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Abstract   

Improving global rice yield productivity under low-input conditions is the 

main challenge, especially in iron-toxic lowland acid soils. With India's 

irregular rainfall patterns and continual environmental anomalies, 

particularly in Odisha, the identification of climate-smart management 

practices that can withstand iron toxicity is critical. In this context, an 

experiment was conducted to develop effective nutrient use efficiency and 

nutrient management practices under iron-toxic lowland rice in lateritic 

acid soils of Central Farm, Odisha University of Agriculture & Technology, 

Odisha, with high-level use of potassic fertilizer along with the foliar 

application of Kinetin and five genotypes suitably fitted in a split-plot 

design. The results showed that the mean average performance of the 

genotypes was significantly increased at K120 and K100 levels along with 

Kinetin. At K levels of K100+Kn, the nutrient use efficiency was highest for 

nitrogen (68.60) and phosphorus (137.20). As regards potassium use 

efficiency in terms of AKR (100.81%), K40+Kn had the highest value of KGPE 

(935.72). The mean performance of the genotype in terms of total nutrient 

uptake in response to iron toxicity to different doses of K application 

showed a significant gradual increase with increasing K levels from K0-Kn to 

K120+Kn, and Hiranmayee had the highest total K uptake of 121.83 kg/ha. 

Total K uptake at K100+Kn was much higher than other doses, including 

control. These results suggest that high doses of potassium and foliar spray 

of Kinetin can alleviate the deleterious effects of iron toxicity in rice plants 

by enhancing physiological growth and nutrient uptake. 
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Introduction   

One of the major staple foods grown in India and around the world is rice 

(Oryza sativa L.). However, rice agro-ecosystems are hampered by a variety 

of abiotic stresses and climate change-related limitations, achieving this 

goal even more challenging. One of the most worrying abiotic stresses that 

negatively affects rice growth and productivity is mineral toxicity, especially 

iron (Fe) (1,2). Fe toxicity was only a problem on very acidic soils until 

recently. However, as time has gone on and as a result of the detrimental 

effects of climate change, Fe toxicity has spread to 18% of the world's 

cultivable land for rice (3). Fe poisoning negatively impacts over 11.7 million 
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hectares of land in India alone (4). Iron toxicity is a 

multifaceted nutritional disorder, and it has been 

suggested that shortages in some nutrients, particularly 

Phosphorus (P), Potassium (K), Calcium (Ca), Magnesium 

(Mg), and Zinc (Zn), may impact the condition's incidence 

in rice (5). 

 The appearance of iron toxicity symptoms in rice 
involves an excessive uptake of ferrous ion (Fe2+) by the 

rice roots and its acropetal translocation into the leaves, 

where an elevated production of toxic oxygen radicals can 

damage cell structural components and impair 

physiological processes. Nutrient imbalances or 

deficiencies are contributing factors to the current stalling 

yield levels (6). This issue indicates that there is a 

significant opportunity to improve yield levels and 

nutrient use efficiency by taking into account all essential 

plant nutrients in fertilizer products and fertilization 

techniques. Applying balanced levels of the most limiting 

nutrients will be essential to achieving these benefits and 

maximizing output while minimizing nutrient losses; in 

other words, fertilization must be precisely tailored to the 

crop's needs and the chemical conditions of the local soil 

(7). Iron toxicity can be reduced by using iron-tolerant rice 

genotypes and through soil, water, and nutrient 

management practices, i.e., balance the use of fertilizers 

with sufficient Potassium (K) fertilizer.  

 Plant nutrient availability and crop yield are known 

to be enhanced by several soil and environmental 

parameters under the soil-plant biological system. In this 

particular situation, the organisms that comprise the soil 

microbial population of the rhizosphere may have the 

greatest influence (8). Complex interactions take place in 

the soil surrounding plant roots, involving the roots, soil, 

microbes, and root exudates (9). Plants rely on the ability 

of their roots to establish a relationship with rhizospheric 

microorganisms using signaling pathways (10). Different 

rice genotypes were found to have higher yields, which 

suggests that plants with better nutrition uptake through 

roots are more resistant to iron. One of the solutions to 

address this problem is the use of nutrients related to 

increasing the fertility percentage and flowers and 

panicles, especially by the use of high potassium. This 

element has an appositive correlation with increasing the 

fertility percentage and flowers. Besides, the plant’s need 

for this element may exceed all other nutrients in some 

stages of plant growth (11). On the other hand, the growth 

regulator kinetin (Kn) also activates cell division, reduces 

apical dominance, encourages the growth of lateral 

branches, and encourages the plant towards increasing 

reproductive parts, and this is reflected in an increase in 

yield (12). When compared to other crop species, rice is 

highly vulnerable to iron toxicity, and since this has been 

observed in the lowland acidic soils, it has been decided to 

study this nutrient use efficiency in rice in detail along with 

the management strategies of high potassic fertilizer use 

along with the foliar application of kinetin.  

 

 

Materials and Methods 

Experimental site 

The field experiment was carried out during the wet season of 

2022 and 2023 at Central Experimental Farm, Odisha 

University of Agriculture and Technology, Bhubaneswar, 

Odisha (20° 15’ N latitude, 85° 52’E longitude, elevation 25.9 m 

above mean sea level), which belongs to the east and south 

eastern coastal plain agro climatic zone of Odisha and falls 

under the east coastal plain and hills zone of humid tropics of 

India. The experimental plot soil was sandy loam, medium 

fertile, non-saline (EC-0.120 dSm-1) inceptisol, deep with 

adequate drainage and was low available nitrogen, 

phosphorus, and potassium soil [N (Urea), P2O5 (DAP), K2O 

(MOP) of 190, 10.4 and 59.67 kg ha-1 respectively], pH 4.55, 

organic carbon (0.54%) and DTPA 

(Diethylenetriaminepentaacetic acid) extractable iron (376.88 

ppm). The experiment was conducted during the period of 

which Day/night temperature was 31.70C/ 23.00C, relative 

humidity 7 hr/14 hr-90.4%/ 70.6%, Bright sunshine hours-4.4 

hours, annual rainfall-1821 mm, of which 80% is received 

between June to October in about 65 to 75 rainy days was 

recorded. The climate is classified as hot and moist sub-

humid with a crop growing period of around 138 days in a 

year. 

Experimental design 

Five genotypes viz; Lalat(G1), Manaswini (G2), Hiranmayee 

(G3), Pratikshya (G4), and Tejaswini(G5) were selected as 

per screening performance (Our earlier Finding of Kharif 

2022 reported in this journal, PST-2024) for further study in 

the same iron-rich soil during Kharif 2023 and trialed in a 

split-plot design having five levels of potassic fertilizer [0

(K0), 40(K40), 80(K80), 100(K100), 120(K120) kg K2O ha-1] 

along with recommended doses of N (80 kg ha-1) applied in 

2 split and P (40 kg P2O5 ha-1) and was replicated thrice. 

The potassium was applied in 3 split doses of 25%, 50%, 

and 25% of the K requirement. Further, at the tillering 

stage, the crop was foliar sprayed twice with kinetin 

(dissolved in 1M KOH) with a concentration of 200 mg/L in 

a gap of 10 days to the first spray except for control. 

Nutrient analysis 

Grain and straw from rice cultivars were collected after 
crop harvesting. Then, the samples were processed for the 

analysis of nutrients. The samples were grounded, and the 

powered samples (0.5gm) were taken for pre-digestion in 

15 ml of concentrated nitric acid overnight (13). Then the 

samples were digested in a diacid mixture (HNO3: HClO4 = 

3:2). After filtering the contents with Whatman No. 42, the 

contents were moved to a 50 ml volumetric flask, and 

double-distilled water was added to bring the volume up 

to 50 ml.  After that, the samples were analyzed for Fe, Ca, 

Mg, and Zn in Inductively coupled plasma optical emission 

spectroscopy (14) [ICP-OES, PerkinElmer, Model- Avio 200], 

K in flame photometer (15) [Systronics flame photometers 

128] and P in a spectrophotometer (16) (PerkinElmer, 

Model- Lambda 365). The nitrogen (N) content of the 

processed plant sample was assessed using the Kjeldahl 

digestion method (Kelplus supra-LX VA), as detailed in 

AOAC (Association of Official Analytical Chemists1960). 
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Estimation of C, H, N, S of grain was analyzed by CHNS-O2 

analyzer (make-Elementar, model-UNICUBE,070721) by 

instantaneous oxidation of the sample by “Flash 

combustion” which was then detected with the help of 

thermal conductivity detector. The nutrient use efficiency 

was calculated by using the formula (17) presented in 

Table 1. 

Soil microbial population analysis 

Bacteria, actinomycetes, and fungi cultivation methods 

and growth/ colonies were determined by modified 

standard serial plate count method (18) using viz. Nutrient 

Agar for bacteria, Potato Dextrose Agar (PDA) for fungi, 

Actinomycetes Isolation Agar for Actinomycetes. 

Preparation of the three media was carried out aseptically 

by pouring and solidification of the media. Serial dilution 

of the provided soil was done using sterile normal saline 

solution (NSS) followed by aseptic inoculation on the 

media by using the spread plate technique. The Plates 

were then kept for incubation at the respective optimal 

temperature (28±2°C) for the required period (24 hrs for 

bacteria, 48 hrs for Fungi, and 5 days for actinomycetes 

growth). Then, these were counted as colony forming 

units/g (CFU/g) fresh weight of the soil. The microbial 

population was exposed as several colonies forming units 

per gram of the soil. 

 

Statistical analysis 

The data were analyzed statistically in a split-plot design, 

which was outlined (19). The correlation coefficients were 

estimated with the help of the Microsoft Office Excel 2019-

unit operating system. The Statistical analysis of rice 

cultivars was calculated using R Software (R.4.3.3). 

 

Results  

Effect of potassium doses and kinetin on nutrient use 

efficiency of rice grown under iron toxic soil 

The statistical analysis of nutrient use efficiency in 
response to iron toxicity is presented in Table 2. The mean 

average performance of the genotypes was significantly 

increased at K120 and K100 levels along with Kn. At K 

levels of K100+Kn, the nutrient use efficiency was highest 

for nitrogen (68.80) and phosphorus (137.20) except KHI 

(5.18), where the effect of K120+Kn was highest. As regards 

potassium use efficiency in terms of AKR (100.81%), 

K40+Kn had the highest value of KGPE (934.72) except KAE 

and KPE with a value of 12.83, 14.73 at K100+Kn, 

respectively. The mean performance of the genotype in 

terms of total nutrient uptake in response to iron toxicity 

to different doses of K application showed a significant 

gradual increase with increasing K levels from K0-Kn to 

K120+Kn, and Hiranmayee (G3) had the highest total K 

Sl. No. Particulars Formula 

1. 

 
 

2. 
 

 

3 
 

 

4  
 

 

5  
 

 

6  

 
 

7 

 

 

 

 

Table 1. Nutrient use efficiency 

(KAE) 

(KPE) 
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uptake of 121.83 kg/ha. Total K uptake at K100+Kn was 

much higher than other doses, including control. On the 

contrary, Tejaswini (G5) had the highest mean Fe uptake 

(4.89 kg/ha) among genotypes and the lowest at K100+Kn 

(3.35 kg/ha). Iron content was negatively correlated with 

total K uptake. Total N uptake was found to be higher by 

K100 (192.94 kg/ha), but P uptake (34.12 kg/ha) was found 

to be highest at K120+Kn. Among genotypes, Pratikshya 

(2.53) and Lalat (2.81) were found to lower the uptake of 

iron to different doses of K2O+Kn and can be considered as 

tolerant genotypes to Fe toxicity. 

Effect of potassium doses and kinetin on microbial 

population in iron toxic soil  

Microbial activity in the rice root rhizosphere study (Table 

3) revealed that the initial microbial population was 

gradually increased towards increasing doses of K levels 

with Kn in soil substantially over control, and thereafter, 

the microbial population decreased at the harvest stage. 

An increased number of bacteria was noted to be higher 

than that of fungi and actinomycetes. But in comparison 

to different doses of potassic fertilizer, at K120+Kn 

bacteria (86.40 CFU/g x 104), actinomycetes (9.60 CFU/g x 

104) and fungus (17.20 CFU/g x 104) population growth 

occurred rapidly and was found significant (p<0.001) 

within the treatments. Varietal preference for microbial 

growth and their interaction with treatments was also 

found to be significant (p<0.001).  

Effect of Potassium doses and kinetin on nutrient content 

of rice straw grown under iron toxic soil  

Among the five tested K levels, with or without Kn, a 

significant difference was observed in the micro and 

macronutrient content of paddy straw regardless of 

genotype (Table 4). A drastic increase in N %, P %, and K% 

was evident in the increase in K levels from K0 to K120+Kn. 

However, an exception was observed in iron, where the 

micronutrient concentrations decrease with an increase in 

K doses. However, the Ca, Mg, and Zn concentrations in 

paddy straw did not follow the uniform pattern of 

accumulation to K levels. As regards genotypes’ response 

to K levels +Kn, the variation was observed in the 

accumulation of nutrients in straw. However, Tejaswini 

showed the highest accumulation of K (1.54%), Fe (638.92 

ppm), Zn (251.32 ppm), and Mg (0.05%). The two-way 

interaction was found to be highly significant at p<0.001. 

Treatments 
NUE PUE KUE NHI PHI KHI AKR 

Genotypes 

G1 39.48 78.96 44.73 48.69 61.09 3.33 73.38 

G2 56.72 113.44 62.48 60.39 74.82 5.16 94.95 

G3 69.47 138.93 79.93 60.44 65.25 3.60 74.68 

G4 66.97 133.94 75.41 67.47 69.67 2.92 95.56 

G5 73.36 146.72 81.62 58.60 71.12 5.30 84.49 

Levels of potassium 

with kinetin 
              

K0+Kn 52.57 105.14 - 77.37 67.56 4.07 - 

K40+Kn 57.93 115.87 115.87 59.43 70.26 2.81 100.81 

K80+Kn 59.98 119.96 59.98 56.18 69.29 3.52 77.27 

K100+Kn 68.60 137.20 54.88 49.45 69.44 4.72 88.30 

K120+Kn 66.91 133.82 44.61 53.16 65.41 5.18 72.07 

G - - - *** *** *** - 

K - - - *** *** *** - 

G*K - - - *** *** *** - 

Genotype KAE KGPE KPE N uptake P Uptake K Uptake Fe uptake 

G1 9.74 545.94 12.83 114.22 18.98 95.14 2.81 

G2 6.57 203.69 7.40 142.10 24.98 118.68 4.04 

G3 12.67 563.75 17.00 149.64 27.92 121.83 4.36 

G4 11.06 615.32 12.04 145.40 27.37 114.25 2.53 

G5 10.63 419.78 13.48 133.85 32.32 120.34 4.89 

Levels of potassium 

with kinetin 
              

K0+Kn - - - 71.83 15.38 58.64 4.23 

K40+Kn 10.73 934.72 12.47 110.44 23.02 98.96 3.82 

K80+Kn 7.41 386.51 9.75 131.00 26.32 120.44 3.78 

K100+Kn 12.83 313.54 14.73 192.94 32.73 146.88 3.35 

K120+Kn 9.56 244.01 13.25 179.00 34.12 145.10 3.43 

G - - - *** *** *** *** 

K - - - *** *** *** *** 

G*K - - - *** *** * *** 

Table 2. Variation of treatments among nutrient use efficiency  

(*** Significant at p value ≤ 0.001, * Significant at p value ≤ 0.05) (G1-Lalat, G2-Manaswini, G3- Hiranmayee, G4-Pratishya, G5-Tejaswini, K0-Kn = Control, K40+Kn 
= 40 kg K2O ha-1 with kinetin, K80+Kn= 80 Kg K2O ha-1 with kinetin, K100+Kn = 100 kg K2O ha-1 with kinetin, K120+Kn= 120 kg K2O ha-1 with kinetin) 
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Effect of potassium doses and kinetin on nutrient content 

of rice grain grown under iron toxic soil  

Data from Table 5 presented the interaction effect of 5 

potassium levels with Kn and five genotype treatments 

under iron toxicity on quality attributes of rice grain, which 

showed a significant increase in all the quality attributes. C 

(Carbon), H (Hydrogen), N (Nitrogen), P (Phosphorus), K 

(Potassium), and S (Sulphur) content increases with 

increasing doses with K+Kn, and the variation in 

genotypes was quite prominent in Pratikshya (N, P, H), 

Manaswini (P, K), Lalat (S). However, the iron content 

decreased with increased doses of K with kn and was 

found more in Tejaswini (G5). The mean average 

performance of genotypes was significant with K levels 

and their interactions with grain protein and grain 

carbohydrate concentration. Tejaswini was found to have 

more protein content, whereas Pratikshya had more 

carbohydrate accumulation in grain. However, as regards 

K nutrition in iron-toxic soil, the application of K120+Kn 

was found to be more prominent in their mean two-way 

Treatments Bacteria 

(CFU/g × 104) 

Fungus 

(CFU/g × 104) 

Actinomycetes 

(CFU/g × 104) Genotypes 

G1 43.20 5.60 5.40 

G2 56.60 6.60 5.60 

G3 59.60 7.40 6.40 

G4 57.00 8.40 7.00 

G5 65.40 9.40 7.40 

Levels of potassium with 
kinetin 

      

K0-Kn 33.80 1.80 1.20 

K40+Kn 42.00 3.00 4.40 

K80+Kn 52.40 4.40 7.60 

K100+Kn 67.20 11.00 9.00 

K120+Kn 86.40 17.20 9.60 

G *** *** *** 

K *** *** *** 

G*K *** *** *** 

Table 3. Variation of treatments to microbial populations  

(*** Significant at p value ≤ 0.001, * Significant at p value ≤ 0.05) (G1-Lalat, G2-Manaswini, G3- Hiranmayee, G4-Pratishya, G5-Tejaswini, K0-Kn = Control, K40+Kn 
= 40 kg K2O ha-1 with kinetin, K80+Kn= 80 Kg K2O ha-1 with kinetin, K100+Kn = 100 kg K2O ha-1 with kinetin, K120+Kn= 120 kg K2O ha-1 with kinetin) 

Treatments 
N% P% K% Ca% Mg% Fe (ppm) Zn(ppm) 

Genotypes 

G1 0.95 0.12 1.43 0.11 0.04 453.76 193.44 

G2 0.84 0.09 1.52 0.13 0.03 557.54 222.78 

G3 0.81 0.12 1.48 0.17 0.05 544.72 168.08 

G4 0.70 0.11 1.50 0.11 0.03 336.36 219.02 

G5 0.77 0.12 1.54 0.14 0.05 638.92 251.32 

Levels of 
potassium with 

kinetin 
              

K0-Kn 0.28 0.08 0.97 0.16 0.04 683.56 222.92 

K40+Kn 0.67 0.10 1.43 0.13 0.04 528.36 240.96 

K80+Kn 0.84 0.11 1.62 0.13 0.04 503.16 231.44 

K100+Kn 1.26 0.12 1.76 0.12 0.04 407.26 197.54 

K120+Kn 1.02 0.14 1.70 0.11 0.03 408.96 161.78 

G *** *** *** *** *** *** *** 

K *** *** *** *** *** *** *** 

G*K *** *** *** *** *** *** *** 

Table 4. Variation among treatments to nutrient status in straw 

(*** Significant at p value ≤ 0.001,) (G1-Lalat, G2-Manaswini, G3- Hiranmayee, G4-Pratishya, G5-Tejaswini, K0-Kn = Control, K40+Kn = 40 kg K2O ha-1 with kinetin, 
K80+Kn= 80 Kg K2O ha-1 with kinetin, K100+Kn = 100 kg K2O ha-1 with kinetin, K120+Kn= 120 kg K2O ha-1 with kinetin) 
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ANOVA. 

Relationship between soil microorganisms and nutrient 

uptake by rice plant 

The correlation coefficient between soil microorganisms 

and nutrient uptake is presented in Table 6. The soil 

microorganisms were positively correlated with N, P, and 

K uptake but negatively correlated with Fe uptake. K 

uptake was found to be strongly correlated with N and P 

uptake but negatively and highly correlated with iron 

uptake. 

 

Discussion 

Effect of potassium doses and kinetin on nutrient use 

efficiency of rice grown under iron toxic soil 

The identical five genotypes were studied again in lowland 

iron toxic conditions using varying K fertilizer levels and 

two foliar sprays of kinetin at a rate of 200 mg/L, excluding 

the control. The results showed a significant increase in 

the genotypes' overall growth, yield, and physiological 

traits. On the other hand, elevated iron concentration was 

harmful and harmed growth in the control group, 

supporting K's beneficial interaction with Kn to reduce 

iron toxicity. This explains the inconsistent relationship 

between nutrient use efficiency and biomass (especially at 

no K and Kn) and underlies that those two parameters 

could effectively correlate under lower stress intensity. 

Moreover, our results indicate that NUE, PUE, KUE, seed 

carbohydrate, and harvested protein could be effectively 

used to differentiate rice genotypes depending on their Fe 

uptake under levels of K and Kn application. The 

physiological response to kinetin that was seen in this 

study may have resulted from an increase in endogenous 

Treatments 
C% H% N% S% P% K% Fe (ppm) Grain protein (mg/g) Grain 

carbohydrates (%) Genotypes 

G1 39.69 6.41 1.59 0.29 0.35 0.10 26.44 16.54 60.57 

G2 38.15 6.19 1.66 0.18 0.40 0.13 40.40 16.08 62.22 

G3 40.09 6.46 1.52 0.15 0.33 0.08 23.94 15.38 66.62 

G4 43.80 7.16 1.69 0.16 0.35 0.06 33.22 15.41 71.75 

G5 38.45 6.27 1.32 0.14 0.39 0.11 54.52 18.06 65.00 

Levels of 
potassium with 

kinetin 
                  

K0-Kn 38.05 6.24 1.32 0.17 0.25 0.06 60.28 10.66 38.23 

K40+Kn 38.24 6.21 1.43 0.16 0.35 0.06 47.00 13.34 56.05 

K80+Kn 38.42 6.23 1.52 0.14 0.38 0.09 30.34 16.99 67.80 

K100+Kn 40.62 6.54 1.70 0.24 0.41 0.13 19.88 18.07 76.57 

K120+Kn 44.85 7.28 1.80 0.22 0.42 0.14 21.02 22.42 87.51 

G *** *** *** *** *** *** *** *** *** 

K *** *** *** *** *** *** *** *** *** 

G*K *** *** *** *** *** *** *** *** *** 

Table-5 Variation among treatments to grain quality attributes 

(*** Significant at p value ≤ 0.001, * Significant at p value ≤ 0.05) (G1-Lalat, G2-Manaswini, G3- Hiranmayee, G4-Pratishya, G5-Tejaswini, K0-Kn = Control, K40+Kn 
= 40 kg K2O ha-1 with kinetin, K80+Kn= 80 Kg K2O ha-1 with kinetin, K100+Kn = 100 kg K2O ha-1 with kinetin, K120+Kn= 120 kg K2O ha-1 with kinetin) 

  Bacteria Fungus Actinomycetes N uptake p Uptake K Uptake 

Fungus 0.984**           

Actinomycetes 0.902** 0.822*         

N uptake 0.900** 0.862* 0.951**       

p Uptake 0.937** 0.885** 0.980** 0.981**     

K Uptake 0.889** 0.819* 0.990** 0.976** 0.991**   

Fe uptake -0.878** -0.836* -0.943** -0.989** -0.982** -0.979** 

Table 6. Correlation coefficient between soil microorganism and total nutrient uptake by plant  

* Signifies correlated at p value ≤ 0.05, ** signifies correlated at p value ≤ 0.01 
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cytokinin levels that were maybe stored as conjugates for 

potential use at a later stage of growth (20). 

Effect of potassium doses and kinetin on nutrient content 

of rice grain grown under iron toxic soil  

Put another way, at the maturity stage, a higher 
percentage of dry matter is delivered to the ears in rice 

genotypes with significant sink capacities, which may be 

controlled by kinetin. Furthermore, several enzymes in the 

rice plant are co-activated by potassium, including some 

that transfer enzymes. Increases in carbohydrate and 

protein content in grains are, therefore, tied to starch 

production, which may be attributed to the presence of 

potassium and kinetin. These findings are in agreement 

with other scientists (21,22,23). The continuous supply of K 

to rice during its various stages is more beneficial and 

increases the translocation of carbohydrates from stem, 

leaf, and other storage organs to grains, leading to high 

sink capacity. Kinetin is involved in controlling 

development events like cell division, cell elongation, and 

protein synthesis, and consequently, higher grain yield. 

Effect of Potassium doses and kinetin on nutrient content 
of rice straw grown under iron toxic soil  

The combined action of kinetin and K fertilizer greatly 

influenced the uptake of nutrients by rice plants. In 

general, the order of nutritional absorption was N > K > P. 

It was discovered that rice grain contained more N and P 

than straw. Straw, on the other hand, had more K than 

grain. The findings indicated that when the rate of K 

fertilizers + Kn increases, the mean value of KAE of K falls 

(Table 4). This finding is consistent with studies by others 

(24, 25, 26) that showed a decrease in KAE of K with an 

increase in K rate. The perceived potassium recovery was 

impacted by the rates of potassium delivery. The findings 

continuously demonstrated a declining trend with rising K 

rates. Some scientists (27) found a similar pattern, 

reporting a decrease in apparent potassium recovery with 

an increase in K rate. The roles that N and K play in the 

plant are tightly related. Additionally, K allowed the plant 

to efficiently utilize N by enabling it to produce organic 

compounds connected to N absorption. We discovered 

that the lowland rice plants' shoot N, P, and K contents 

rose with potassium levels. Stated differently, higher K 

fertilization led to increased N, P, and K absorption, which 

was reflected in rice leaf levels of these nutrients (28, 29). 

However, when the K+Kn application increased, the mean 

value of the Ca, Mg, Zn, and Fe content decreased.  

Effect of potassium doses and kinetin on microbial 
population in iron toxic soil  

The fact that higher doses of K cause rice to have a higher 

root oxidizing capacity, which oxidizes Fe2+ to Fe3+ and 

excludes this ion from absorption, indicates that higher 

doses of K inhibit the accumulation of Fe. This was 

demonstrated by the rise of the microbial population in 

intensity, which might raise the quantity of soil K that 

plants could access. Increased K availability from the 

growing bacterial population aids in the conversion of non

-exchangeable K to exchangeable K. A large root surface 

area increases the likelihood of K uptake and improves 

plant access to K. Thus; exogenous Kn reacts to low K 

levels by promoting K absorption.  

Relationship between soil microorganisms and nutrient 

uptake by rice plant 

The correlation established among bacteria, fungus, 
actinomycetes, and nutrient uptake indicated that soil 

microbial biomass is considered to act both as the agent 

of biochemical changes in soil and as a repository of plant 

nutrients such as nitrogen (N) and phosphorus (P) in 

agricultural ecosystems (30). The soil microbial biomass 

acts as a source and sink of plant nutrients and regulates 

the functioning of the soil system. The positive correlation 

among N, P, and K indicates a synergistic effect among 

these nutrients. When K doses increased from 0 to 120 kg 

K2O, the uptake of N and P also followed along with K 

translocation, and a proper source-sink was established 

from soil to plant. However, as the antagonistic effect was 

observed between N, P, K, and iron uptake, the 

translocation of N, P, and K also diminished with a high 

concentration of Fe at the root rhizosphere zone, which 

was noted in the control treatment. 

 Applying the prescribed doses of fertilizers was an 

attempt to eradicate any form of nutritional stress; this 

lends more credence to the theory that the effects of 

kinetin were physiological rather than nutritional. Kinetin, 

however, has an effect on plant function in combination 

with or in opposition to other growth regulators; they do 

not act alone on a plant's physiological processes (31). 

Therefore, the observed effect in this study could be the 

consequence of both kinetin and their interaction with 

potassium. 

 

Conclusion   

Mineral nutrients are one of the most important critical 

inputs in rice, which necessitates its prudent use in light of 

its diminishing availability for agriculture, which is 

exacerbated by climate variability. A management 

strategy in addition to high doses of potassium (100 kg K2O 

ha-1)) and two foliar sprays of Kinetin (200 ppm) alleviated 

the deleterious effects of iron toxicity in lowland rice 

plants. As a result of the growing bacterial population's 

increased K availability, which facilitates the conversion of 

non-exchangeable K to exchangeable K, our results 

suggest that NUE, PUE, KUE, seed carbohydrate, and 

harvested protein may be useful in distinguishing rice 

genotype based on their Fe uptake under levels of K and 

Kn application. Exogenous Kn thus increases K absorption 

in response to low K levels.  
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