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Abstract   

Microfluidic devices offer a promising future for monitoring water pollution 

caused by heavy metals, especially as the world continues to develop and 

the dangers of pollutants increases. This highlights the importance of 

developing these devices. These devices operate within the dynamics of 

fluids and quantify pollutants with numerous advantages, such as high 

sensitivity and specificity. They can also be integrated with mini sensors 

alongside analytical techniques. This study provides a brief overview of the 

types of microfluidic devices, such as polydimethylsiloxane (PDMS) and 

microfluidic paper-based (µPADs), and their application in pollutant 

detection. Microfluidic devices are associated with analytical methods such 

as spectrometric, colorimetric, and electrochemical techniques. Their 

importance lies in their simple manufacturing, rapid detection capabilities, 

and portability. Additionally, these devices can be updated to meet current 

needs in water pollution detection by integrating various analytical 

methods and enhancing these methods with programs that provide on-site 

results. There for microfluidics are currently of great importance due to 

their ease of manufacturing and applicability to various analytical methods, 

particularly for detecting pollutants in water. Many studies highlight the 

extraordinary potential of paper-based devices, which are the easiest to 

manufacture among all microfluidic devices and are not subject to stringent 

engineering and physical constraints. Most importantly, they can utilize 

colorimetric detection methods, providing instant results visible to the 

naked eye. This study demonstrates these advantages and suggests the 

potential for expanding their applications in medical, environmental, and 

biological fields. 
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Microfluidic devices; water pollution; heavy metals; LOC; microfluidic paper-
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Introduction   

Water is an essential resource for supporting life on Earth, and access to 

clean water is crucial for both humans and the ecosystem. However, over 

the past few decades, water quality has been adversely affected by steady 

population growth, rapid industrialization, expanding metropolitan areas, 

and irresponsible environmental practices. The environment encompasses 

the immediate surroundings in which humans, plants, animals, and 

microorganisms reside and carry out their activities. The Earth consists of 3 

main components: land, atmosphere, and water. The Earth's system is 

defined by 4 interrelated spheres: the biosphere (comprising living species), 
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the atmosphere (consisting of air), the lithosphere 

(including land), and the hydrosphere (covering water). 

These spheres work together synergistically, operating in 

perfect harmony (1). 

 The issue of water contamination has become more 

apparent, resulting in significant ecological and 

environmental challenges. The lack of consideration for 

environmental consequences in industrial production has 

led to increased water and air pollution, as well as soil 

degradation. Additionally, it has contributed to major 

global issues such as acid rain, global warming, and ozone 

depletion (2). The use and disposal of numerous chemicals 

commonly employed in medicine, industry, agriculture, 

and even household products (3) further exacerbates the 

problem. Water pollution involves both organic materials 

and heavy metals. The organic materials include benzene, 

phenol, alcohol, naphthalene, and anthracene, among 

others (4). 

 Heavy metals are among the most dangerous and 

toxic pollutants. Therefore, it is important to first 

understand the term “heavy metals”. “Heavy metal” is a 

term used to describe metallic elements with a high density, 

often exceeding 4 g/cm3. Examples include arsenic, 

chromium, cobalt, nickel, copper, zinc, selenium, silver, 

cadmium, antimony, mercury, thallium, and lead (5). Some 

metals are essential for metabolic functions in the human 

body, while others can lead to acute and chronic disorders 

(6). Heavy metal ions pose significant concern as common 

pollutants discharged into the environment. Both natural 

processes and human activities continually release these 

toxic metallic elements into the water sources (7). Although 

certain heavy metals are essential for biological functions, 

many are non-essential and can be harmful in elevated 

concentrations (8). Metals exhibit varying degrees of 

toxicity, which refers to their ability to cause adverse effects 

on living organisms. The persistence presence of heavy 

metals in the environment exacerbates the risks they pose 

to the health of living organisms. Toxicity levels increase in 

acidic and nutrient-deficient environments, particularly in 

locations with poor soil structure like mining sites (9). Male 

reproductive function is vulnerable to various 

environmental and occupational factors, though only a few 

have been well identified. Heavy metals notably contributes 

to reduced male fertility (10). Additionally, neurotoxicity 

resulting from exposure to high levels of heavy metals leads 

to serious conditions such as neurological disorders like 

Alzheimer's and Parkinson's disease (11), gastrointestinal 

disorders (12), increased cancer risk (13), chronic kidney 

disease (14), anaemia (15), cardiovascular infections (16), 

and metabolic syndrome, including hypertension and 

obesity (17). 

 There are several traditional  treatment methods 

available to remove heavy metals from polluted water 

sources, including adsorption, coagulation, ion exchange, 

chemical precipitation, membrane filtration, and 

electrochemical technologies .The selection of these 

methods  depend on their efficiency, practicality, cost-

effectiveness, environmental impact, and operational 

challenges, among other factors (18). 

 Due to their high toxicity and association with 

numerous serious diseases and environmental damage, 

several analytical techniques are commonly used to detect 

heavy metals in wastewater samples. These techniques 

include atomic absorption spectrometry (AAS), inductively 

coupled plasma atomic emission spectrometry (ICP-AES), 

and inductively coupled plasma mass spectrometry (ICP-

MS). However, these methods require the expertise of 

highly trained technicians for proper operation and 

maintenance, which contributes significantly to the overall 

cost of analysis. Additionally, the expenses associated with 

collecting, transporting, and processing samples vary 

depending on the frequency of sampling required (19). The 

cost of water monitoring is significantly influenced by 

transportation and labour charges (20). 

 New technology trend now includes microfluidic 

technology, which enables rapid and cost-effective on-site 

analysis of samples with minimal reagent consumption. 

This innovative approach saves time in protocol, lowers 

the risk of sample loss or contamination, and reduces 

costs by eliminating the need for bulky and expensive 

laboratory instrumentation (21). 

 The main objective of this review is to explore the 
role of microfluidic devices in detecting water pollution, 

highlighting the challenges and limitations faced by this 

technology. It also emphasizes the significance of 

microfluidic devices due to their ease of use and 

manufacture, as well as their capability to integrate with 

various analytical methods. Of utmost importance is the 

comparison of different types of these devices and 

outlining strategies for their further development to 

achieve rapid and accurate results. 

Microfluidic devices 

Microfluidics involves the study of fluid flow within devices 

ranging in sizes from mm to µm. These devices can handle 

fluid volumes ranging from nano to microliters (22). They 

offer several advantages across diverse fields such as 

biology, chemistry, pharmaceuticals, and environmental 

monitoring. These advantages include faster reaction 

times, precise process control, reduced waste generation, 

compact system design, scalability, cost-effectiveness, and 

disposability (23). However, microfluidic devices also face 

several challenges. One of these challenges is achieving 

effective mixing, which is crucial for sample dilution, 

reagent homogenization, and chemical or biological 

reactions (24). Another challenge is maintaining laminar 

flow, where fluids flow smoothly in parallel streams 

without mixing, characterized by a Reynolds number (Re) 

below 2100 (25). 

 Historically, microfluidic devices were primarily 

made from silicon and glass. However, in recent years, 

there has been increasing interest in polymer materials 

due to their potential for lower manufacturing costs and 

disposability. Various polymers such as poly (methyl 

methacrylate) (PMMA), poly (dimethylsiloxane) (PDMS), 

polycarbonate (PC), polyester, polystyrene (PS), and poly 

(ethylene terephthalate) (PET)(26). As well as paper-based 

microfluidic devices, have been explored. Several 

fabrication techniques are used in the production of 
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microfluidic devices, including laser micromachining, soft 

lithography, 3D printing, hot embossing, and wax printing. 

 Soft lithography is a collection of low-cost techniques 

for replicating patterns-from masters generated by 

photolithography, machining, or other methods-onto a range 

of substrates (27) it is Inexpensive and suitable for not only 

planar, but also non-planar surfaces, soft-lithography also 

provides a very good resolution (~35 nm) (28) suitable to with 

Polydimethylsiloxane (PDMS) (29) 

 While 3D printing Known as a set of additive 

manufacturing techniques, which can create solid three-

dimensional (3D) objects layer-by-layer under precise 

digital control (30) characterized with 

 Quick and simple computer-aided design (CAD) to 

manufacturing and ability, printing parts with almost any 

geometric complexity (31) also suitable for manufacture of  

PDMS microfluidic devices (32) Another techniques is Laser 

micro machining one such technique which produces 

intricate shapes with the help of lasers (33)with Good 

quality, high resolution, high production yields,  high 

precision, good tolerances, high processing speeds, low 

thermal damage, high flexibility, excellent reproducibility, 

economically attractive (34) laser micro machining  use to 

fabricate Polymethyl methacrylate(PMMA) and PDMS 

microfluidic devices  (35). 

 Hot embossing refers to a technique of imprinting 

micro or nano structures on a substrate with a master 

mold (36) which it is  low-cost, high-throughput method to 

mold thermoplastics with control of feature dimensions in 

the nanoscale over a large area for thermoplastic cell 

culture materials (37) used with PMMA and PDMS materials 

(38). In addition, there is wax printing technique includes 

printing wax on the surface of paper using a solid ink 

printer, then a brief includes heating step to melt the wax 

into the paper (39) it is  Simple and low-cost which used 

wax commercially available and is inexpensive (40) special 

for fabricate Paper-based microfluidic devices (µPADs) 

(41). 

 Microfluidic devices, particularly Lab-On-Chip (LOC) 

devices, have proven effective in continuous monitoring of 

contaminants in wastewater, serving as a perpetual 

environmental alert system. Integration of these 

technologies with wireless connectivity enhances their 

capacities to remotely adjust acquisition parameters and 

facilitate data transfer (42). This analysis specifically focuses 

on two categories of microfluidic devices: PDMS and paper-

based microfluidic systems (43).  

Paper-based microfluidic devices 

Microfluidic paper-based analytical devices (µPADs) have 

gained considerable popularity following ground-breaking 

studies by the Whitesides group. Paper platforms offer 

several advantages, including affordability, portability, and 

ease of disposal (44) Typically, a paper sheet is modified to 

create hydrophobic regions while leaving other areas 

hydrophilic. The hydrophilic channels in the sampling area 

enable precise wicking of liquid solutions through capillary 

action (45).  

 To enhance the effectiveness of paper microfluidics, 

it would be advantageous to develop materials and systems 

that retain the benefits of paper while enabling fluid 

movement in open channels driven by pressure. These 

devices are ideal for scenarios requiring precise control of 

fluid movement in open channels, such as in high-resolution 

capillary electrophoresis. They are also adept at 

manipulating fluids containing suspended particles, such as 

blood, environmental slurries, multiphase suspensions, and 

raw biological samples. Moreover, they facilitate the 

analysis and manipulation of compound mixtures that 

chromatographically separate in wicking-based devices, 

and they can handle complex chemical mixtures. Open-

channel microfluidic devices hold promise for applications 

in particle production and methodologies like microfluidic 

shear separation, which investigate the fluidic-flow 

characteristics of liquids (46) 

 Microfluidic paper-based devices offer advantages 

over devices made of polymers or glass by eliminating the 

need for valves or pumps, thus simplifying operation and 

maintaining cost-effectiveness. An optimally integrated 

paper-based device should be capable of collecting and 

pre-treating samples, amplifying and transducing signals, 

and producing results. The analysis would commence 

upon the entry of the sample, as illustrated in Fig. 1 (47) 

Fig. 1. Overview of an integrated µPAD. An ideal sample-in-answer-out µPAD is expected to include sample collection/pre-treatment, signal amplification/transduction and 
signal output (47) 
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 Paper is an environmentally sustainable material 

capable of natural decomposition, compatibility with 

living organisms, and easily ignitability. Additionally, 

paper can be incinerated as waste after use. Its flexibility 

and durability allow for easy customization to meet 

changing needs. µPADs are widely used across various 

scientific fields, including food safety, life sciences, and 

environmental monitoring (48) Clinicians and patients 

alike require rapid, cost-effective, and user-friendly 

techniques for disease detection and diagnosis. This is 

crucial for enabling prompt and efficient treatment, 

leading to optimal medical outcomes. µPADs are cost-

effective and easy to manufacture, making them highly 

promising for large-scale production. Moreover, their 

results can be analysed without the need for sophisticated 

equipment, making them excellent candidates for clinical 

applications (49). 

 µPADs play a crucial role in detecting heavy metals 

in water pollution monitoring. μPADs have been proposed 

for detecting Hg (II) in various types of water, such as 

drinking water, pond water, river water, and wastewater. 

This detection can be achieved through colorimetric or 

electrogenerated-chemiluminescence (ECL) methods. 

Additionally, μPADs have been utilised for the 

quantification of Cu (II) using colorimetric or fluorescence 

detection techniques. Various parameters, including pH, 

bacterial classes, chemical substances, and solvents, have 

also been identified using μPADs by employing suitable 

colouring reagents or enzymatic reactions (50). The 

fabrication process of μPADs consists of 2 main steps. 

Firstly, the paper is patterned, and secondly, the devices 

are customised for their specific uses, which include the 

application of reagents for conducting tests. Most 

patterning processes begin with a computer-generated 

design of the device, utilising software such as AutoCAD, 

Clewin, CorelDRAW, Illustrator, and others (51). 

 The fabrication procedures for μPADs can be 

classified into 2 main categories: (i) chemical patterning, 

which involves blocking the pores inside the paper to create 

barriers, and (ii) physical patterning or cutting, which is used 

to shape the channels into a specific design. Physical 

fabrication techniques include knife plotter, craft cutting, 

embossing and laser cutting (52) Chemical techniques 

encompass photolithography, wax patterning, wax dipping, 

inkjet printing, laser treatment and plasma treatment (53). 

However, these techniques have limitations. For instance, 

photolithography and wax dipping methods require 

multiple processing steps, sophisticated and expensive 

instruments, and are not suitable for mass production. 

Additionally, there is difficulty in the deposition of biological 

and chemical reagents in the final form of the test system 

(54). Recently, there has been significant advancement in 

connecting these devices to smartphones and various other 

programs, moving away from traditional detection 

methods. The development of straightforward, rapid, and 

cost-effective analytical strategies involving everyday IT 

communications devices is a notable trend (55). 

PDMS microfluidic devices 

The initial microfluidic systems were manufactured using 

glass and silicon wafers as the primary components. 

However, this process was both time-consuming and 

expensive, requiring costly equipment and consumables 

even for producing a single chip. Batch production was 

significantly more challenging. PDMS provided a cost-

efficient platform for microfluidics, offering a competitive 

advantage (56) Polydimethylsiloxane (PDMS) is a very 

pliable polymer that can be easily manipulated. It is both 

affordable and transparent, making it suitable for optical 

detection systems (57). Additionally, it is biocompatible 

and easy to mould, allowing for the integration of 

elastomeric actuators and optical elements into devices. 

However, PDMS does have some limitations, such as 

swelling when exposed to organic solvents, the absorption 

of molecules into the polymer matrix, and its inherent 

hydrophobic nature. It is also susceptible to elevated 

temperatures and pressures (58). 

 Collagen is used to enhance the performance of 
PDMS microfluidic devices in cell culture applications by 

acting as a coating reagent. It demonstrate high stability 

when shear stress. The hypothesis is that the triple helix 

structure of collagen interacts with receptors on the 

membranes of vascular endothelial cells (ECs), facilitating 

cell adherence to the  collagen-coated PDMS surface (59). 

 Furthermore, the production methods for PDMS 

encounter significant residual deformations, resulting in a 

misalignment issue where the PDMS patterns are not 

produced at their intended positions. To address this 

misalignment, it is crucial to reduce the residual 

deformations of PDMS by enhancing its strength. 

Incorporating tougher SU-8 particles, a type of epoxy that 

acts as a negative photoresist, can improve the strength of 

PDMS. This incorporation has been shown to decrease the 

overall residual strain of reinforced PDMS from 5% to 1%, 

minimizing local distortions and addressing the uneven 

distribution of SU-8 particles within PDMS (60).  As depicted 

in Fig. 2, the production process begins with the creation of 

the master mould. This involves applying a layer of negative 

SU-8 resist onto the substrate via spin coating. The 

substrate then undergoes a soft (first) bake, which includes 

a temperature cycle that varies based on the thickness of 

the SU-8 resist. It is important to avoid high temperatures 

during the soft bake process to prevent thermal activation 

before UV exposure (61) The photomask pattern is 

transferred onto the SU-8 –coated substrate by subjecting it 

to UV light exposure, followed by a post-exposure bake to 

accelerate the polymerization of SU-8. The SU-8 is then 

fabricated to achieve the intended microfluidic structure. 

The process of PDMS casting on the constructed SU-8 

master mould involves creating the PDMS liquid polymer by 

combining the base elastomer with the curing agent or 

catalyst. The resulting mixture is poured onto the SU-8 

mould and cured using polymeric crosslinking, which can be 

done either at ambient temperature or at a higher 

temperature, usually between 40 to 70 °C (62). The most 

popular technology for fabricating PDMS with microfluidic 

channel is soft lithography (63) There are also many other 

technologies, such as  wet-etching (64) casting, hot 

embossing, injection moulding, thermoforming and laser 
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ablation (65). 

Detection methods 

 The determination of ionic species, including heavy metal 
ions and inorganic anions, is of paramount importance in 

various applications such as diagnosing electrolyte 

disorder, screening drugs that affect ion channel, tracing 

trace metals in living organisms, and monitoring air, water, 

and soil quality. In scientific laboratories, instrumental 

methods are more suitable for determining the aggregate 

concentration of individual ions (66) The most popular 

detection methods used in conjunction with microfluidic 

devices include: 

Optical detection   

Optical detection involves observing and identifying 

characteristics of light, such as fluorescence, absorbance, 

and luminescence patterns, emitted by materials when 

they are stimulated. In gas-liquid systems, a potential 

challenge can arise due to the formation of gas (66). 

Fluorescence 

Fluorescence intensity measurement is a widely used 

approach for LOC systems due to its notable sensitivity, 

selectivity, abundance of fluorophores, and convenient 

labelling chemistry. Fluorescence is primarily triggered by 

either laser or LED sources (67) Laser-induced fluorescence 

is particularly well-suited for microchips because of its 

adaptability to their dimensions. The coherence and 

minimal divergence of the laser beam allow for precise 

focusing on small detection volumes and enable very high 

irradiation levels, making it an optimal excitation source 

despite the availability of other options. Consequently, 

this detection system boasts one of the lowest detection 

limits among all detection systems. Lamp-based excitation 

systems offer a cost-effective yet versatile option for 

selecting the desired wavelength. Microscope-based 

detector configurations utilizing xenon or mercury lamps 

have been successfully employed for analysing a wide 

range of samples, yielding remarkable outcomes (68). 

 Microfluidic devices have been developed to utilise 

fluorescence for ion detection, employing various ion-

sensing techniques. Fluorescent molecular probes have 

been designed with a fluorophore as the optical reporter 

and a recognition unit, such as a chelating structure. 

Bacterial biosensors have been created to detect heavy 

metal ions by utilising the ion-regulated production of 

fluorescent proteins (69). 

 Various materials have been employed for 

fluorescence applications. Quantum dots, small particles 

made of semiconducting material that emit light, have 

promising applications in biology, including precise 

labelling of cells and tissues, long-lasting imaging, non-

toxicity, in vivo imaging using several colours, and 

fluorescence resonance energy transfer (FRET-based 

sensing). Fluorescent colours of various hues can be 

Fig. 2. (A) The process involves making an SU-8 master mould. (B) Then, polydimethylsiloxane (PDMS) is poured onto the mould and treated with plasma. It is 
then bonded under contact pressure. 
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obtained, depending on the dimensions and configuration 

of the particles. Additionally, many lanthanide ions offer 

advantageous properties for bioassays, including 

extended fluorescence durations, significant differences 

between excitation and emission wavelengths, and 

distinct emission patterns. These materials are also used 

for studying the quality and effectiveness of food (70) 

Furthermore, it is possible to attach fluorophores to the 

surface of paper. Smartphones, equipped with advanced 

sensors, high-resolution cameras, and powerful 

computing capabilities, have been employed as compact 

and portable analytical instruments. In fluorescence 

measurements, they capture fluorescent reactions and 

quantify tests in various fields when integrated with µPADs 

(71). 

Absorbance  

UV/visible absorption spectroscopy is a widely used 
method in large-scale analytical chemistry and laboratory 

diagnostics. This technique involves measuring the 

decrease in intensity of incoming light at different 

wavelengths using a spectrophotometer. The resulting 

spectrum displays absorption peaks, which can be used to 

determine the composition and concentration of the 

sample (72). Absorption spectroscopy continues to be a 

highly effective and extensively utilised technique for 

evaluating cellular dynamics in microfluidic experiments. 

Optical absorption spectra can be used to determine 

different cellular behaviours by analysing how analytes 

and products affect them (73). 

 Microfluidic devices can utilise a range of optical 

micro-components that effectively concentrate and direct 

light to a specific location, resulting in a highly sensitive 

and long-lasting detection process at a low cost. Many 

efforts have been made to create novel optical prisms, 

lenses, and waveguides to integrate lab-on-a-chip 

technology (74). 

This reduction in path length directly affects the sensitivity 
of the detection, as explained by the Beer-Lambert 

equation. Although microfluidic absorbance detection has 

lower sensitivity compared to fluorescence (75) 

Chemiluminescence 

Chemiluminescence (CL) is a form of electromagnetic 

radiation that occurs when a molecule is excited to the 

singlet excited state through an exothermic chemical 

process. When the molecule returns to its ground state, it 

emits a photon with a specific wavelength, primarily in the 

visible and near-infrared regions. By measuring the 

intensity of the emitted light, one can conveniently 

correlate this intensity to the concentration of the analyte 

(76) CL detection offers excellent sensitivity and selectivity 

with minimalistic apparatus for signal gathering. Since the 

radiation is produced by chemical reactions, there is no 

need for light sources to carry out measurements. As a 

result, only photo transducers are used in the detector. 

This makes CL a viable option for microfluidic analytical 

devices, as it effectively manipulates external light beams 

within narrow chip channels (77) Several studies 

underscore the significance of CL approaches in analytical 

chemistry. These methods are utilized for the 

determination of a wide range of chemicals, including 

medicines, biomolecules, antioxidants, pesticides, 

arsenates, and environmental water (78) The detection 

principles of CL in immunoassays involve using an 

enzymatic-label conjugate with an immunoreagent and a 

specific bioluminescence (BL) or CLsubstrate. By 

employing BL or CL, a significant enhancement in the 

analytical signal (approximately 10^4-10^5 times) can be 

achieved compared to the typical enzymatic turnover (79). 

 While microfluidic devices using CL detection are 

becoming more sophisticated and larger compared to 

those using UV/vis and fluorescence detection, they are 

essential for accurately measuring the optimal emission 

intensity produced by slow CL reactions like luminol 

peroxyoxalate. These devices necessitate long response 

channels and wide detection windows. However, adding 

extra flow components to measure CL does not enhance 

resolution due to broad band-broadening. Moreover, 

detecting slow and relatively dim CL using micro-scale 

detection windows poses significant challenges (80). 

Electrochemical 

Electrochemical sensors function based on the 

fundamental principle that chemical reactions between 

the immobilized synthetic recognition element and the 

target analyte either produce or consume ions or electrons 

(81). The primary advantage of microfluidic techniques lies 

in their portability and user-friendly nature, rather than 

their sensitivity(82) 

 These techniques utilize an analyte solution 

containing the target species for quantification. The 

effectiveness of the method is assessed based on sensitivity, 

which denotes its capability to detect low concentrations and 

the minimum concentration that can be reliably measured, 

and selectivity, which refers to its ability to differentiate the 

target species from other substances in the solution (83). The 

challenge lies in fabricating miniaturized electrochemical 

systems, as they require integrating thick electrodes within 

microfluidic microelectromechanical systems (MEMS) and 

nanoelectromechanical systems (NEMS) (84).    

 There are many applications for electrochemical 
sensors for instance Paper microfluidic electrochemical 

device target  blood ions (Cl‒1, Na+1, K+, and Ca+2) with limit 

of detection (-47.71, 45.97, 51.06, and 19.46 in mV decade   

-1) respectively (85),and there is a paper-based microfluidic 

e integrated screen-printed carbon electrodes (SPCE) used 

for detection of Pb (II) and Cd (II) in aqueous samples with 

limit of detection (2.0 and 2.3 ppb), respectively (86). 

 Another application uses microfluidic paper-based 

to detect Pb (II)) in urine samples in limit about 9 μg L‒1 

(87). In addition, using PDMS microfluidic devices for 

detection of a cell types (dhesion of murine 3T3 fibroblast 

cells) about 24 cells (88). And using microfluidic channel 

made from (poly dimethylsiloxane) (PDMS) to detect H2O2 

with limit of detection about 5 nM (89) 

 While Electrochemical double-layer capillary 

capacitors (µEDLC) in polydimethylsiloxane (PDMS) substrate 

target breast cancer biomarker (CA 15-3)  and limit of 
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detection 92.0 µU mL-1 (90) 

Novel methods 

Recently, several novel detection techniques have 

emerged that reduce costs, increase sensitivity, improve 

ease of use, and expand possibilities. Among these, 

nanosensors and quantum dots (QDs) stand out, 

particularly in their integration with cell phones as self-

contained microfluidic devices. This section will focus on 

these 2 techniques to provide a comprehensive overview 

of their applications. 

 QDs are nanocrystals made from semiconducting 

materials, typically ranging in size from 2 to 10 nm. Their 

unique optical and electrical properties stem from 

quantum confinement effects, which differ significantly 

from those of larger bulk materials (91) Graphene 

quantum dots (GQDs), a type of carbon-based quantum 

dot, can be combined with other materials to form 

nanocomposites with exceptional characteristics and 

enhanced performance. Consequently, GQDs are 

considered promising composite materials suitable for 

applications in agriculture and environmental sciences 

(92). In general, there exists a correlation between the 

concentration of heavy metal ions and the enhancement 

of quantum dot (QD) fluorescence intensity, making it 

feasible to detect heavy metal ions using QDs (93)  

 The researchers have introduced an integrated 

microdevice with a solid-phase extraction (SPE)-graphene 

oxide quantum dot (GOQD) array for detecting trace heavy 

metals such as As3+, Cd2+, and Pb2+. This device selectively 

separates metal ions from raw aqueous samples using on-

chip SPE. The separated ions are then quantitatively 

analyzed using a DNA aptamer-linked GOQD array sensor. 

The detection limits for As3+, Cd2+, and Pb2+ were found to 

be 5.03 nM, 41.1 nM, and 4.44 nM, respectively. The device 

successfully achieved simultaneous detection of As3+, Cd2+, 

and Pb2+ in ambient samples on a miniature scale (94) 

Additionally, GQDs have been employed to enhance 

microfluidic gas sensors . GQDs were utilized to create 

nanoscale structures on microchannel walls. These 

modified sensors were exposed to seven different analytes 

at 100 parts per million (ppm) concentrations (methanol, 

ethanol, propanol, pentanol, hexane, hexanal, and 

toluene). The sensors' responses to these analytes were 

measured, analyzed, and compared with those of 

unmodified sensors. The methods demonstrated 

significant improvements in sensor selectivity, showcasing 

a proof-of-concept for enhancing selectivity through 

enhanced surface adsorption/desorption effects 

compared to mass diffusion in microfluidic gas sensors 

(95) 

 Conventional microfluidic systems traditionally rely 

on bulky external equipment like pumps, centrifuges, and 

microscopes to control flow, prepare samples, and 

monitor processes. These systems are typically confined to 

clinical or laboratory settings due to their dependence on 

external components. Hence, there is a pressing need to 

advance microfluidic devices (96) Considering the ubiquity 

of smartphones-portable, user-friendly, and equipped with 

numerous applications (97) it becomes imperative to 

explore integrating these devices into microfluidics for 

broader accessibility and enhanced functionality. 

 Smartphones are emerging as versatile tools for 

alternative detection devices in microfluidic applications. For 

example, smartphones are utilized in digital microscopy and 

flow cytometry, leveraging their cameras for the examination 

of biological specimens such as cells, bacteria, and parasites 

at the point-of-care (POC) (98) The researchers have 

demonstrated a paper-based microfluidic colorimetric sensor 

capable of simultaneously determining pH and nitrite 

concentration in water samples (99). Additionally, some 

researchers have introduced the micro capillary film (MCF) 

phone, a flexible smartphone-based system for colorimetric 

and fluorescence detection, successfully detecting prostate-

specific antigen (PSA) from whole blood within 13 min using 

colorimetric methods and 22 min using fluorescence 

detection (100). These advancements suggest that in the near 

future, smartphones could enable a wide range of analyses 

for various samples, whether in clinical or environmental 

contexts, driven by ongoing research efforts to develop 

microfluidic devices tailored to environmental applications. 

 

Conclusion   

This study presents microfluidic devices as highly selective 

and sensitive tool for detecting water pollution, offering 

advantages over traditional methods. These devices 

streamline laboratory work to a single chip, enabling fast, 

cost-effective, and on-site detection. Future work should 

focus on enhancing the accuracy of these devices through 

improved design, selecting analytical methods that yield 

high-quality results, and integrating them with 

smartphones applications to provide the most precise 

outcomes. 
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