-

sis by cleaving membrane proteins and collaborate with 

Cry toxins to enhance cytotoxicity, contributing to the 

overall complexity of Bt's virulence.  (27). ColB Metallopro-

tease (M9 family) facilitates Bt’s penetration into the hae-

mocoel by breaking down the basal lamina (28). Addition-

ally, metalloproteases like CalY (M73 family) support bio-

film formation, further aiding in the pathogen's adaptabil-

ity (29).  

 Cytolysins such as sphaericolysin produced by 

Lysinibacillus sphaericus, create pores in cellular mem-

branes, causing cellular lysis. These proteins act as viru-

lence factors, affecting a wide range of species and con-

tributing to host-pathogen interactions (30). Similarly, 

Zwittermycin A (ZwA), a unique antibiotic produced by 

some Bt strains, exhibits broad-spectrum activity and 

works synergistically with other Bt toxins, further impact-

ing a wide range of species (31).  

 Bt also produces β-exotoxins, such as thuringiensin 

(Thu), which are low-molecular-weight toxins with a broad 

insecticidal spectrum. These toxins are also effective 

against mites and nematodes (32, 33). However, they have 

been reported to cause harmful effects in mammals, in-

cluding inflammatory responses and lung tissue damage 

(34). This diversity of virulence factors reveals their com-

plex infection strategies, from ingestion to invasion of host 

body cavities, offering valuable insights into developing 

novel pest control methods (35). 

Bt gene-based transgenic crops           

While Bt formulations are considered environmentally saf-

er pesticides, they face several limitations, e.g., repetitive 

application, short efficacy durations and difficulty in tar-

geting specific insect species. Recent advancements in 

plant transformation technology have addressed some of 

these issues by incorporating foreign genes into crops, 

resulting in insect-resistant plants. Bt transgenic crops are 

genetically modified to express proteins derived from Ba-

cillus thuringiensis (Bt), which provide resistance to insect 

pests. This innovation has significantly advanced agricul-

tural pest management, reducing the need for biopesticide 

sprays. The first transgenic crop that reaches the United 

States commercial markets was Bt potato in 1995. Follow-

ing that, Bt corn and cotton were introduced in 1996, offer-

ing resistance to pests like the European corn borer, south-

western corn borer, tobacco budworm, cotton bollworm, 

pink bollworm and Colorado potato beetle. The lepidop-

teran-specific vip and cry genes, including cry1Ac, cry1Ab, 

cry2Ab, cry1Fa and vip3Aa, confer resistance to various 

lepidopteran pests. Additionally, the cry34Ab1–cry35Ab1 

and cry3A genes have been used to develop approximately 
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34 and 60 genetically modified (GM) crops respectively, 

providing resistance to coleopteran pests (36). Bt toxins 

from the Cry1A class exhibit dual specificity, targeting both 

Coleoptera and Lepidoptera (37). To further enhance re-

sistance and delay the development of insect resistance, 

techniques like gene pyramiding and fusion technologies 

have been employed. These methods, which involve the 

expression of multiple genes in a single crop, have been 

successfully demonstrated in a variety of crops (38). More-

over, Bt Cry proteins have shown promise in inhibiting the 

growth of larvae from various insect species, highlighting 

the potential for developing even more resistant crops 

(39). 

 Farmers benefit significantly from Bt crops, experi-

encing reduced pest damage, improved crop quality and 

fewer losses during storage and transportation. Addition-

ally, Bt crops contribute positively to sustainable agricul-

ture by promoting healthier soils and reducing pest risks 

through enhanced pest management. Numerous studies 

have demonstrated that the adoption of Bt crops boosts 

agricultural productivity and economic gains in various 

regions of the world (40). Globally, the cultivation of bio-

tech crops, also known as genetically modified organisms 

(GMOs), has reached an average of 191.7 million ha. over 

the past 22 years. These crops are now grown in approxi-

mately 70 countries since their commercialization (41). To 

date, 577 transgenic events have been developed across 

32 different crops worldwide, with cotton, corn and potato 

having the highest number of approved GM events—51, 

230 and 30 events respectively. Currently, 10 insect-

resistant transgenic crops, representing 354 events, have 

been approved for cultivation. These include cotton, cow-

pea, eggplant, maize, poplar, potato, rice, soybean, sugar-

cane and tomato, with most incorporating insecticidal 

genes derived from Bt (42). In India, Bt cotton has been 

commercially cultivated since 2002. However, due to legal 

challenges and public opposition, other GM crops like Bt 

brinjal and GM mustard, though approved for commercial 

release by the Genetic Engineering Appraisal Committee 

(GEAC), have not been widely adopted.  

 Continuous cultivation of transgenic crops can lead 
to the development of resistance in insects against the Bt 

crops over time. For example, certain pests may evolve to 

resist Bt toxins, as observed with the cotton pink bollworm 

developing resistance to Bt cotton, reducing the crop’s 

long-term efficacy. Despite these challenges, the use of Bt 

crops remains controversial regarding their impact on the 

environment and mammals. Some scientists, based on 

laboratory and field studies, support Bt crop cultivation, 

asserting that these crops are safe. However, others argue 

that Bt crops may pose risks to human health (43).  

 Studies have shown that Bt corn or cotton do not 

have significant adverse effects on beneficial insects or 

non-targeted organisms. In addition, the remains or pollen 

of Bt crops have not been found to harm non-target plants 

in Bt crops fields (44). However, challenges have arisen, 

such as severe infestations of sucking mirid insects in Bt 

cotton fields in China, which have become major pests 

(45). Similarly in India, Bt cotton has faced problems with 

aphids and mealybugs (46). However, it was reported that 

feeding larvae of Chrysoperla carnea on aphids reared on 

Bt corn did not affect the predator’s pupation or adult 

emergence (47). Furthermore, studies on honey bee surviv-

al indicated that Cry proteins do not negatively impact 

honey bee populations (48). 

Role of Bt against pathogenic bacteria          

Bt strains demonstrate antimicrobial activity against plant 

and human pathogenic bacteria as well as bacteria in-

volved in food degradation. This antimicrobial effects re-

sults from the production of antimicrobial small peptides 

known as bacteriocins and the disruption of bacterial com-

munication signals through enzyme activity (49, 50). 

 Bacteriocins are thermotolerant antimicrobial pep-

tides produced by Bt during specific growth stages, playing 

a vital role in defending against other microorganisms. Bt 

strains, produce these bacteriocins during critical phases, 

such as sporulation and protein synthesis (49). Previous 

research has identified and characterized 18 distinct types 

of bacteriocins from various Bt subspecies, including mor-

risoni, kurstaki, kenyae, entomocidus, tolworthi, tochi-

giensis and thuringiensis. These bacteriocins act similarly 

to antibiotics, being effective against antibiotic-resistant 

strains. Their protein-based composition, coupled with 

low oral toxicity, allow for degradation after consumption, 

with effects ranging from inhibiting bacterial growth to 

causing death (51). 

 The disruption of bacterial communication is facili-

tated by enzymes that degrade N-acyl-homoserine lactone 

(AHL), thereby interfering with bacterial signaling and po-

tentially affecting their coordinated behaviors (50). The 

diverse bacteriocins produced by Bt strains have promis-

ing applications in combating various pathogenic bacteria, 

making them valuable in agriculture, medicine and food 

safety. In agriculture, combining Bt with other bacterial 

and fungal antagonists enhances its effectiveness in con-

trolling plant diseases, such as Ralstonia solanacearum in 

Naga chili (52), tomato (53) and eucalyptus (54). 

 Certain Bt bacteriocins also show potential for con-

trolling human and animal pathogens, offering alterna-

tives to traditional antibiotics. These bacteriocins can be 

used as safe food preservatives, helping to prevent the 

growth of enterotoxigenic bacteria and extending the shelf 

life of food products. For instance, Bt fengycin-like 

lipopeptides and other bacteriocins have demonstrated 

antibacterial properties against pathogens like Escherichia 

coli, Staphylococcus epidermidis, Bacillus cereus and Vibrio 

cholerae (55). Thuricin S is another example of a Bt bacteri-

ocin with antibacterial effects against a wide range of bac-

teria, including Listeria monocytogenes, Bacillus cereus and 

Pseudomonas aeruginosa, showing promise as a natural 

food preservative. Other compounds, such as Morricin 269, 

Kurstacin 287, Kenyacin 404, Entomocin 420 and Tolworth-

cin 524, exhibit broad-spectrum activity against foodborne 

pathogens and human pathogens, demonstrating their 

potential in food safety and health applications (56, 57). 

 Entomocin 110, another Bt bacteriocin, has proven 
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effective against Paenibacillus larvae, the causative agent 

of foulbrood disease in honeybee larvae, offering a natural 

and environmentally friendly alternative for antibiotics 

(57). The versatility of Bt strains as antagonists against 

plant, human and animal pathogens highlighting their po-

tential for biocontrol and food preservation. Supplemen-

tary Table S1 presents a list of Bt strains and their antago-

nistic effects on various bacteria, emphasizing Bt's role in 

biocontrol through natural bactericidal or bacteriostatic 

compounds. 

Bt against fungi            

The antagonistic activity of Bt against plant pathogenic 

and human pathogenic fungi is well-documented through 

several mechanisms, including the production of antibiot-

ics, lipopeptides, siderophores, volatile organic com-

pounds, secondary metabolites and cell wall-degrading 

enzymes. While Cry proteins synthesized by Bt do not ex-

hibit antifungal activity, certain specific Bt strains have 

demonstrated effectiveness against various plant patho-

genic fungi, including Fusarium (58), Sclerotium (59), Colle-

totrichum (58), Rhizoctonia (60) and Botrytis (61). 

 Chitinase production in Bt strains has shown high 

efficacy against fungi that cause diseases in animals and 

humans such as Aspergillus niger, Candida albicans and P. 

chrysogenum (62). Additionally, Bt induces systemic re-

sistance in plants against fungal pathogens by promoting 

the production of defense-related enzymes and metabo-

lites. The lipopeptide fengycin and volatile compounds 

produced by Bt also inhibit the growth of phytopathogenic 

fungi, with fengycin displaying notable toxicity (63). Vari-

ous Bt strains targeting different fungal pathogens and 

their activities are listed in Supplementary Table S2. Re-

cent studies have provided evidence of Bt’s effectiveness 

in controlling various phytopathogenic fungi and promot-

ing plant growth through direct or indirect mechanisms 

(64, 65).  

 The indirect mechanisms though which Bt may sup-
press plant pathogens and enhance the plant growth in-

clude the synthesis of bacteriocins, autolysins, lactonases, 

siderophores, β-1,3- glucanase, chitinases, antibiotics and 

hydrogen cyanide and the degradation of indole-3-acetic 

acid (IAA) (66). In contrast, direct mechanisms may involve 

stimulating plant growth by supplying nitrogen and solu-

ble nutrients as well as through the activity of 1-amino-

cyclopropane-1-carboxylic acid (ACC) deaminase and the 

synthesis of plant hormone such as IAA, gibberellic acid 

and cytokinins (65).  

 The antifungal activity of Bt varies among different 

strains, with distinct morphological effects observed on 

fungal cell walls. These effects include inhibition of myceli-

al growth and spore germination, spore lysis, disruption of 

hyphal tips and reduced germ tube elongation (67). Nota-

bly, Bt has been demonstrated to suppress phytopatho-

genic fungi through the application of bacterial suspen-

sions, supernatants, crude extracts containing chitinases 

and purified chitinase enzymes.  However, information on 

Bt’s antagonistic effects against human and animal patho-

genic fungi is limited, indicating a need for further research 

to explore potential applications in plant protection, medi-

cine and the food industry.  

 Overall, the multifaceted antifungal properties of Bt 

position it as a promising biocontrol agent with broader 

applications. The activity of Bt against fungal plant patho-

gens has been demonstrated in earlier studies (68, 69). For 

example, the active ingredient of the commercial bioinsec-

ticide, XenTari® (Bt  Serovar aizawai  strain ABTS-1857) can 

potentially suppress Botrytis cinerea in tomato (70). It was 

reported that both the spores and proteins of Bt directly 

act against the fungus B. cinerea, helping to improve yields 

in tomatoes (71). In addition, they also demonstrated Bt 

induced plant resistance in tomato against powdery mil-

dew fungus, Oidium neolycopersici  and Leveillula taurica. 

Role of Bt as Plant growth-promoting Bacteria          

In general, Plant Growth-Promoting Rhizobacteria (PGPR) 

positively impacts plant growth and development. Bacteri-

al strains that enhance promote plant growth are referred 

to as Plant Growth-Promoting Bacteria (PGPB). The appli-

cation of PGPB has been demonstrated to enhance seed-

ling emergence and overall plant growth (72). Growth-

promoting mechanisms include improving nutrient mobili-

zation, siderophore production for increased iron availa-

bility in the rhizosphere, synthesizing plant growth regula-

tors, boosting photosynthetic rates and exhibiting antimi-

crobial activity against plant pathogens (Fig. 2) (73).  

 Despite the perception that Bacillus has lower rhizo-

competence, recent genetic studies show that specific 

strains of Bt exhibit a notable ability to compete in the rhi-

zosphere. Bt is notable for its capacity to reduce plant dis-

eases through systemic resistance while indirectly promot-

ing plant growth. The inherent variability in Bt’s interac-

tions with plants, influenced by differences in soil compo-

sition and bacterial colonies associated with plants, is sig-

nificant for promoting plant growth (74).  

 Bt is recognized as a plant growth promoter and its 

ability to establish itself as an endophyte in various crops, 

such as cabbage, cotton, soybean and rice emphasizes its 

potential as an effective plant growth-promoting agent. As 

an endophyte, Bt has the potential to enhance nutrient 

uptake, bolster disease resistance and contribute to over-

all plant health, thereby facilitating robust growth across 

diverse agricultural environments (75). Phytohormones, 

essential compounds produced by bacteria that colonize 

plant roots, play a crucial role in regulating plant growth, 

pathology and interactions with microorganisms. Bt is ex-

plored for its role in promoting plant growth through the 

production of indole-3-acetic acid (IAA), ACC deaminase 

and siderophores as well as organophosphorus phospha-

tases (OPPs) that solubilize organic phosphate (76). The 

positive impact of IAA-producing Bt strains on various 

crops, including cabbage, lettuce, pea, lentil and soybean, 

along with their ability to enhance nodulation, growth and 

yield, emphasizes their potential as growth promoters 

(70).  

 Bt strains such as C25 (77) and KR1 (78) have been 
shown to enhance growth in Lactuca sativa and soybean. 

The production of ACC-deaminase by Bt strains stimulates 
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root elongation, supporting overall plant development. 

Additionally, Bt strains like SNKr10 and native strains with 
ACC-deaminase activity contribute to root growth by re-
ducing stress hormone levels in Vigna radiata (79). The 

colonization of seedling roots and the positive effects on 
host plant physiology make Bt a promising growth pro-
moter, especially under challenging conditions like 

drought. Bt holds significant promise for promoting plant 
growth, further research is essential to optimize its appli-
cation and understand its interactions with diverse plants 

and environments. 

 Biofertilizers consist of living microorganisms that 
play a vital role in enhancing a plant's intake and transport 
of mineral nutrients. PGPR in biofertilizers employs various 
mechanisms to promote growth and stress tolerance in 

plants. They achieve this by accumulating osmolytes (OS), 
phosphate and potassium solubilization, boosting nutrient 
uptake, nitrogen fixation, increasing water absorption ca-

pacity, siderophore sequestration and enhancing antioxi-
dant enzymes (AEs) activity (80, 81).  

 Bt is recognized as significant phosphate-solu-
bilizing bacteria, transforming non-soluble organic phos-
phate into a soluble form through enzymatic activity using 

organophosphorus phosphatases (82). Plant growth often 
encounters challenges due to iron deficiency, especially in 
calcareous soils where iron dissolution is problematic. Iron 

is an essential cofactor for enzymes in plants, prompting 
the release of soluble organic compounds like sidero-
phore, which facilitates the crucial dissolution of Fe3+ for 

effective iron uptake (83). Siderophores produced by Bt 

play a vital role in enhancing plant growth by sequestering 
iron from pathogens. The Bt ATCC 33679 strain, produces 
bacillibactin, a siderophore with a high affinity for iron, 

which potentially aid in plant development and controls 
phytopathogenic fungi through iron competition (84).  

 The incorporation of Bacillus spp. in commercial 
biofertilizers, renowned for promoting plant growth, un-
derscores the importance of iron in ensuring optimal plant 

nutrition. Despite the availability of various commercial 
PGPR products, there is a notable absence of commercial 
plant growth-promoting products based on Bt. The use of 

Bt and methods of application as a biofertilizer and growth 
promoter in various crops are listed in Supplementary 
Table S3. 

Role of Bt in metal nanoparticle synthesis           

Metal nanoparticles (NPs) are valued for their advanced 
characteristics and wide-ranging applications across vari-
ous industries. Traditional chemical methods for nano-

material synthesis often involve used are toxic, flammable 
chemicals, which pose challenges for environmentally safe 
disposal. In addition, these chemical synthesis processes 

can introduce toxic substances onto the nanoparticle sur-
face, potentially leading to adverse effects in medical ap-
plications.  

 In contrast, biological approaches for green synthe-

sis utilizes bacteria, fungi and plant extracts, offering     

advantages like cleanliness, non-toxicity and eco-

Fig. 2. Role of Bacillus thuringiensis in plant growth regulation.  
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friendliness under ambient conditions (85, 86). Bacterial 

strains, including Bt, have been harnessed to generate 

metal NPs (87, 88). Recent studies have demonstrated the 

ability of Bt to synthesize silver and cobalt nanoparticles, 

with silver NPs exhibiting significant toxicity against drug-

resistant human pathogenic bacteria, including E. coli, P. 

aeroginosa and S. aureus. Specific Bt strains possess re-

ducing enzymes that facilitates the reduction of metal ions 

for NP biosynthesis. Moreover, Bt-synthesized cobalt NPs 

exhibit noteworthy larvicidal effects against malaria and 

dengue vectors (87).  

 These nanoparticles show promise for various ap-

plications, such as biopesticides, antifungal agents and 

protective coatings. Current research efforts aim to devel-

op cost-effective processes for NP biosynthesis, leveraging 

Bt's potential for eco-friendly nanoparticle synthesis and 

its applications in various fields. It was reported that com-

pounds like proteins, reducing sugars, phenolic com-

pounds and aromatic compounds in Bt may be involved in 

the synthesis process of Bt-Ag2O (89). A study reported that 

Bt-Ag2O NPs synthesized using Bt could function as pesti-

cides and anti-fungal agents for stored products (90).  

Ag NPs demonstrated high insecticidal activity by generat-

ing reactive oxygen types, inducing oxidative stress, caus-

ing protein unfolding, disrupting cell membrane and lead-

ing to inflammation and insect mortality (91). These nano-

particles can also serve as carriers for Bt crystal proteins, 

with higher toxicity while minimizing environmental 

pollution and safety risks (92). It was reported that the en-

capsulation of Bt protein (Cry1Ab) could enhance its effec-

tiveness against Ostrinia nubilalis under environmental 

conditions (93). Table 1 describes the synthesis of metal 

nanoparticles by various Bt strains, their applications, 

methods of confirmation and their activity against multi-

drug-resistant bacteria or larvae. 

Bt as an agent in Bioremediation           

Heavy metals, pesticides, herbicides and petroleum deriv-

atives pose significant threats to higher trophic levels by 

entering the food chain, raising concerns about their im-

pact on ecosystems and human health. Heavy metal con-

tamination has become a severe environmental challenge 

in wastewater, where conventional physical separation 

methods are ineffective at lower concentrations and tradi-

tional physicochemical methods may further harm the 

environment (94, 95).  

 Biological approaches offer hope, utilizing microor-

ganisms to eliminate pollutants in a cost-effective and 

widely accepted manner. Eco-friendly technologies such 

as bio-stimulation, bioaugmentation, bioaccumulation, 

biosorption, phytoremediation and rhizoremediation har-

ness the metabolic capabilities of microorganisms for the 

extraction and removal of heavy metals in both aquatic 

and terrestrial ecosystems. These methods promote de-

toxification, biotransformation and the effective degrada-

tion of various toxic pollutants, highlighting microorgan-

isms' ability to accumulate, degrade or mineralize harmful 

heavy metals (96).  

 Microorganisms can thrive even in low concentra-

tions of heavy metals, influencing the composition and 

function of microbial communities. Understanding these 

Sl. 
No. 

Strain Application Confirmation of nano materials Activity References 

1 
Bt  strain IS1 (Soils of 
Bikaner (Rajasthan)) 

Silver NPs 
(AgNPs) 

UV-Vis, X-ray diffraction (XRD), Transmission 
electron microscopy 

High toxicity against multi-drug-
resistant bacteria (Escherichia coli, 

Staphylococcus aureus and Pseudo-
monas aeruginosa) 

(115) 

2 Bt (MTCC-6941) 
Cobalt NPs (Co 

NPs) 

X-ray diffraction (XRD), Fourier transform 
infrared (FTIR), Field-emission scanning 

electron microscopy (FESEM) with energy 
dispersive X-ray spectroscopy and Transmis-
sion electron microscopy (TEM) 

Larvicidal activity against Aedes 
aegypti 

(88) 

3 

Bt rhizosphere soil (black 
soil) of cotton Kalloorani, 

Aruppukottai, Virudhu-
nagar district) Tamil 
Nadu 

Silver NPs 
(AgNPs) 

UV-Vis 
High mortality rates against Aedes 
aegypti larvae 

(116) 

4 Bt 
Silver NPs 

(AgNPs) 

UV-Vis absorbance spectra, attenuated total 
reflection Fourier transform infrared spectra, 

zeta analysis and field emission scanning 
electron micrographs 

Antibacterial Activity - Stronger 
against E. coli than commercial 

AgNPs 
(87) 

5 
Bt MRS2 from Farmland, 
cattle rangeland and 

metal recycling dumpsite 

AgNP  

Synthesis 

Anistropic, irregular shape; Plasmon reso-
nance peak at 440 nm; FT-IR peaks at 3379 

and 1643 cm 

E. coli (strain 2), S. aureus, K. pneu-
moniae 

(117) 

6 
Bt CR2 from Farmland, 
cattle rangeland and 

metal recycling dumpsite 

AgNP  

Synthesis 

Anistropic, irregular shape; Plasmon reso-
nance peak at 434.5 nm; FT-IR peaks at 3379 

and 1643 cm 

E. coli (strain 2), S. aureus, K. pneu-
moniae 

(117) 

7 Bt (ACCC 03343) Bt-Ag2O 
UV-vis spectroscopy, FTIR, XRD, SEM, EDS, HR
-TEM, zeta potential analysis 

Synthesis of Ag2O nanoparticles (Bt-
Ag2O NPs), antifungal activity against 

Aspergillus flavus and Penicillium 
chrysogenum, with Aspergillus flavus 
being more sensitive. 

(90) 

 Table 1. List of Bt strains involved in synthesis of metal nanoparticles. 
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complex interactions; shaped by factors such as metal 

type and availability is crucial for the success of bioremedi-

ation strategies (97). Bt strains demonstrate significant 

flexibility in degrading persistent pollutants, including pes-

ticides, herbicides and petroleum derivatives. However, 

there are currently no commercially available Bt-based 

products on the market for bioremediation, underscoring 

the need for further research and development projects to 

facilitate their future commercialization. The use of Bt 

strains in bioremediation for cleaning contaminated sites 

and managing waste is listed in Table 2. 

Role of Bt as an Anti-cancerous agents          

Cancer is the leading cause of human mortality worldwide, 

with new types of the disease continuously emerging. 

However, the development of new treatments has been 

slow, often ineffective and significantly expensive. 

Parasporins (PS) are specific proteins found exclusively in 

Bacillus thuringiensis (Bt), known for their selective cyto-

toxicity against cancer cell types while causing minimal or 

no harm to healthy human cells, making them promising 

candidates for cancer treatment (98). For decades, Bt has 

been recognized for its crystal-shaped toxins that effec-

tively control insect pests and disease vectors. However, 

some Bt proteins, which lack insecticidal activity, have 

demonstrated significant cytotoxicity against various 

cancer cells, thereby expanding the potential of Bt beyond 

pest management. 

 

Sl. 
No. Strain Extracted from Specific activity Compounds References 

1 Bt  var. thuringiensis, 
serotype 1 Polluted environments Biosorption of heavy metals Mercury, Copper (118) 

2 Bt MTCC 4714 Distillery sludge Phytoremediation Distillery effluent (119) 

3 Bt MTCC 4714 Distillery sludge 
Bioaugmentation, Synthetic 
melanoidin (GGA, GAA, SGA, SAA) 
decolorization 

GGA, GAA, SGA, SAA (120) 

4 Bt strain 4G1 
Collected from Bacillus 
genetic stock center Ohio 
State University 

Bio decolourisation Methylene blue (121) 

5 Bt MOS-5 Agricultural wastewater 
near Berket El-Sabaa Egypt Cometabolic degradation Malathion (122) 

6 Bt serovar israelensis 
Bacteries Entomopatho-
gens, Institute Pasteur, 
Paris, France 

Chicken feather degradation, 
mosquitocidal toxin production Bacterial toxins (not specified) (123) 

7 Bt  var. kurstaki HD-1 
Collected from the Lauren-
tian Forestry Centre, Cana-
da 

Bioaugmentation, combined 
biocontrol/bioremediation strate-
gies 

Dimethyl phthalate (DMP) (124) 

8 Bt SRDD Dye-contaminated soil and 
water 

Biodecolourisation, Acid azo dye 
decolorization (including AR-119) 

Acid red-119 (up to 5000 ppm), Acid 
brown 14, Acid black 210, Acid violet 
90, Acid yellow 42 

(125) 

9 Bacillus sp. L14 Cadmium hyperaccumula-
tor Solanum nigrum L. Bioaccumulation of heavy metals Cd (II), Pb (II), Cu (II) (126) 

10 Bt NA2 Petroleum oil contaminated 
site Bioaugmentation Fluoranthene, Pyrene (127) 

11 Bt Sugarcane field soil with 
fipronil history 

Biostimulation and bioaugmenta-
tion Fipronil (128) 

12 Bt   Bioaugmentation Light crude oil (129) 

13 Bt  RUN1 

Soil samples obtained from 
a garbage disposal site 
around Redemption City, 
Nigeria 

Bioaugmentation, Enzymatic 
Degradation Laccases, Malachite 
green (triphenylmethane dye) 
decolorization and degradation 

Malachite green (130) 

14 Bt  strain PSU9 Songkhla Province, Thai-
land 

Exact mechanism that bacteria 
used to degrade EtBr was not 
unraveled 

Ethidium bromide (131) 

15 Bt  OSM29 
The rhizosphere of cauli-
flower grown in soil with 
industrial effluents 

Heavy metal biosorption (Cd, Cr, 
Cu, Pb, Ni) Cd, Cr, Cu, Pb, Ni (132) 

16 Bt  GDB-1 Roots of Pinus sylvestris Phytoremediation Arsenic, copper, lead, nickel and zinc (133) 

17 Bt Cotton field soil Bioaugmentation, microbial 
consortia development Dimethyl phthalate (DMP) (134) 

18 Bacillus thuringiensis 
PW-05 Odisha coast 

Mercury volatilization, biofilm 
formation, exopolysaccharide 
production 

HgCl2, CdCl2, ZnSO4, PbNO3, Na2HAsO4, 
amoxycillin, ampicillin, methicillin, 
azithromycin, cephradine 

(135) 

Table 2. List of Bt strains in bioremediation and environmental applications.  
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  It was first to identify a specific group of proteins 

19 Bt strain KUNi1 Industrial waste-
contaminated soil Bioaccumulation Ni, Zn, Cu, Co, Cd (Ni resistance high-

est) (136) 

20 Bt BRC-ZYR2 Uranium deposit Bioaugmentation 
- Cr (VI) reduction - Insecticidal crystal 
proteins (ICPs: cry1Ba, cry1Bb, cry1Be/
cry1Bf, cry9Ca, cry9Da) 

(137) 

21 Bt  strain BRC-ZYR3 Uranium mine Uranium bioaccumulation and 
transformation Uranium (VI) (138) 

22 Bt  strain 016 
Collected from Northeast 
Agricultural University, 
China 

Biosorption Lead (139) 

23 Bt  var kurstaki strain 
4D4 

Donated by Dr. Daniel R. 
Zeigler (BGSC Director, 
Ohio, USA 

Biostimulation Chlorpyrifos (140) 

24 Bt  ZS-19 pyrethroid-contaminated Pyrethroid (particularly cyhalo-
thrin) degradation 

Cyhalothrin, 3-phenoxybenzoic acid 
(intermediate), 3-phenoxyphenyl ace-
tonitrile (intermediate), N-(2-isopro-xy-
phenyl)-4-phenoxy-benzamide 
(intermediate), other pyrethroids 

(fenpropathrinn, deltamethrin, beta-
cypermethrin, cyfluthrin, bifenthrin) 

(141) 

25 Bt  strain BRC-HZM2 Chlorpyrifos-contaminated 
samples 

Bioaugmentation, soil amend-
ment Chlorpyrifos (142) 

26 IS1 (Bt strain “Simi”)   Bioaccumulation of heavy metals Zinc, Lead (143) 

27 Bt strain Bt from marine sediment Bioaugmentation 
Phenanthrene (PAH) - Imidacloprid 
(pesticide) (Degradation pathways for 
both established) 

(144) 

28 Bt strain Cr-S1 samples of wastewater Bioaccumulation Chromium (145) 

29 Bt B1(2015b) 
the soil of the chemical 
factory “Organika-Azot” in 
Jaworzno, Poland 

Cometabolic degradation Naproxen and Ibuprofen (146) 

30 Bt Agricultural soil Assimilation Phthalic acid esters (dimethyl, diethyl, 
dipropyl and dibutyl phthalate) (147) 

31 Bt J20 Olive waste in Palestine Immobilize J20 cells using sodi-
um alginate phenol (148) 

32 Bt strain SG4 

Cypermethrin-
contaminated agricultural 
soil samples from Pantna-
gar, Uttarakhand 

Immobilized the culture with 
sodium alginate/agar discs Cypermethrin (149) 

33 Bt strain H2 hypersaline Lake Tuz in 
Turkey Degradation of halogens halogen-polluted marine/hypersaline 

environments (150) 

34 Bt with engineered atzA 
enzyme 

Collected from Bacillus 
Genetic Stock Center 
(Columbus, Ohio) 

Atrazine (ATR) detoxification 
through chlorohydrolase activity Atrazine (151) 

35 Bt   

Bisorption and bioaugmenta-
tion;inoculated into the aquacul-
ture water to directly remove 
contaminants 

Ammonia-nitrogen (NH3-N) removal, 
nitrite-nitrogen (NO2-N) removal, ni-
trate-nitrogen (NO3-N) removal, metal 
removal (Ni, Cr, Se, Al, Cd, Mn, Fe, B) 

(152) 

36 Bt Oil-contaminated places Biosurfactant production Decano-
ic acid, oleamide 

Effective bioremediation of petroleum 
oil residues in contaminated sites (153) 

37 Bt (V45) Tannery industry sediment Chromium (VI) bioreduction Chromium (VI) (154) 

38 Bt subsp. israelensis Bacillus Genetic Stock 
Center 4Q2-81 

Atrazine (ATR) detoxification to 
hydroxyatrazine (HA) Atrazine (155) 

39 Bt JNU01 Landfill site Biodegradation of polyethylene 
(PE) Polyethylene (PE) (156) 

40 Bt SE1C2 

Tissue interior of 
Catharanthus roseus grown 
in magnesite mining area, 
Salem, India 

Phytoremediation Cd and Zn (157) 

41 Bt (Acc MW979616) Salix alba  roots Phytoremediation 
Cd Reduction 80 %; Treatment: Bt 
seeds + CdSO4 400 mg + 0.5 g root 
powder 

(158) 

42 Bt x-27 Uranium-contaminated soil Uranium (VI) bioreduction 

Uranium (VI) bioreduction, Anaerobic 
culture with electron donor, Sodium 
lactate, intracellular NADH dehydro-
genase-ubiquinone system 

(159) 
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known as parasporins, which exhibit a remarkable ability 

to kill human cancer cells (99). They later isolated and se-

quenced an 81 kDa protein from the A1190 strain of Bt and 

named it parasporin (100). Sequence analysis revealed 5 

conserved regions similar to Cry proteins, although there 

was less than 25 % overall identity to known Cry and Cyt 

proteins. Initially, defined as non-insecticidal proteins that 

exclusively target cancer cells, the definition of 

parasporins has since been broadened to include Bt and 

related bacterial proteins that are non-hemolytic but spe-

cifically cytotoxic to cancer cells (101). Similar to insecti-

cidal Cry protein, parasporins are produced as inactive 

precursors during Bt sporulation. Proteolytic cleavage, 

facilitated by alkaline conditions at the N- or C-terminus, 

activates these precursors into their cytotoxic form (102). 

Interestingly, the functional boundaries between Cry pro-

teins and parasporins are not entirely distinct, as certain 

parasporins exhibit dual activity, demonstrating effective-

ness against both insects and cancer cells (103). 

 The presence of non-insecticidal Bt strains contrib-

utes to more than 90 % of species diversity in the natural 

environment, indicating the vast and largely unexplored 

biodiversity hotspots with potential applications that ex-

tend well beyond classical agriculture and pest control.  

A study was conducted using indigenous Bt isolates from 

the rich biodiversity of the Western Ghats in India to ex-

plore the parasporin diversity. This paradigm of Bt strains 

producing parasporins extends to these environments as 

ecosystem and bioprospecting platforms for novel com-

pound design, facilitating advancements in human health 

(104). 

 Parasporins are categorized into 2 classes: pore-

forming toxins and 3-domain structures, based on a 4-

stage nomenclature system. They are classified into 6 

different families: PS1, PS2, PS3, PS4, PS5 and PS6. Among 

these, PS1, PS3 and PS6 are larger parasporins that exhibit 

a 3-domain structure. Initially inactive at around 80 kDa, 

they become active after proteolytic processing, resulting 

in smaller forms ranging from 60 to 70 kDa (105). In con-

trast, PS2, PS4 and PS5 are smaller parasporins associated 

with MTX-like Cry toxins, with lower molecular weights. 

These are initially inactive, ranging from 31 to 27 kDa and 

their active forms range from 27 to 30 kDa (106). The com-

mittee defines parasporins as non-hemolytic proteins de-

rived from Bt and related bacteria, characterized by cyto-

toxicity towards cancer cells. Recent investigation of 

parasporins reveals their promising potential for applica-

tions in cancer therapy (107). Phylogenetic relationships 

among these anticancer proteins were analysed using Bt 

strains with diversified parasporins genes. Protein se-

quences were retrieved from the NCBI database and a phy-

logenetic tree was constructed using MEGA software 11 

(Fig. 3).  

Parasporin 1     

PS1, found in the Bt strain A1190, is a protein that exhibits 
limited sequence similarity with Cry and Cyt toxins 

(102). Its activation involves proteolytic cleavage, convert-

ing it into an active form that induce apoptosis in cancer 

cells, mainly in the HL60 line and HeLa cell line (101). PS1 

operates via increasing intracellular calcium concentration 

and has been shown to interact with the tumor suppressor 

protein beclin-1, indicating its role in regulation of autoph-

agy and apoptosis (108). 

Parasporin 2           

PS2, derived from Bt serovar dakota strain A1547, lacks the 

structural complexity of PS1 and is activated through Pro-

tease K processing. It exhibits potent toxicity against 

HepG2 and CACO-2 cells through a mechanism that in-

volves cell membrane permeabilization and pore for-

mation (103). It interacts with GPI-anchored proteins and 

cholesterol in the cancer cell membrane, causing cell lysis 

(109).  Researchers have also discovered that PS2 is 10 

times more effective against these cancer cells than previ-

ously reported, suggesting that its mechanism of action 

may vary depending on the cell type (110). 

Parasporin 3            

PS3 possesses a 3-domain structure feature and its activa-
tion require proteolytic cleavage, which contributes to its 

specific toxicity against cancer cells such as HL-60 and 

HepG2. It triggers cell death via pore formation and necro-

sis, possibly in a ROS-independent mechanism (102). Addi-

tionally, PS3 contains a unique richin domain that is ab-

sent in other Cry proteins, enhancing its specificity for can-

cer cells through sugar binding that interacts with carbo-

hydrates (111). 

Parasporin 4             

PS4 isolated from the Bt strain A1470, differs markedly 

from other parasporins and Cry proteins, having no con-

served regions and structural similarity (104). It functions 

as a cholesterol-independent pore-forming toxin, exhibit-

ing high cytotoxicity against several cancer cell lines, in-

cluding Sawano, TCS, MOLT-4, HL60, HepG2, Caco-2 cells. 

This cytotoxicity is associated with nuclear shrinkage and 

cell bursting, causing release of lactate dehydrogenase 

and the uptake of FITC-dextran by affected cells (112). No-

tably, the action of this toxin does not involve the activa-

tion of caspase-3 and 7, suggesting a unique mechanism of 

action that distinguishes it from other parasporins (113). 

Parasporin 5          

PS-5 derived from Bt tohokuensis A1100, demonstrates 

cytotoxic effects against leukemic T cells (MOLT-4) and a 

wide range of mammalian cell lines through C-terminal 

cleavage with proteinase K (106). Unlike other parasporins, 

it shows low sequence similarity to Cry toxins, although it 

does exhibit some resemblance to Cry toxins and aerolysin

-type pore-forming toxins. However, it lacks a clear mecha-

nism of action, emphasizing a need to bridge gap in the 

area (102). 

Parasporin 6            

PS6 isolated from Bt M109 exhibits partial similarity to 

Cry2 toxins but is distinguished by unique structural fea-

tures and cytotoxic effects against HepG2 and HeLa cells 

(105, 112). It is activated by N-terminal protease treatment 

under alkaline conditions, which leads to membrane dam-

age and various pore-forming effects, suggesting its poten-
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tial for cancer therapy (105).  

 Among PS proteins, PS1 and PS2 show promise for 

cancer treatment. PS1 triggers apoptotic signalling and 

selectively impacts various cell lines. PS2 is identified as a 

selective pore-forming toxin that induces morphological 

changes and activates apoptosis in cancer cells. Although 

PS3, PS4, PS5 and PS6 exhibit cytotoxicity, their mecha-

nisms remain largely unknown, with fewer studies con-

ducted compared to PS1 and PS2 (114). Current investiga-

tion includes identifying and evaluating novel native 

strains of Bt that demonstrate increased cytotoxic activity 

against cancer cells. Selected strains will undergo genetic 

enhancement to boost toxin activity. PS proteins are 

emerging as a promising alternative for cancer treatment, 

potentially offering advantages over current methods by 

reducing side effects. This advancement seeks to improve 

treatment outcomes and enhance the overall quality of life 

for individuals undergoing cancer therapy.  

 Currently, pharmaceuticals derived from Bt with 

anticancer properties are not commercially available. 

However, exploring the mechanisms by which Bt-

parasporins act against various cancer types indicates the 

possibility for these proteins to be developed as anti-

cancer pharmaceuticals in the future. Transitioning from 

lab-based research to real-world medical treatments is a 

complex process fraught with challenges. Extensive re-

search is required to validate treatments efficacy, deter-

mine optimal delivery method and ensure safety of pa-

tients. The potential of specific Bt strains to produce toxins 

with anticancer activity against a range of human cancer 

cell lines, including leukemia, cervical, hepatocellular and 

colon cancer cells are listed in Table 3.   

 

Conclusion  

Beyond its traditional role as a biopesticide, Bt (Bacillus 

Fig. 3. Phylogenetic relationships among the anticancer proteins. Protein sequences were retrieved from the NCBI database and a phylogenetic tree was con-
structed with the help of MEGA software 11.  
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thuringiensis) also highlights its multifunctionality across 

various sectors, including agriculture, medicine and envi-

ronmental science. The use of recombinant toxin genes 

has significantly enhanced crop protection, while trans-

genic crops contribute substantially to sustainable agricul-

tural practices. Pyramiding, which involves integrating 

toxin genes into wild-type or genetically modified plants, 

improves pest control and delays the development of re-

sistance. Extensive research has revealed that Bt plays 

numerous roles, ranging from the genetic improvement of 

crops and disease resistance to the development of new 

cancer therapies. Additionally, Bt regulates and enhances 

plant growth, fixes nitrogen and produces phytohor-

mones, all of which are essential for increasing crop yields. 

In the medical field, Bt's anticancer properties, particularly 

through parasporins, open up new therapeutic avenues, 

potentially leading to more effective and targeted cancer 

treatments. Furthermore, Bt has shown promise in biore-

mediation, aiding in the removal of pollutants and heavy 

metals as well as the synthesis of nanoparticles. This ex-

ploration in material science emphasizes environmental 

concerns and may have significant implications for both 

medical and industrial applications.  
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Sl. 
No. 

Current 
Name Old name Isolated from Cells Protoxin 

(kDa) 
Active 

Toxin (kDa) Bt Strain Refer-
ences 

1 PS1Aa1 Cry31Aa1 Soil Isolate from Hiroshima Prefec-
ture, Japan MOLT-4, HeLa cells 81 15 and 56 Bt strain 84-HS-

1-11 (100) 

2 PS1Aa2 Cry31Aa2 Dead two-spotted spider mites 
(Tetranychus urticae) 

HeLa, TCS, HL-60, 
Jurkat, HepG2 

cells 
83 55 and 70 Bt  strain M15 (160) 

3 PS1Aa3 Cry31Aa3 Soil sample in Japan HeLa cells 81 56 Bt  strain B0195 (161) 

4 PS1Aa4 Cry31Aa4 Urban soil, Hanoi, Vietnam   81 NP Bt  strain 79-25 (162) 

5 PS1Aa5 Cry31Aa5 Urban soil, Hanoi, Vietnam   81 NP Bt  strain 92-10 (162) 

6 PS1Aa6 Cry31Aa6 Japan, Caribbean, Canada HepG2 cells and 
HeLa cells 70 15 and 55 Bt  strain M019, 

CP78A (105) 

7 PS1Ab1 Cry31Ab1 Soil sample in Japan HeLa Cells 82 56 Bt strain B0195 (161) 

8 PS1Ab2 Cry31Ab2 Urban soil, Hanoi, Vietnam   82 NP Bt  strain 31-5 (162) 

9 PS1Ac1 Cry31Ac1 Urban soil, Hanoi, Vietnam HeLa and HepG2 
cells 87 NP Bt  strain 87-29 (162) 

10 PS1Ac2 Cry31Ac2 Pond water in Seigenji, Kurumeshi, 
Fukuoka, Japan HeLa Cells 81 15 and 60 Bt  strain B0462 (163) 

11 PS1Ad1 Cry31Ad1 Japan, Caribbean, Canada HepG2 and HeLa 
cells 73 14 and 59 Bt  strain M019, 

CP78B (105) 

12 PS2Aa1 Cry46Aa1 Soil sample collected in the city of 
Hino, Tokyo, Japan 

MOLT-4, Jurkat, 
Sawano and 

HepG2 cells 
37 30 

Bt  serovar 
dakota strain 

A1547 
(164) 

13 PS2Aa2 Cry46Aa2 Soil sample collected in the city of 
Hino, Tokyo, Japan 

MOLT-4, Jurkat, 
Sawano and 

HepG2 cells 
30 28 Bt  strain A1470 (165) 

14 PS2Ab1 Cry46Ab1 Soil in Ehime Prefecture, JapanJurkat 
Jurkat, HEK293, 
HeLa and MOLT-4 

cells 
33 29 Bt  TK-E6 strain (166) 

15 PS3Aa1 Cry41Aa1 Japan HL60 and HepG2 
cells 88 64 Bt  strain A1462 (167) 

16 PS3Ab1 Cry41Ab1 Japan HL60 and HepG2 
cells 88 64 Bt  strain A1462 (167) 

17 PS4Aa1 Cry45Aa1 Soil sample collected in the city of 
Hino, Tokyo, Japan CACO-2 cells 31 28 Bt  A1470 (112) 

      Soil sample collected in the city of 
Hino, Tokyo, Japan MOLT-4 cells 31 28 Bt  A1470 (168) 

18 PS5Aa1 Cry64Aa1 Japan 

MOLT-4, HepG2, 
TCS, HeLa, COS7, 

Vero and Sawano 
cell 

33 30 Bt  A1100 (106) 

19 PS6Aa1 Cry63Aa1 Japan, Caribbean, Canada HepG2, HeLa, 
CaCo-2 85 14 and 59 Bt  strain M019, 

CP84 (105) 

Table 3. Bt strains producing toxins with anticancer activity against human cancer cell lines.  
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