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Abstract   

Groundnut (Arachis hypogaea L.), often referred to as the King of oil seeds, is a vital 

oil seed crop cultivated globally. However, its productivity is hampered by 

numerous abiotic and biotic stresses, with biotic stresses predominantly due to 

fungal and bacterial diseases. Among these, soil-borne fungal pathogens cause 

significant yield losses. Specifically, stem rot disease, caused by Sclerotium rolfsii 

Sacc., poses a substantial threat, leading to yield losses of up to 80%. This pathogen 

forms sclerotia, a resilient resting structure that can survive in the soil for many 

years and germinate under favorable environmental conditions. The persistence of 

sclerotia and the pathogen's broad host range make managing this disease 

particularly challenging through a single method. Effective management of stem 

rot disease necessitates an integrated disease management (IDM) approach, which 

combines cultural, chemical and biological strategies. Cultural practices such as 

crop rotation, deep ploughing and moisture regulation help to reduce inoculum 

levels in the soil. Chemical control involves the use of fungicides to reduce the 

pathogen load in the soil and protect the plants during vulnerable growth stages. 

Biological control employs antagonistic microorganisms that can inhibit the growth 

and activity of S. rolfsii. By integrating these diverse strategies, it is possible to 

effectively manage stem rot disease in groundnut, thereby enhancing productivity 

and sustainability in groundnut cultivation. 
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Introduction   

Groundnut (A. hypogaea L.) is one of the essential oilseed crops grown in India. It is 

also called the ‘King of oil seeds’ because of its massive uses and it has different 

names like earth nut, groundnut, goober pea, pig nut, pygmy nut and monkey nut 

(1). It is the world's third most important oilseed crop and thirteenth most 

important food crop. Groundnut contains 45-50% oil, 27-33% easily digestible 

protein, 18% carbohydrates and minerals like Ca, Mg and Fe, as well as vitamins B1, 

B2 and niacin (2). It is the world's fourth-most significant source of edible seeds and 

the third-most significant source of vegetable protein (3). Groundnut oil is rich in 

fatty acids such as oleic (18:1), linoleic (18:2) and linolenic acid (18:3) (4). The 

groundnut root secretes flavonoids that promote the growth of nitrogen-fixing 

bacteria, forming root nodules that help the plant in uptake of nitrogen and 

enhance soil fertility. In India, it is grown under rainfed as well as irrigated 

conditions. Groundnut crop survives best in tropical and warm temperate climates 

and requires 20°C to 30°C temperature and 50-75 cm rainfall (5). 
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 Groundnut production covers 327 lakh ha worldwide, 

yielding 539 lakh tonnes and productivity of 1648 kg/ha. About 

80% of the overall groundnut area and production in India is 

grown in the states of Gujarat, Andhra Pradesh, Telangana, 

Tamil Nadu, Karnataka, Rajasthan and Maharashtra (6). It covers 

4.09 lakh ha in Tamil Nadu, producing 10.23 lakh tonnes and has 

a 2502 kg/ha productivity. The pod yield of the groundnut is 

highly affected by several biotic factors including foliar and 

soilborne diseases. Among the foliar diseases, late leaf spot and 

rust cause a yield loss of about 50 to 70% (7). The main limiting 

pathogens among soil-borne diseases are Aspergillus niger 

Tiegh, which causes collar rot/crown rot/seedling blight; S. rolfsii 

Sacc., causing stem rot/Sclerotium wilt and Rhizoctonia 

bataticola Taub., causing root rot (8). Among the soil-borne 

diseases, stem rot disease in groundnut significantly impacts 

crop yield, leading to substantial losses. 

Distribution, severity and yield losses 

Stem rot disease, caused by the fungus S. rolfsii, poses a 

significant threat to groundnut cultivation globally, especially in 

Asia, Africa, America and Australia, where warm temperatures, 

high humidity and light soils provide ideal conditions for its 

survival and spread (Fig. 1). For groundnut produced under 

irrigation, stem rot disease has a significant economic impact, 

especially during the post-rainy (rabi) season. This disease 

caused groundnut production to lose between 10 to 20 million 

USD in the first half of the 20th century. In New Mexico, yield 

losses of up to 75 to 80% have been reported. The most 

significant soilborne disease affecting peanut in China is stem 

rot, which causes yield losses of about 50% (9). In eastern 

Ethiopia, where the crop is widely cultivated, the groundnut root 

rot complex has emerged as a significant barrier to groundnut 

production (10). In fields in North Carolina, incidence rates of 

groundnut stem rot ranged from 5% to 32%, indicating a 

clustered distribution pattern (11). Along with other diseases, 

including leaf spots and rosette, stem rot is one of the devasting 

disease that cause substantial crop losses in West Africa (12). It 

was observed that prevalence of stem and pod rot with 27% or 

more yield loss in all groundnut growing states of India, 

particularly severe in Maharashtra, the Saurashtra region of 

Gujarat and the Raichur area of Karnataka (13). Stem rot disease 

causes pod losses of 10-25%, but in the case of severe infections, 

yield losses can reach up to 80%. According to some researches 

stem rot, rust and leaf spot, either separately or in combination, 

can cause a 15-70% reduction in groundnut production (14). 

Significant yield losses of more than 80% have been reported in 

recent years due to S. rolfsii-induced stem rot disease (1, 15).  

Host range 

S. rolfsii, the causal organism of stem rot disease, exhibits a 

remarkably wide host range, infecting over 500 species across 

100 families. Among its susceptible hosts are groundnut, 

soybean, sunflower, tomato, pepper, rose, chrysanthemum, 

chickpea, cowpea, maize, sorghum, nutsedge and morning glory 

(16-19). This broad spectrum of susceptible plants underscores 

the versatility and adaptability of S. rolfsii as a pathogen. Its 

ability to infect a diverse array of crops, vegetables, ornamental 

plants, legumes, cereals and herbaceous species poses 

significant challenges for disease management strategies. Due 

to its wide host range, S. rolfsii requires integrated disease 

management to reduce its impact on agriculture and protect 

diverse plant ecosystems (Table 1).  

Symptomology 

S. rolfsii attacks all stages of the crop and produces symptoms 

like seed rot, seedling blight, stem rot and pod rot, the most 

prevalent of which is stem rot. The symptoms are usually most 

prominently visible at 45 DAS. Though S. rolfsii can infect any 

part of the plant, including roots, petioles, flowers and leaves, it 

mostly targets the stem of the host. The first sign of stem rot 

includes yellowing of the leaves and rotting of the branches 

close to the base of the plant. The fungus produces an 

abundance of white masses of mycelium around the infected 

tissue and on the surface soil. On the mycelium, sclerotia of 

comparatively uniform size are formed. When young, these 

structures are spherical and white, but as they grow, they turn 

dark brown or black. Sclerotia at maturity resembles mustard 

seeds ranging from 4.8 mg to 14.0 mg (20). The fungus rarely 

produces basidiospores around the edges of the infected tissue 

(21). Seedlings are more susceptible and they die quickly after 

infection. This disease also causes indirect losses, such as a 

decrease in oil content and dry weight. When a plant reaches an 

advanced stage of infection, its kernels shrivel and become tiny. 

 

 

Fig. 1. Distribution of S. rolfsii worldwide and in India. 
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Pathogen 

S. rolfsii survives well at or near the soil line and affects the plant. 

It can take 2 to 10 days for the pathogen to develop a mass of 

mycelium on the plant surface before it enters the host tissue. 

The pathogen develops an enzyme that breaks the outer cell of 

the host and enters the host tissue (22). After the decomposition 

of tissue, further mycelial formation and sclerotial production 

takes place. The latter two processes depend on environmental 

conditions. Sclerotia germinates either through hyphal 

germination or eruptive germination. In hyphal germination, 

individual hyphal strands are grown on the sclerotial surface. In 

eruptive germination, clusters of mycelia erupt through the 

surface of the sclerotia (23). Three layers constitute mature 

sclerotia; the cortical layer, the medullary layer in the center and 

the outer rind (24). It is very rare to see the teleomorph of S. rolfsii 

(Athelia rolfsii) on the host or in the culture plate. A. rolfsii forms 

basidia on an exposed hymenium, which produces 4 haploid 

basidiospores. The appressed hymenium usually develops in 

small, tiny and uneven patches. Basidiospores are hyaline and 

measure 1.0 to 5 µm × 5 to 12 µm, while clavate basidia measure 

4 to 6 µm × 7 to 14 µm. 

Epidemiology 

Epidemiology of S. rolfsii is influenced by specific environmental 

conditions. It thrives in soil with a moderate moisture content, 

approximately 70% of field capacity and temperatures from 25°

C to 30°C (25). Hyphal growth can occur within a wide 

temperature range, from 8°C to 40°C, while sclerotial formation 

is favoured at temperatures between 27°C and 35°C. Although S. 

rolfsii prefers acidic soils, it can tolerate various pH levels, with 

mycelial growth occurring within a pH range of 3 to 5 and 

sclerotial germination within a pH range of 2 to 5. Germination is 

restricted at pH levels above 7. Some researchers investigated 

the influence of varied soil moisture levels on S. rolfsii survival 

and discovered that the fungus thrived at lower moisture levels 

(26). The survival rate was highest between 20% and 40% soil 

moisture. It was discovered that the fungus had very little 

saprophytic activity at soil moisture levels of 60 and 70%, while 

more saprophytic activity was seen at moisture levels of 40%. 

According to (27) the incidence of root rot disease was higher in 

sandy soils than in clay soils and it was more common in crops 

grown during the Kharif season than the Rabi season. Sclerotia, 

the resting structures of the fungus, exhibit resilience to cold 

temperatures, surviving down to -10°C, while the mycelium is 

killed at 0°C. Optimal growth of the fungus requires high 

moisture levels, with sclerotia germinating best at a relative 

humidity range of 25% to 35% (28). Below the saturation point, 

relative humidity prevents sclerotia from germinating. 

Understanding these environmental factors is essential for 

developing effective strategies to manage stem rot disease 

caused by S. rolfsii. 

Survival and spread 

Depending on the conditions of the environment, sclerotia of the 

pathogen could live in soil for about 2 months to 7 years. 

Sclerotia has a lower probability of surviving cycles of freezing 

and thawing as well as cycles of dry and wet conditions. It was 

found that 94% of sclerotia survived in a soil depth of 10 cm, 

whereas it was just 11% on the soil's surface (29). Greater 

survivability at the soil depth of 10 cm may be explained by the 

relative lack of soil drying. Sclerotia survival may also be 

impacted by the pH and texture of the soil. Lower survival in clay 

loam was described by (30) as a larger ability to retain water, 

which influenced soil drying and wetting and increased 

microbial activity.  

 S. rolfsii spreads through various mechanisms, each 

contributing to its persistence and dissemination. Firstly, its hard 

survival structures, sclerotia, survive in soil for years, serving as 

reservoirs of inoculum. Secondly, infected plant debris, such as 

crop residues and roots, acts as sources of inoculum for 

subsequent plantings. Thirdly, water facilitates sclerotia 

movement via irrigation, rain splash, or flooding, particularly in 

poorly drained fields. Fourthly, contaminated equipment can 

transport sclerotia to new areas, exacerbating disease spread. 

Additionally, sclerotia may adhere to seeds or reside within seed 

lots, potentially introducing the pathogen during planting. 

Furthermore, soil-dwelling organisms like ants or nematodes aid 

in short-distance dispersal, contributing to localized disease 

transmission. These diverse modes of spread underscore the 

challenges of managing S. rolfsii effectively (31). Addressing 

multiple vectors of transmission through integrated disease 

management strategies is essential for controlling stem rot and 

minimizing its impact on agricultural productivity. By 

understanding and mitigating these spread mechanisms, 

growers can adopt proactive measures to limit disease spread 

and protect crop yields sustainably. 

Table 1. Host range of S. rolfsii 

S. No Name of the host Disease caused by the pathogen Yield loss Reference 

1 Tomato Collar rot, foot and root rot 20% to 50% (89) 

2 Groundnut Stem rot 80% (90) 

3 Sunflower Damping-off and charcoal-rot 10% to 50% (91) 

4 Betel vine Sclerotial wilt 60% (92) 

5 Lentil Sclerotium stem rot or southern stem rot 20% to 50% (93) 

6 Chickpea Collar rot 30% to 50% (58,94) 

7 Jute Soft rot 15% to 40% (95) 

8 Crossandra Collar rot 40% to 50% (96) 

9 Elephant foot yam Collar rot 20% to 100% (97) 

10 Finger millet Footrot >50% (98) 

11 Cowpea Stem rot 53.4% (99) 

12 Pepper Southern blight 15% to 30% (32) 

13 Mung bean Southern blight 20% to 40% (100) 

14 Carrot Southern blight 20% (101) 

15 Chili Southern blight 10% to 60% (62, 102) 

16 Bell pepper Southern blight 50% (103) 
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Disease cycle 

During transportation, sclerotia in plant debris or soil are used 

for long-distance movement (32) (Fig. 2). S. rolfsii secretes 

cellulase and oxalic acid, which break down tissue, when 

infected. Oxalic acid plays a critical role in the pathogenic 

process by interacting with calcium and removing it from its 

interaction with pectic chemicals in plant cell walls. This action 

reduces the pH of the cell walls, promoting the activity of 

enzymes such as endo polygalacturonase and cellulase, which 

degrade the plant cell wall. The pathogen produces larger 

amounts of oxalic acid through extensive mycelial development 

on plant tissues, aiding hyphal penetration into the tissue. Tissue 

maceration occurs as a result of the breakdown of cell walls by 

oxalic acid and tissue-degrading enzymes. This macerated tissue 

serves as a nutrient source for the pathogen to absorb. 

Symptoms such as wilting, yellowing and necrosis manifest due 

to tissue maceration, hindering the transport of water and 

nutrients to plant tissues. By disrupting normal physiological 

processes, S. rolfsii impairs the overall health and vitality of the 

infected plant, leading to further disease progression and 

potential crop loss. Understanding the mechanisms by which S. 

rolfsii causes tissue degradation is essential for developing 

effective strategies to manage stem rot disease and minimize its 

impact on agricultural productivity (33). 

Management of stem rot disease 

S. rolfsii presents a formidable challenge among soil-borne 

pathogens due to its persistent sclerotia, rapid growth and 

broad host range. Historically, fumigation and soil-applied 

fungicides were employed to suppress its spread, particularly in 

the mid-1900s. Chemical control techniques are ineffective in 

preventing plant diseases and long-term application of chemical 

fungicides results in pollution of the environment, pathogen 

resistance and residual toxicity. Instead, soil-borne plant 

infections could be managed by using bio-control agents, which 

are safer for the environment and more affordable than 

chemical control techniques (34). Today, integrated 

management strategies are favored, incorporating cultural 

practices, chemical treatments, biocontrol agents and the use of 

resistant cultivars. By combining multiple approaches, growers 

aim to effectively manage S. rolfsii while minimizing 

environmental impacts and ensuring sustainable crop 

production. This holistic approach acknowledges the complex 

nature of the pathogen and seeks to address its control through 

diverse and complementary methods. 

Cultural methods 

Cultural management practices for S. rolfsii involve removing 

crop debris, aerification, adding lime and deep ploughing. These 

methods aim to disrupt the pathogen's lifecycle and reduce its 

inoculum in the soil. Removing crop debris removes potential 

sources of infection, while aerification enhances soil drainage 

and oxygenation, inhibiting fungal growth. Lime addition helps 

raise soil pH, making it less favorable for S. rolfsii, while deep 

ploughing buries sclerotia deeper in the soil, reducing their 

viability (23, 35). Integrating these cultural practices into 

agricultural systems can contribute to effectively manage stem 

rot disease caused by S. rolfsii. 

Sanitary measures 

Effective control of foliar pests and diseases plays a crucial role in 

managing stem rot caused by S. rolfsii. By reducing the fall of 

dried leaves, which contributes to the buildup of litter in the 

pegging zone and crown area, the availability of a food source 

required by the fungus is diminished. Additionally, employing 

pathogen-free seeds as planting materials helps prevent the 

introduction of S. rolfsii into new areas. Prompt removal and 

destruction of infected plants are essential to prevent them from 

acting as sources of inoculum. In nurseries, S. rolfsii infection can 

be eradicated through soil replacement and removal. However, 

care must be taken during soil movement to avoid inadvertently 

spreading the pathogen to other areas. Furthermore, used 

potting media in nurseries or greenhouses should not be reused 

for subsequent planting to prevent the recurrence of S. rolfsii 

infection. These proactive measures, combined with integrated 

disease management strategies, are crucial for effectively 

controlling stem rot disease and minimizing its impact on 

groundnut cultivation. By implementing these practices, 

growers can reduce the spread of S. rolfsii and safeguard crop 

yields sustainably (36). 

Tillage 

The primary disease-causing agent of S. rolfsii is its overwintering 
structure, the sclerotia. These sclerotia can be found either freely 

in the soil or in association with plant debris. Those present on 

the soil surface remain viable and may germinate in response to 

alcohol and other volatiles released during the decomposition of 

plant materials. Therefore, tillage practices that disrupt 

sclerotia's ability to survive at the soil surface can effectively 

control S. rolfsii. Soil stirring before sowing or after harvesting is 

commonly recommended to facilitate sclerotia drying and 

reduce their viability. By burying sclerotia deeper into the soil 

profile, tillage practices help prevent their germination and 

subsequent infection of susceptible crops. Incorporating such 

cultural practices into agricultural routines can contribute 

significantly in managing stem rot disease caused by S. rolfsii 

(37). 

Crop rotation 

Considering the wide host range of S. rolfsii and the dormant 

structure of sclerotia, crop rotation is recommended as a major 

management strategy for the management of groundnut stem 

rot. Stem rot incidence and severity can be reduced by rotating 

the groundnut with non-susceptible crops like corn, cotton and 

wheat (38). Crop rotation of groundnut with cotton decreased the 

sclerotial count, reducing the incidence of stem rot. This kind of 

crop rotation was earlier followed in regions with vertisol, but it is 

Fig. 2. Disease cycle of S. rolfsii. 
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now followed in all the cotton-growing regions where there is 

severe infestation of stem rot. Groundnut can also be rotated 

with wheat and corn to prevent stem rot. This is a widely used 

technique in many regions of North India (39, 40). Stem rot can be 

prevented by rotating crops with onion and garlic (41, 42). Castor 

can also be used in crop rotation to prevent stem rot disease (38). 

Crop break for 2 to 3 years with non-susceptible crops reduces 

the disease incidence, but the longer crop break of 4 to 5 years is 

recommended for the most effective control of stem rot. 

Physical methods 

These methods manipulate environmental factors or crop 
surroundings to disrupt disease cycles, reduce pathogen 

populations, or enhance plant resilience. Integrating physical 

methods with other control measures offers a comprehensive 

approach to combat stem rot and safeguard groundnut yields 

sustainably. By combining physical interventions such as soil 

solarization with cultural, chemical and biological control 

measures, growers can effectively manage S. rolfsii while 

minimizing reliance on synthetic chemicals and promoting 

environmentally friendly practices. This integrated approach 

maximizes the effectiveness and sustainability of disease 

management strategies in groundnut cultivation (43). 

Organic amendments  

In in vitro studies, the highest suppression (80%) on the 

pathogen's mycelial growth (1.79 cm) was seen with a 10% 

concentration of Mahua oil cake (44). Complete inhibition of S. 

rolfsii mycelial growth was achieved by well-decomposed FYM 

and groundnut cake (45). While gingelly cake (3%) and neem 

cake (98%) suppressed sclerotia to the greatest degree, neem 

cake was shown to be the most effective. At all 

the concentrations evaluated, vermicompost, cotton seed cake, 

castor cake and farmyard manure completely suppressed the 

growth of mycelium. Furthermore, the mean inhibition of 

mycelial growth for goat dung and karankaj cake was found to 

be 78% and 57%, respectively. However, at concentrations of 5, 

7.5 and 10%, goat dung and karankaj cake completely inhibited 

the radial growth of mycelium (46). Mahua oil cake at a 

concentration of 20% demonstrated the highest mycelial 

inhibition (84%) under in vitro conditions. It also completely 

inhibited sclerotial germination at 18 and 24 h and 84% 

inhibition at 30 min (47). 

 

 

Soil solarization 

Aerated steam treatment of beds or bulk soils may be possible in 

some nurseries or greenhouses. All surfaces need to be treated 

between 160 and 180°F. The treated soil should be stored away 

from the area that is contaminated. The soil surface needs to be 

covered with clear plastic sheeting that is between 0.025 and 0.4 

mm thick for a period of 4 to 8 weeks, depending on the season. 

S. rolfsii during solarization was documented by few researchers 

to create a dynamic model that would convey the pathogens 

thermal inactivation (48). The population of S. rolfsii was reduced 

from 47% to 100% after 20 days of exposure. For the soil 

pathogen S. rolfsii, soil solarization works best in the hot summer 

months when higher soil temperatures kill a lot of significant 

soilborne bacterial and fungal plant pathogens. Soil solarization 

is highly effective for treating soil before, during and after 

planting when combined with a plastic film layer to prevent soil-

borne pathogens. Solarization works better with organic 

amendments, including fertilizers, compost, green manures and 

plant leftovers; when combined with these amendments, 

solarization has a major anti-pathogen effect. 

Resistant varieties 

Among the wild species, Arachis appressipila under the section 

Procumbentes and A. pusilla under the section Hetranthae are 

highly resistant to stem rot with pod infections of 16% and 19%, 

respectively (49). Of the 33 groundnut varieties tested, 20 

varieties are moderately resistant to stem rot with disease 

incidence of 20 to 29% (KRG-1, R-2001-2, R-2001-3, Kadiri-9, TG-

51, TDG-51, DSG-1, ICGV-00351, TG-37A, Dh-101, Dh-216, G2-52, 

Dharani, Ch-2, TAG-24, TG-51, GPBD-4, GPBD-5 and J-11) (50) 

(Table 2). A new variety, ALR 3 was released as it had a resistant 

nature to rust and late leaf spot diseases of groundnut (51). A 

new high-yielding spanish bunch variety recorded the stem rot 

incidence of ALG-06-320 recorded the stem rot incidence of 21% 

(52). Evaluation of onion genotypes against soil-borne pathogen 

Fusarium oxysporum f.sp.cepae was carried out to find out the 

resistant genotype (53). Genetic diversity in a crop species is 

explained by the heritable variation registered in minicore 

germplasm collections within a population of the same species. 

This tool has presented the crop breeders to evolve new and 

improved cultures bearing desirable traits through infusing 

effective selection for use as donors or as a new variety. Genetic 

variability and heritability studies in groundnut germplasm were 

conducted at the Agricultural College and Research Institute, 

Killikulam (6). 

S. No 
Name of the resistant 

variety Major growing areas Reference 

1 ICGV 86699 Gujarat, Andhra Pradesh, Telangana, Karnataka, Tamil Nadu and Maharashtra. (104) 

2 TMV 2 Tamil Nadu, Andhra Pradesh, Telangana, Karnataka, Gujarat and Maharashtra. (104) 

3 ICGV 91114 Karnataka, Andhra Pradesh, Telangana, Maharashtra, Tamil Nadu and Gujarat. (104) 

4 ICGV 93437 Andhra Pradesh, Telangana, Karnataka, Maharashtra, Tamil Nadu and Gujarat (104) 

5 ICGV 00350 
Andhra Pradesh, Telangana, Karnataka, Maharashtra, Tamil Nadu, Gujarat and parts of 

Rajasthan. (104) 

6 ICGV 00351 Andhra Pradesh, Telangana, Karnataka, Maharashtra, Tamil Nadu and Gujarat. (104) 

7 TMV 7 Gujarat, Andhra Pradesh, Telangana, Karnataka, Maharashtra, Tamil Nadu, Rajasthan (50) 

8 Georgia 12Y Georgia state of United States (105) 

9 Georgia Browne Georgia state of United States (106) 

10 Georgia Green Southeastern region of the United States. (106) 

11 Early bunch Southeastern region of the United States, Africa, Asia (107) 

12 Marc 1 Malaysia (107) 

13 Toalson Georgia, USA (108) 

Table 2. Resistant varieties for stem rot in groundnut 
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Biological control  

Biological control is employed to manage several soil-borne 

plant pathogens. Trichoderma hamatum, when multiplied in 

FYM and applied as soil application, reduced the soil-borne 

pathogen in brinjal (54). Groundnut collar rot disease was found 

to be less common when Pseudomonas fluorescens was applied 

to seeds and neem cake was applied to the soil (55). Groundnut 

collar rot was significantly reduced by the application of P. 

fluorescens peat-based inoculum (56). T. hamatum seed 

treatment along with application was found to reduce the root 

rot disease of groundnut (57). Two species of Trichoderma, 

together with dry biomass of Chenopodium album, significantly 

reduced collar rot of chickpea caused by S. rolfsii (58). The 

natural antagonistic properties of microbial agents such as 

Trichoderma spp., Bacillus spp. and Pseudomonas spp. like the 

production of siderophore and hydrogen cyanide are used to 

control the root pathogens (59). These methods aim to suppress 

S. rolfsii populations and mitigate disease severity. Additionally, 

mycorrhizal fungi and rhizobacteria establish symbiotic 

relationships with groundnut roots, enhancing nutrient uptake 

and stimulating plant defense mechanisms against pathogen 

attack (60). Furthermore, plant-based biocontrol agents, 

including botanical extracts and essential oils, exhibit antifungal 

properties against S. rolfsii, contributing to sustainable disease 

management strategies with minimal environmental impact (61

-63). 

 According to previous study Bacillus subtilis controls S. rolfsii 

in peanuts grown in greenhouses by 92% (64). The pathogen's 

growth was reduced by 82% when P. fluorescens and Streptomyces 

violaceusniger were applied to seed at 5 g/kg and 10 g/kg, 

respectively. This was followed by a 75% growth inhibition when S. 

violaceusniger was applied at 10 g/kg of seed (65). The culture 

filtrate of T. harzianum (Th-BKN) at 5% concentration recorded 89% 

inhibition, followed by T. viride (Tv-BKN), which showed an 

inhibition of 84% (66). Seed treatment with T. viride @10 g/kg 

recorded the lowest incidence of stem rot (6%) (67). Due to the 

release of volatile and non-volatile diffusible metabolites, 

Pseudomonas aeruginosa AL98 significantly suppressed the growth 

of S. rolfsii, up to 94%, affecting its growth in dual culture (68) (Table 

3).  

 Prosopis juliflora showed the greatest inhibition against 

S. rolfsii (74%). Nerium indicum (54%) and Agave americana 

(68%) were the next best plant extracts (69). Seed + soil 

treatment with citronella oil and palma rosa oil @ 0.5% 

significantly inhibited the growth of S. rolfsii (70). The next most 

effective botanicals were Ocimum sanctum (84%), Asparagus 

racemosus (74%), Vitex spp. (45%) and Allium cepa (36%) (45). 

Neem showed the most inhibition at concentrations of 3% (39%) 

and 4% (44%). It is followed by garlic crude extract at 3% and 4% 

concentrations (33% and 34%, respectively), pungam oil, 

Calotropis leaf extract and lemon grass leaf extract. On the 

seventh day after inoculation, neem oil decreased sclerotial 

germination by 44%, while a larger neem concentration 

prevented all stages of sclerotia (immature, partial and mature). 

The Calotropis treatment showed the minimal sclerotia growth 

periods, which were 7 days, 13 days and 16 days for the 

immature, partial and mature stages, respectively. African locust 

bean tree bark, eucalyptus gum and plum seed extract inhibited 

the growth of S. rolfsii throughout its period. The effectiveness of 

these extracts ranged from 8 to 100%. S. rolfsii was significantly 

controlled by parkia (100%) followed by plum (100%) and 

orange seeds (100%). Under in vitro conditions, O. tenuiflorum 

(tulsi) at 20% concentration showed the highest mycelial 

inhibition (75%). It also recorded 100% inhibition of sclerotial 

germination after 8 and 24 h of incubation and 83% inhibition 

after 30 min (47). 

Chemical control 

Chemical control is pivotal in integrated strategies for managing 

stem rot in groundnut crops. While fungicides effectively combat 

the disease, they can escalate production costs. Despite this, 

fungicides play a crucial role, especially in high-disease-pressure 

scenarios. Integrating chemical control with other management 

practices like cultural methods and resistant cultivars optimizes 

disease management while considering economic and 

environmental factors (71). Various chemical fungicides provide 

efficient suppression of S. rolfsii (72). However, sustainable 

management necessitates thoughtful fungicide selection to 

avoid residual toxicity, fungicide resistance and environmental 

pollution. Indiscriminate fungicide usage can exacerbate these 

issues, compromising long-term disease management 

strategies. Therefore, integrating chemical control with other 

sustainable practices, such as cultural methods and biological 

control, is essential for effective disease management while 

minimizing adverse environmental impacts (73). Integrating 

chemical methods with cultural practices and biological control 

agents offers a holistic approach to stem rot management. This 

S. No Bio-control agent Efficacy under in vitro Mode of action Reference 

1 Trichoderma viride 69.40% 
Competition for resources, production of anti-microbial 

compounds (86) 

2 T. harzianum 71.67% Competition for resources, induction of systemic resistance (109) 

3 T. hamatum 72.86% 
Competition, production of antimicrobial compounds, induction 

of plant defense responses (45) 

4 Pseudomonas fluorescens 64.40% Production of antibiotics, lytic enzymes and siderophores. (86) 

5 
P. aeruginosa                          

AL 98 94.44% 
Production of siderophores and antibiotics. Promotion of plant 

growth. (68) 

6 Streptomyces spp 64–67% 
Production of antibiotics and lytic enzymes, as well as induction 

of systemic resistance (110) 

7 Bacillus subtilis 60.76% 
Production of antifungal metabolites, induction of plant defense 

responses. (111) 

8 Neem 82.67% 
Antifungal properties, disruption of fungal growth, induction of 

systemic acquired resistance in plants (44) 

9 Garlic 90.89% 
Inhibition of fungal growth, induction of systemic acquired 

resistance in plants (45) 

10 Tulsi 83.61% Antifungal properties, inhibition of fungal growth (45) 

Table 3. Efficacy of different bio-control agents against S. rolfsii 
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strategy ensures optimal disease control while minimizing 

environmental impacts, promoting sustainable agricultural 

practices for long-term crop health and productivity. 

 Growth regulators also influence the disease and yield. 

Seeds soaked in IAA solution at 10-5 M concentration for 24 h 

produced the highest significant yield (486.8 g/m2), the lowest 

disease incidence (26%) and the lowest disease severity (22%) 

(74). Seed treatment of 10-4 to 10-7 diluted solutions with four 

growth-regulating chemicals like 2,4-dichloro acetic acid, indole 

acetic acid, cycocel (chlormequat) and 2,4,5-trichloro acetic acid 

reduced mortality in plants that were already inoculated with 

the pathogen and also inhibited the development of symptoms. 

Based on biochemical studies, it was observed that the treated 

plants have significantly higher calcium, o-dihydroxy phenol and 

total phenol concentrations than untreated plants. On the other 

hand, the pectolytic enzyme activity is highly decreased (75). 

 Seed treatment with tebuconazole 2% DS at a rate of 1 g/
kg seed has demonstrated exceptional efficacy in managing 

groundnut stem rot, resulting in a minimal disease incidence of 

7% and the highest pod production recorded at 2664 kg/ha. 

Moreover, field trials have shown a significant yield increase of 

approximately 10% compared to the recommended fungicide 

carbendazim (3 g/kg of seed). This highlights the effectiveness of 

tebuconazole seed treatment as a superior option for stem rot 

management in groundnut cultivation, offering both excellent 

disease control and enhanced yield potential (76). Under field 

conditions, the seeds treated with 1.5 mL/kg of tebuconazole 

(250 EC) had the maximum pod production (466 kg/ha) and the 

lowest incidence of stem rot (9%). The fungicide exhibited the 

lowest mean percent stem rot incidence (3% and 9%) in sick soil 

and pot culture studies conducted 30 to 105 days after sowing. 

These percentages were 94% and 52% lower than the control 

(67) (Table 4).  

Molecular approaches 

Groundnut being a self-pollinated crop, the possibility of genetic 

variability through conventional breeding is not feasible (77). 

Hence, genetic mapping studies aim to identify genomic regions 

associated with resistance to stem rot in groundnut. To map 

these locations, scientists use molecular markers like SNPs 

(single nucleotide polymorphisms) and SSRs (simple sequence 

repeats). Once identified, markers linked to resistance traits can 

be used for MAS in breeding programs to select and develop 

groundnut varieties with enhanced resistance to stem rot. 

Though certain sources of stem rot resistance in peanuts have 

recently been revealed by several researches (49), little is known 

about the genetics of resistance and the markers associated 

with resistant genes. Therefore, to use them in marker-assisted 

breeding programs, it is imperative to identify molecular 

markers associated with the stem rot resistance QTLs.  

 Accurate QTL mapping and variety development rely on 

permanent mapping populations called MAGIC (Multiparent 

Advanced Generation Intercross) populations. One of the main 

benefits of the MAGIC populations is the production of new allele 

combinations through generations of merging founder genomes 

(78). To attain characteristics like fresh seed dormancy, oil 

content, seed mass, kernel Fe and Zn content, aflatoxin 

tolerance, stem rot tolerance and PBND tolerance, the first 

MAGIC population (ICGV 88145, ICGV 00308, ICGV 91114, ICGV 

06040, ICGV 00440, ICGV 05155, GPBD 4 and 55-437) was found 

(79). Successful crosses between wild and farmed species can 

result from the production of synthetic groundnut, which is the 

doubling of the chromosomal number of the hybrid created 

from two diploid wild species. Many amphidiploids and 

autotetraploid groundnuts have been developed using A- and B-

genome accessions that exhibit high levels of resistance to a 

variety of stressors (such as late leaf spot, stem rot and collar rot 

diseases). The tetraploid (2n = 4x = 40) peanut (Arachis hypogaea 

subsp. hypogaea var. hypogaea) lines GP-NC WS 16 and GP-NC 

WS 17 (SPT 06-07) with resistance to multiple diseases including 

early leaf spot (ELS), Cylindrocladium black rot, Sclerotinia blight 

and tomato spotted wilt were produced through interspecific 

hybridization from the diploid (2n = 2x = 20) wild species A. 

cardenasii (80). Three dense genetic maps (585 to 2753 SNP loci) 

and the successful identification of genomic areas and 

candidate genes for stem rot resistance in TG37A × NRCG-CS85 

were produced using the GBS-based sequencing technique (81). 

Some interspecific hybrid derivatives (e.g., 326, 988, 1019) were 

shown to have consistent and stable resistance to stem and pod 

rot. Furthermore, breeding lines that showed reduced 

susceptibility to these diseases include ICGV 86034 and 86124 

(82). 

Integrated approach 

S. No Chemical 
Concentration tested in 

in vitro Efficacy in in vitro Reference 

1 Carboxin 100, 250, 500 ppm 100% growth inhibition (112) 

2 Hexaconazole 100, 250, 500 ppm 100% growth inhibition (112) 

3 Propiconazole 100, 250, 500 ppm 100% growth inhibition (112) 

4 Tebuconazole 500, 1000 ppm 92.97% and 94.36% inhibition respectively (113) 

5 Azoxystrobin 500, 1000, 1500, 2000 ppm 100% growth inhibition (114) 

6 Fosetyl-Al 500 ppm 27.28% growth inhibition (112) 

7 Thiophanate methyl 500 ppm 16.67% growth inhibition (112) 

8 Carbendazim 500 ppm 11.85% growth inhibition (112) 

9 Mancozeb 100, 250, 500 ppm 100% growth inhibition (112) 

10 Thiram 100, 250, 500 ppm 100% growth inhibition (112) 

11 Captan 500 ppm 99.96% growth inhibition (113) 

12 Carbendazim 50WP + Mancozeb 75WP 500, 1000, 1500, 2000 ppm 100% growth inhibition (112) 

13 Cymoxanil 8% + Mancozeb 64% 1000, 1500, 2000 ppm 100% growth inhibition (112) 

14 Carbendazim 50WP + Thiram 75 WP 1000, 1500, 2000 ppm 100% growth inhibition (112) 

15 Captan + Thiram 100 ppm 99.96% growth inhibition (113) 

16 Carboxin 37.5% + Thiram 37.5% 1500, 2000 ppm 
94.35% and 94.44% growth inhibition 

respectively (113) 

Table 4. Efficacy of different chemicals tested in vitro against Sclerotium rolfsii 
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Researches found that soaking the soil with 0.2% carbendazim 

and applying Trichoderma harzianum inoculum reduced 

groundnut stem rot by 44-60% and increased pod yields by 17%-

47%. In a field study, the treatment combination of T. viride + 

neem cake recorded the lowest disease incidence (5%), followed 

by carbendazim (6%) when compared to the control (15%) (32). 

The next best treatment was T. Viride + FYM, which recorded a 

disease incidence of 7% (83). According to some researches ,TG-

2 biological agent combined with vermicompost and neem cake 

was found to be superior against S. rolfsii with the least PDI of 7% 

(84). S. rolfsii can also be controlled by seed treatment with                     

T. asperellum (2%) along with soil application of T. asperellum 

(10 g/m2) + VAM (15 g/m2) + vermicompost (250 g/m2), which 

recorded the lowest incidence of 20% (85). In some experiments, 

it has been examined the organic amendments in a greenhouse 

environment and found that mahua cake combined with T. 

viride at a rate of 5 g/kg of soil caused a 4% incidence of stem rot 

as compared to 40% in the control (68). Applying a fungicide 

(mancozeb) to seeds together with a putative native antagonist 

(Th-3) and a potential bacterial antagonist (Pf1) to the soil found 

a minimum plant height of 30.66 cm and a maximum root length 

of 29.13 cm for groundnuts, with a disease incidence percentage 

of 7%. Mahua cake combined with T. viride at a rate of 5 g/kg of 

soil produced a 4% incidence of stem rot among the organic 

amendments examined in the greenhouse, compared to a 40% 

incidence in the control (86). PAL (0.298 changes in absorbance/

minute/gram of leaf tissue), PO (0.291 changes in absorbance/

minute/gram of leaf tissue/minute/gram), PPO (0.296 µmole of 

transcinnamic acid/minute/gram) and phenol (781 µg of 

catechol/g) activity were highest in plants treated with 

Trichoderma spp. and mahua oil cake in field conditions (87). 

The lowest stem rot incidence (10%) was recorded by seed 

treatment with T. viride @ 10 g/kg + soil application of neem cake 

(50 g/kg soil) (48). The module that utilized a mould board 

plough for deep summer ploughing, together with the addition 

of 4 kg/ha of Trichoderma enhanced with 250 kg FYM/ha and 

Tebuconazole 2DS seed treatment, resulted in a minimum 

incidence of 9% of stem rot. The pod and haulm yields were 

2566 kg/ha and 6428 kg/ha, respectively (88) (Fig. 3).  

Conclusion   

Plant diseases, notably stem rot-causing sclerotia, threaten 

global agricultural productivity. Chemical methods, like broad-

spectrum fungicides, have traditionally managed stem rot but 

pose environmental risks. Stricter regulations prompt the need 

for sustainable alternatives. IDM emerges as a holistic approach 

to combat stem rot in groundnut cultivation, reducing reliance 

on synthetic chemicals and promoting eco-friendly practices. IDM 

integrates biological control, cultural methods and targeted 

chemical applications to effectively manage diseases while 

preserving ecosystem health. Biological control harnesses 

natural enemies or beneficial microbes to suppress pathogens, 

promoting sustainability and long-term disease control. Despite 

longer efficacy demonstration, biological control benefits 

sustainably. IDM optimizes cost-effectiveness in groundnut 

cultivation, enhancing profitability through reduced input costs 

and minimized yield losses. IDM signifies a shift towards 

sustainable agriculture, minimizing chemical residues, preserving 

soil health and promoting biodiversity. By mitigating adverse 

agricultural impacts, IDM ensures both environmental and 

human health. In summary, IDM is the paramount method for 

combating stem rot, offering a balanced approach to disease 

management aligning with modern agricultural sustainability 

goals. 
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