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Abstract 

Livestock primarily rely on forage crops as a source of feed and nutrition. 

The milk productivity of a cow or meat production in goat/sheep could di-

rectly be associated with the availability of a sufficient quantity of quality 

green fodders with essential nutrients in a balanced ratio. Feeding the cere-

al/grass: legume fodders in the required proportion will not only improve 

productivity but also the reproductive capacity of animals. However, many 

countries of the world experience a huge gap between demand and availa-

bility of green fodder. In this context, emphasis should be placed on devel-

oping efficient forage genotypes with increased biomass and quality as per 

the requirements of animals, duly considering their digestibility. Breeding 

approaches encompassing required classical approaches, including wide 

hybridization to exploit natural genetic variability, biotechnological tools 

such as transgenic technology, marker-assisted selection, genomic selec-

tion, and various omics techniques alongside high-throughput phenotyping 

using multispectral cameras, would help to sustain livestock productivity by 

meeting out the present and future fodder requirements coupled with en-

hanced nutrients.   
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Introduction 

Over the past thirty years, global milk production has surged by over 77%, 

rising from 524 million tonnes in 1992 to 930 million tonnes in 2022. India 

leads the world in milk production, contributing 22% of the total output, 

followed by the United States, Pakistan, China, and Brazil. In recent years, 

developing countries have significantly increased their share of global dairy 

production, primarily due to a rise in the number of milk-producing animals 

rather than an increase in productivity per animal (1). For example, in India, 

the growth in milk production is mainly attributed to the expansion of the 

cattle population, as livestock productivity remains considerably lower than 

in other major milk-producing nations. India's average milk yield per cow is 

1,538 kg per lactation, compared to the global average of 2,238 kg and the 

European average of 4,250 kg per lactation (2). The primary cause of the low 

productivity of Indian livestock is malnutrition or undernutrition, which is 

attributed to a major gap in the demand and supply of nutritious animal 

feed. Most cows and buffaloes in India are dependent upon crop residues 
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such as wheat and paddy straws as their staple feed (3,4) 

due to inadequate production of lush green forages in the 

country (5). The low crude protein, high fiber, high lignin, 

and silica levels in wheat and paddy straws are major nu-

tritional constraints for using them as animal feed (6). To 

meet nutritional requirements, total mixed rations 

(chaffed crop residues, mainly wheat straw supplemented 

with oilcake, beans, and cereal grains) are fed in specific 

proportions to provide a balanced diet (3). To maintain 

milk production, the livestock are generally fed with con-

centrates. Although it increases milk production, it causes 

rumen acidosis in dairy animals. The practice of concen-

trated feeding unbalances the gut microbiota, which re-

leases more toxins, resulting in damage to the liver (7). 

Green fodder provides vitamins and minerals to 

dairy animals, as well as enhances digestion. Integrating 

the green fodder feeding system with livestock manage-

ment significantly reduces the milk production cost, 

whereas the availability of high-quality forage throughout 

the year is the critical success factor in the livestock indus-

try. However, breeding for nutritional quality in forage is 

considered the second most important objective, next to 

biomass yield. Unlike forage biomass, nutritional quality 

traits are neglected as the determinant factor for market 

price (8). 

High-quality forage encompasses an adequate 

amount of minerals, carbohydrates, crude protein, sulphur 

amino acids, high palatability, and minimal anti-

nutritional factor, which is responsible for livestock pro-

duction and reproductive success (8). Although forage nu-

tritional quality improvement is possible through conven-

tional and advanced plant breeding approaches, substan-

tial progress has not been achieved due to the greater het-

erogeneity, polyploidy, apomixes, and self-incompatibility 

of forage crops (9). In this situation, innovative strategies 

such as transgenic breeding, marker-assisted selection, 

genomic selection, and integrated omics approach hold 

immense potential in improving nutrient compositions. 

Major nutritional components in forage crops 

Nutritionally, the foremost vital components of forage 
crops are carbohydrates, proteins, and lipids. In addition 

to these, the other components, such as vitamins and min-

erals, are crucial for plant function and can have a definite 

nutritional impact (Fig. 1) (10). 

Carbohydrates 

Carbohydrates are the primary source of digestible energy 

present in forages (10). A major fraction of 50-80% of the 

dry matter present in grass forages is carbohydrates (9,10). 

The usual forms of carbohydrates present in forage are 

plant fiber (structural carbohydrate), monosaccharides 

(non-structural carbohydrates), starch (storage mole-

cules), and disaccharides. According to their status as cell 

wall constituents, solubility, and storage or structural pol-

ysaccharides (i.e., non-starch polysaccharides (NSPs) ver-

sus starch), the carbohydrates found in plant-based diets 

are classified as fibrous or non-fibrous (11). These complex 

carbohydrates further break down into simpler sugars by 

Fig. 1. Advancing ideal forage ideotype for livestock productivity. Figure created with BioRender.com. 
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the cleavage of glycosidic bonds by the animals (both ru-

minants and non-ruminants) or by microbial digestion 

(ruminants only) (9). The microbial fermentation of carbo-

hydrates in the gastrointestinal tract of herbivorous ani-

mals produces short-chain fatty acids (acetic, propionic, 

and butyric), also known as volatile fatty acid, which con-

tributes approximately 70% to the ruminants’ caloric re-

quirements (12). Lignin content in forage cell walls ad-

versely affects fiber digestion in ruminants, and it depends 

on the physiological maturity of the crop. Grass cell walls 

appear to be more severely inhibited by lignification than 

do legumes (13). Hence, carbohydrates play a vital role in 

animal health, growth, and reproduction, as well as in im-

proving the quality of animal products (10). 

Protein 

In forages, enzyme proteins are the most crucial nutrition-

al constituents for the well-being and growth of plants. 

The biosynthesis of all other nutritional components, in-

cluding carbohydrates, lipids, and proteins, is dependent 

upon the activity of these enzymes. Forage proteins do not 

differ from other herbaceous proteins in terms of structure 

or composition. Rubisco (Ribulose-1,5-bisphosphate car-

boxylase/oxygenase) makes up about 40–60% of the pro-

tein found in plant leaves, with the remaining 40–60% be-

ing a complicated mixture of about 20,000 distinct pro-

teins. As a consequence, it is difficult to alter the concen-

tration and composition of protein to enhance nutritional 

benefits to animals (10). The source of nitrogen to the ani-

mal body is mainly from forage crude protein (9).  

Some other compounds that alter protein digesti-

bility are condensed tannins and polyphenol oxidase. Pro-

anthocyanidins or condensed tannins (CT) decrease the 

degradation of forage protein in the rumen. It can be bene-

ficial as excess protein degradation causes bloating in ani-

mals. However, in the animal's midgut or digestive tract, 

high CTs prevent the absorption of protein, which results 

in a total loss of nutritional value (14). For desired digesti-

bility, a CT concentration of 2%–4% is ideal (15). Similarly, 

Polyphenol oxidase (PPO) reacts with phenol to form    o

-quinones, which further bind with dietary protein to form 

o-quinone-protein complexes and reduce the protein deg-

radation rate in the rumen as well as in silage (16). The 

PPO has a positive impact on forage crops as it safeguards 

the plant protein and glycerol-based PUFA by inhibiting 

the activity of proteases and lipases (8). 

Lipids 

Lipids in forage crops are mostly present in the form of 
PUFA (Polyunsaturated fatty acid), which includes linoleic 

acid (LA) and alpha-linolenic acid (ALA). These particular 

fatty acids act as a precursor of beneficial fatty acids (17) 

and a substantial proportion of them is identified as alpha-

linolenic acid (18). The major source of leaf lipid deposi-

tion is the cell membrane, which contains about 3.5% dry 

matter (19). The fatty acids are responsible for the overall 

quality of meat and dairy products, such as the flavour 

development during cooking (20), the colour and shelf life 

of meat, and the hardness or spreadability of butter (21). 

Studies have shown that cows fed with fresh herbage yield 

milk with a higher content of alpha-linolenic acid and con-

jugated linoleic acid than preserved forage. The impact of 

forage on alpha-linolenic acid concentrations in ruminant 

products depends upon two factors: enhancing the pre-

cursor supply and mitigating the degree of biohydrogena-

tion (17). 

Minerals and vitamins 

Minerals and vitamins play a crucial role in enhancing ani-

mal health and performance. The vital minerals Na, K, Ca, 

P, Mg, S, Cu, Co, Zn, Fe, Mn, Mo, I, and Se, as well as Vita-

mins A and E, are abundant in forages. Generally, the suffi-

ciency, deficiency, or toxicity of minerals and vitamins in 

animal feed can often be identified by particular signs and 

symptoms. However, the subclinical amounts can signifi-

cantly impact feed intake, digestibility, and overall animal 

performance, all without apparent signs (22). Major miner-

als such as Calcium, Phosphorus, Chloride, Potassium, 

Magnesium, Sodium, and Sulfur are required in larger 

amounts, usually in grams per day. On the other hand, 

trace elements like copper, iron, iodine, manganese, sele-

nium, zinc, and cobalt are needed in smaller amounts, 

usually in milligrams per day. Some other elements are 

important either due to the potential risk of toxicity (Cd, F, 

Pb) posed by them or due to their interactions with the 

accessibility of essential elements (Mo interactions with 

Cu) (23). 

Generally, vitamins are classified based on their 
solubility in either water (B and C group) or in lipid sol-

vents (A, D, E, and K). In addition to this, vitamins for adult 

ruminants are categorized based on either by self-supply 

(via the rumen or endogenous supply) (K, C, D, and B 

group); or by supply from the feed (A and E). Thus, rumi-

nants have a particular dietary dependency, primarily con-

cerning vitamins A and E (24). 

Considering the importance of the nutritional com-

positions discussed, carbohydrates are the main sources 

of energy that play a vital role in animal health and 

productivity. Protein from the fodder is the primary source 

of protein in milk production, as well as the growth and 

development of animals. Whereas minerals and vitamins 

are critical in the body functioning of the animals, which 

ultimately reflects on milk/meat production. Hence, forage 

crop genotypes developed for quality improvement have 

to be necessarily evaluated for the presence of appropri-

ate levels of these nutrients for the sustenance of livestock 

productivity.  

Genetic diversity for nutritional traits 

The collection and conservation of forage germplasm were 

primarily focused at the Australian Tropical Forage Genetic 

Resource Center at Brisbane (ATCFC), Commonwealth Sci-

entific and Industrial Research Organization (CSIRO), and 

the International Center for Tropical Agriculture (CIAT, 

Columbia) along with the International Board for Plant 

Genetic Resource (IBPGR) and national research institutes 

located in Africa, Asia, and America. To increase genetic 

diversity, the introduction or exchange of germplasm with 

unique characteristics led to the development of many 

landmark varieties. For example, the development of 
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tropical forage legume cultivar Stylo (Stylosanthes guia-

nensis (Aubl.) Sw. var. guianensis) is more productive and 

has almost equivalent fodder quality compared to other 

legumes such as Canavalia CIAT 17009 (Canavalia brasili-

ensis) and BRA 9690 (Aeschynomene histrix) (25) 

Recently, most of the forage crops were domesti-

cated, and the improvement of landraces started in the 

early 20th century (26). The domestication of forages was 

highly systematic when compared to grain crops. Because 

of this, forage species exhibit far higher genetic diversity 

than grain crops (25, 27). Wild species can be a valuable 

source of desirable quality traits and be used to improve 

cultivated forage crops through wide hybridization. In the 

case of maize, wild teosinte types (Zea mays ssp. mexi-

cana) are used to enhance the methionine contents in for-

age. Wild species of maize possess higher protein com-

pared to cultivated types. Also, the protein content of inter

-subspecific hybrids of maize and teosinte is substantially 

higher than either of the parents (28). Similarly, Pennise-

tum typhoides x P. purpureum, a successful interspecific 

triploid between pearl millet and napier, resulted in higher 

biomass and quality for both species (29). In line with this, 

Sorghum bicolor × S. sudanense hybrids recorded high pro-

tein, high dry matter yield, and reduced HCN content (30). 

Lotus tenuis × L. corniculatus hybrids registered reduced 

amounts of proanthocyanidins (PAs) in edible tissues to 

prevent ruminants from bloating. The Lolium–Festuca 

complex's genetic diversity is derived from its mandatory 

outbreeding mating system, high potential for hybridiza-

tion between related species, and the lack of major genet-

ic bottlenecks caused by domestication (26). F. glau-

cescens protein degrades slowly (protein’s half-life under in 

vitro rumen like conditions is 19.2 hr.). This trait of Festuca 

combined with the complementary trait for high leaf pro-

tein in L. multiforum (protein’s half-life is 2.3 hr) signifi-

cantly increased the protein half-life of the Lolium parents 

(31). A wild species, Arachis cardenasii is known for its high 

fodder value. ICG11563 (2n = 2x = 20), a diploid line of Ara-

chis cardenasii was crossed as a male parent with cultivated 

variety VRI4 (2n = 4x = 40), a tetraploid of A. hypogaea. Sub-

sequent backcrosses of F1 with VRI 4 resulted in five 

BC1F1 hybrids with vigorous growth, prostrate habit, and 

broad and dark green leaves with high palatability. These 

hybrids were suitable for multiple cutting and had 98% 

success in vegetative propagation (32).  

Landraces are potential donors for valuable traits, 

and characterization of landraces through gene-specific 

markers can be done to assess genetic diversity. The North 

Eastern Himalayan region of India is a well-known center 

of diversity for maize, with landraces from this area exhib-

iting good agronomic performance and acclimatization to 

stress conditions. A total of 26 maize landraces screened 

for β-carotene polymorphism using the crtRB1 3'TE mark-

er and identified two landraces, CAU-M66 and CAU-M16, 

with enhanced β-carotene content (33). 

Exploration and conservation of nutritive grass fod-

der species in their native areas are crucial for habitat res-

toration, preventing animals from moving out of their hab-

itat and affecting agricultural crops. An exploration study 

was conducted by (34) to evaluate the nutritional potential 

of wild grass fodder in the Elephant reserve of the Western 

Ghats. The nutrient-rich species are Cynodon dactylon, 

Oplismenus burmanniifor, Dichanthium aristatum, Hetero-

pogon contortus, and Themeda triandra were identified for 

elephants. The higher crude protein content was found in 

Cynodon dactylon (11.94%). These species are highly recom-

mended for fodder bank development in the elephant cor-

ridors. 

Selecting crop species or genotypes with comple-

mentary functional traits is considered as an effective ap-

proach to improve both productivity and yield stability in 

mixtures (35,36). By incorporating species with diverse 

root and shoot architectures, mixtures can better exploit 

available resources. For example, (37) integrating deep-

rooting forbs such as “Cichorium intybus” with grass-

legume mixtures increased biomass production. Forage 

chicory (Cichorium intybus L.), a mineral-rich perennial 

herb with high palatability and a healthy fatty acid profile 

(38), supports cattle grazing on temperate swards, aiding 

in maintaining or boosting milk production during sum-

mer (39). Chicory grazing does not cause bloat and helps 

to reduce internal parasites, lowering the need for anthel-

mintics (40). Integrating chicory into the traditional 

ryegrass and white clover (RGWC) mixed pasture systems 

improved forage yield, yield stability (41), dairy produc-

tion, and environmental sustainability (38). Another study 

reported that binary mixtures of white clover (Trifolium 

repens) and chicory produced significantly higher dry mat-

ter yields than white clover monocultures, ryegrass-

chicory mixtures, and multi-species mixtures of ryegrass, 

white clover and chicory across both marginal and fertile 

lands (41). Similarly, including chicory in white clover-

based grasslands improved yield stability compared to 

clover pure stands and clover-ryegrass mixtures during 

low precipitation years, and this effect was reversed under 

high precipitation (42). Hence, in mixed pastures, forage 

yield depends on plant species’ genotype, botanical com-

position, cropping sites, and environmental conditions 

(41).  

In another experiment, the milk yield was found to 
be increased by feeding the RGWC with afternoon chicory 

(CHPM) in comparison with the other treatments, such as 

RGWC alone and RGWC with morning chicory (CHAM) (38). 

Milk from chicory-fed cows had higher polyunsaturated 

fatty acid (PUFA) levels. Chicory also increased urination 

frequency and reduced urinary nitrogen, highlighting its 

environmental benefits without compromising productivi-

ty. 

To assess the molecular diversity of forage crops, 

various markers such as RAPD (Random Amplified Poly-

morphic DNA) (43), RFLPs (Restriction Fragment Length 

Polymorphism) (44), SCoT (start codon targeted polymor-

phism) (45), SRAP (sequence-related amplified polymor-

phism) (46), DArT (Diversity Arrays Technology) (47), SSR 

(simple sequence), ISSR (inter short simple repeat) (48) 

and SNP’s have been employed. Some of the examples are 

given in Table 1.  
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Molecular markers employed by the scientists indi-

cated the presence of greater genetic diversity for nutritive 

traits such as crude protein, crude fiber, crude fat, acid 

detergent fiber (ADF), and neutral detergent fiber (NDF) 

coupled with higher biomass and invitro-dry matter di-

gestibility (IVDMD) which offers greater scope for the crop 

breeders to exploit it from the primary and secondary 

gene pools of different forages offering a huge potential 

for selection and improvement of forage species besides 

revealing a scope for parental selection to exploit maxi-

mum heterosis in forage biomass and quality. 

Integrated breeding strategy for forage quality improve-
ment        

Breeding programs aimed at improving forage crops face 

numerous obstacles and challenges. These include sub-

stantial genotypic and phenotypic heterogeneity among 

individuals, varying degrees of polyploidy (from low to 

high), self-incompatibility, apomixes, in-breeding across 

grasses, and few agronomic traits linked with distinct 

genes (9). Also, the conventional breeding of forage crops 

often takes 10 years to develop a cultivar, and it is mostly 

based on traits that are poorly understood, which makes 

the breeding process cumbersome and time-consuming 

(49). Therefore, the integration of conventional plant 

breeding with molecular sciences and biotechnology 

offers a pathway to enhance the efficiency of forage breed-

ing, particularly for improving nutritional traits (Fig. 2). 

Molecular tools for augmenting nutritional status of for-
age crops        

Conventional breeding methods have contributed to the 

improvement of forage plants for the past decades. In the 

biotechnological era, molecular techniques show promise, 

Forage species Molecular marker Variability reported for quality traits References

Timothy (Phleum pratense L.) SSR Dry matter yield (103)

Pearl Millet SSR and GBS identified SNP
Green forage yield (GFY), dry forage yield (DFY), crude protein (CP) 
and invitro dry matter digestibility (IVDMD)

(104)

Fodder maize SSR Biomass yield (105)

Maize SSR and SNP β – carotene content (106)

Bermudagrass Simple sequence repeat (SSR) Plant height, biomass, moisture content, crude ash, crude fiber (CF), (107)

Grass Pea SSR Biomass yield, plant height, CP, IVDMD and lignin (108)

Pearl Millet SNP and silicoDArT Dry weight yield and metabolizable energy (47)

Table 1. Genetic diversity studies using various molecular markers.

Fig. 2. Integrated approaches for enhancing quality and biomass in forage crops.  Figure created with BioRender.com. 
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particularly in accelerating the breeding of fodder crops, 

which are typically perennial plants (50,51). 

Transgenic approaches 

Some of the notable examples of transgenes responsible 

for improving forage quality are furnished. The major wa-

ter-soluble carbohydrates are the fructans. Based on su-

crose as the substrate, fructan metabolism is catalysed by 

fructosyltransferases for biosynthesis and fructan exohy-

drolases for breakdown. Thus, digestibility can be en-

hanced by increasing fructan metabolism (52). For exam-

ple, in ryegrass, the fructan biosynthesis pathway has 

been altered by expressing fructosyltransferases through 

the biolistic transformation method. It led to an incline in  

water-soluble carbohydrates, metabolizable energy, and 

in-vivo dry matter digestibility, as well as a decline in the 

NDF concentrations (53). 

Using RNA antisense (AS) technology, (54) genetical-

ly modified maize plants were developed with reduced 

COMT (caffeic acid O- methyltransferase) activity under 

the control of maize Adh1 (alcohol dehydrogenase) pro-

moter. These COMT-AS lines showed a decrease in lignin 

content at the flowering stage. Similarly, (55) downregu-

lated maize O-methyltransferase gene (OMT) by express-

ing antisense sorghum OMT driven by maize ubiquitin-1 

(Ubi) promoter. T1 transgenic plant showed a decrease in 

lignin content by 17% and increased digestibility by 72-

76% on a whole plant basis. 

Overexpression of two genes of Medicago truncatu-

la, phytase (MtPHY1) and purple acid phosphatase 

(MtPAP1), in alfalfa, increased the phosphorus acquisition 

and biomass yield (56). Likewise, co-over expression of 

Zygophyllum xanthoxylum (ZX) genes, namely ZxNHX and 

ZxVP1- 1 in alfalfa, increased phosphorus in root and 

leaves as well as crude protein, crude fiber, crude fat, and 

crude ash, especially under stress conditions (57). In an-

other study, the bacterial transgenes Aspartate kinase (AK) 

and Adenylylsulfate reductase (APR) were transferred to 

alfalfa to increase cysteine content by 30 % and methio-

nine by 60% compared to wild types (58).  

Downregulation of the MtSGR (STAYGREEN) gene in 

alfalfa through antisense RNA technology showed chloro-

phyll percentage up to 50% during the senescence stage 

and increased the amount of crude protein compared to 

the wild type (59). The stay-green characteristic may be 

advantageous in fields with standing crops of mostly se-

nescing leaf material utilized to supply livestock with fod-

der (60). 

Quantitative Trait Loci (QTL) Mapping  

The nutritional quality traits are mainly governed by poly-
genes and are referred to as quantitative traits (61). The 

genomic regions containing genes responsible for the 

quantitative variation of a trait are known as quantitative 

trait loci (QTLs), and the method of constructing linkage 

maps with the help of DNA markers and conducting QTL 

analysis is known as QTL mapping (62). QTL mapping iden-

tifies desirable genes, determines the amount of variation 

due to additive, dominant, and epistatic effects, helps to 

understand variation mechanisms, and identifies the ge-

netic correlation between different traits within the ge-

nomic region (63). 

Forage breeders mostly depend on quantitative 

trait loci (QTL) for the genetic improvement of forage 

crops because only a few major genes are responsible for 

regulating forage nutritional traits. Compared to other 

crop species, little attention has been paid to forage crops 

due to their complex polyploidy nature with genomes de-

rived from multiple progenitors and showing polysomic 

inheritance, so there is a huge difficulty in developing con-

sistent linkage maps than in simple diploids (64). However, 

the utilization of high-density linkage maps, in combina-

tion with recent advances in next-generation sequencing 

technologies, accelerated the forage crop improvement 

programs with higher precision and efficiency (50). 

Significant advancements in forage crops were 
made in identifying the QTL’s responsible for various qual-

ity traits. For example a total of 16 QTLs (6 for crude pro-

tein, 2 for crude fiber, 2 for ADF, and 6 for NDF) have been 

detected through composite interval mapping in RIL 

(recombinant inbred line) population of soybean derived 

from the cross (PI 483463 and Hutcheson) (65). In another 

study (66), the QTL analysis in the RIL population of maize 

derived from the cross (Zheng58 x HD568) for six related 

traits using composite interval mapping revealed the pres-

ence of 6,5,10,9,8,9 QTLs for ADF, ADL/NDF, CEL/NDF, 

IVDMD, IVNDF and NDF respectively. In addition to this, five 

pairs of epistatic QTLs involving 9 loci have been identified 

for ADF, CEL/NDF, IVNDFD, and NDF.  The study also re-

vealed a QTL hotspot on chromosome 9, flanked by the 

SNP markers PZE-109016787 and PZE-109076761, with a 

genetic interval from 55.7 to 90.3 cM. From this result, 

29.8% of QTLs showed >10% of the phenotypic variation, 

and 70.2% explained <10% variation. Hence, the study 

concluded that fewer major QTLs and many minor QTLs 

are associated with the biosynthesis of cells and digestibil-

ity in maize stalks. 

The interspecific hybrid of Sorghum and Sudan 
grass is considered a high-quality forage for livestock. The 

hybrid inherited the quality of sorghum, being resistant to 

drought, and sudan grass for its high biomass production 

(67). From sorghum Tx623A- Sudan grass Sa hybrid (68), a 

high-density genetic map of length 1191.7 cM was con-

structed using RAD-seq and identified 1065 markers.  Fur-

ther, 19 QTLs for five forage quality traits (one for CP, five 

for NDF, three for ADF, two for ADL, and eight for HC 

(hemicellulose) were mapped in a RIL population between 

sorghum Tx623A- Sudan grass Sa. The study concluded 

four overlapping QTLs for NDF, ADF, ADL, and HC, which 

will be the candidate locus for further breeding of high-

quality forage. 

In maize, fiber and lignin are the major components 

affecting stem cell wall digestion, so to increase the feed 

value of maize (increasing the cell wall digestibility), it is 

necessary to decrease the concentration of fiber and lignin 

(69). Several QTL mapping studies were conducted using 

low-density markers such as RFLP or SSRs, and these 
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studies are not more focused on high-oil maize (HOM) (70). 

Further research conducted by (71) has proved that the 

stalk quality of high-oil maize is better than normal maize. 

Hence, 188 recombinant inbred lines derived from the 

cross B73 × By804 (a high oil inbred line) with high-density 

SNP markers were examined (70) and identified 20 QTLs 

for six-cell wall-related traits. QTL linked with individual 

traits showed 10.0%–41.1% of phenotypic variation. The 

identified QTLs for forage quality traits in different forage 

crops are reviewed here in Table 2. 

The progress in the identification of QTLs for differ-

ent fodder quality traits reveals ample scope for the appli-

cation of marker-assisted breeding for the breeding of nu-

trient-rich forage cultivars. The QTLs validated the differ-

ent quality traits like crude protein, crude fiber, ADF, NDF, 

and IVDMD, which facilitate crop breeders to opt for mark-

er-assisted breeding for quality improvement in forages.  

Marker-assisted selection 

The identification or selection of plants carrying desirable 

Sl. no Crop Population Traits QTLs Chr (LG)1 PVE (%) References 

1  Maize  RIL (B73×By8040)  

ADF  
adf2 2 12.20 

(70)  

adf6 6 10.72 

ADL/NDF  
adl2-1 2 20.01 

adl2-2 2 10.30 

CEL/NDF  
cel1 1 12.43 

cel6-2 6 10.48 

IVDMD ivdmd2 2 13.02 

IVNDF ivndfd10 10 10.01 

NDF ndf2-1 2 13.36 

2 Maize  RIL (Zheng58×HD58)  

ADF  

adf2 2  11.8 

(66)  

adf9-1 9 11.1 

adf9-2 9 12.3 

ADL/NDF  
adl9-1 9  11.1  

adl9-2 9 11.1 

CEL/NDF cel2-2 2 11.6 

IVDMD  
ivdmd9-1 9 18.9 

ivdmd9-2 9 16.9 

IVNDFD  
ivndfd9-1 9  11.2 

ivndfd10-1 10 10.4 

NDF  

ndf2-2  2 10.2 

ndf2-3 2 11.3 

ndf9-1 9 14.2 

ndf9-2 9 12.7 

3 Sorghum× Sudangrass RIL 

CP qCP4 4 16.93 

(109)  

NDF  
qNDF4 4 10.44 

qNDF5 5 40.05 

ADF ADL  

qADF5.1 5 45.26 

qADL5 5 30.67 

qADL1 1 0.34 

HC  

qHC3.1 3 13.64 

qHC4.2 4 15.34 

qHC4.3 4 14.65 

qHC3.2 3 10.00 

qHC2 2 10.82 

4  Soyabean 

RIL3613  

(Dongnong L13 × Heihe 36 a) 
CP qcp-gm16-2 Gm16 15.67 

(110)  
RIL6013  

(Dongnong L13 × Henong 60)  

CP qcp-gm02-1 Gm02 10.90 

NDF  qnDF-gm02-1  
Gm02 10.35 

Gm02 11.42 

Table 2. QTLs associated with forage quality traits (data given for major QTLs showing more than 10% phenotypic variation).  
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alleles (for a specific trait) by utilizing molecular markers 
linked to the gene of interest is known as marker-assisted 
selection (MAS). The breeding process gets accelerated 
due to the indirect selection of desired traits through MAS, 
which leads to the rapid development of improved culti-
vars. Selection can be done at the early seedling stage 
with the help of a marker system without concern about 
genotype × environment (G × E) interactions. MAS can be 
categorized into 1) Marker-assisted backcross breeding 
(MABC), 2) Marker-assisted recurrent selection (MARS), and 
3) Genomic Selection (GS) (72).

Marker-Assisted Backcrossing (MABC)  

The process of MABC involves the use of markers to choose 
target loci, reduce the size of the donor segment contain-
ing a target locus, and speed up the recovery of the recur-
rent parent (RP) genome while backcrossing (73). Com-
pared to conventional backcross breeding, marker-
assisted backcrossing maintains higher precision and effi-
ciency and reduces the number of backcrosses required to 
recover the RP phenotype (74). The success of a backcross 
breeding program depends upon three main factors, i.e., 
recurrent parent selection, screening for target traits, and 
the number of backcrosses (75). MABC comprises three 
major steps: - Foreground selection, recombinant selec-
tion, and background selection. Foreground selection is 
performed to screen the individual plants for the target 
gene at the early seedling stage. Recombinant selection is 
carried out to select the backcross progeny carrying the 
target gene and markers flanking the target gene at < 5 cM 
on either side to avoid linkage drag. Lastly, the back-
ground selection is performed to choose the progeny with 
the highest recovery of the RP genome (76). 

The first MAS-based product of maize developed by 
using MABC is “Vivek QPM hybrid 9” (a QPM version of Vi-
vek Maize Hybrid 9’) through introgression of the opaque 2 
allele (72). In Vivek QPM Hybrid 9, there was a notable im-
provement in nutritional content compared to Vivek Maize 
Hybrid 9. Specifically, tryptophan levels increased by 41%, 

and lysine by 30% (77). Similarly, the β-carotene hydrox-

ylase (crtRB1) gene introgressed into 7 elite inbreds through 
a marker-assisted breeding program showed a 12.6-fold 

increase in β-carotene concentration over the recurrent 

parent. Improved parental lines exhibited a kernel β-

carotene concentration of 21.7 mg/g, compared to the 
original hybrid, which had 2.6 mg/g (78). Similar studies 
have been conducted on maize (79, 80, 82), which resulted 

in improved β-carotene by 9.248 μg/g in UMI1230ß+-1 and 

8.286 μg/g in UMI1200ß+-2.  

The antinutritional factor present in maize is phytic 
acid, which decreases the bioavailability of nutritive min-

erals in animal feed. A mutant maize plant carrying lpa2‐2 

allele is responsible for low phytic acid (lpa) in maize. For 
the first time, lpa2-2 specific SSR marker ‘umc2230’ has 
been developed, and using marker-assisted backcross 

breeding the lpa2‐2 allele has been transferred from low 

phytate mutant line ‘EC 659418 (donor parent) into well-
adapted line UMI395 (recipient parent) (81). Similarly, in 

another study (82), the lpa2‐2 allele from EC 659418 was 

transferred to an elite recipient line UMI285. 

Marker-assisted gene pyramiding is an approach to 
transfer genes from multiple parents into a single parent. 
One such example is the transfer of crtRB1 and o2 (opaque 
2) genes through MABC (concurrent stepwise transfer),

5 Soyabean 
RIL 

(PI 483463 and Hutcheson) 

CP  
qCP19_1 19(L) 26.46 

(65) 

qCP19_2 19(L) 10.94 

CF  

qCF19_1 19(L) 21.10 

qCF19_1 19(L) 14.07 

qCF19_1 19(L) 29.33 

qCF19_1 19(L) 28.92 

ADF  

qADF19_1 19(L) 12.79 

qADF19_1 19(L) 31.43 

qADF19_1 19(L) 21.00 

qADF19_1  19(L)  41.72  

NDF  

qNDF19_1 19(L) 24.04 

qNDF19_1 19(L) 28.19 

qNDF19_1 19(L) 26.58 

6 Barley  DH lines (Step-toe and Morex) 

NDF (%) Qndfa2a 2(2H) 49.32 

(111) 

ADF (%) Qndfa2a 2(2H) 31.03 

NO3–N (%) Qno3a4a 4(4H) 11.35 

N (%)  
Qna2a 2(2H) 47.28 

Qna4a 4(4H) 10.96 

Non-NO3–N (%) Qnona2a 2(2H) 56.72 

ISDMD (%) Qdmda2a 2(2H)  58.57 

LG1-Linkage group, PVE (%) -proportion of phenotypic variation explained by particular QTL, ADF-acid detergent fiber, NDF-neutral detergent fiber, ADL/NDF-acid 
detergent lignin, CEL/NDF-cellulose, IVDMD, in vitro dry matter digestibility; IVNDFD, in vitro neutral detergent fiber digestibility, CP-crude protein, CF-crude fiber, 
ISDMD-In situ dry matter digestibility, NO3–N Nitrate-nitrogen.  
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which results in β-carotene, lysine, and tryptophan-rich 

maize inbreds (83). 

Marker-assisted recurrent selection (MARS) 

MARS is similar to the phenotypic recurrent selection, but 
it also utilizes molecular markers as an indirect selection 
method to increase the frequency of favourable alleles 
within the population. The F2 or F3 population of the se-
lected cross is genotyped for several markers covering the 
whole genome, and F2 derived F4 and F5 population is phe-
notyped for the target trait, followed by successive recom-
bination cycles to estimate the marker effects. It is highly 
advantageous compared to MABC because it screens the 
whole genomic regions comprising major and minor QTLs 
(72). 

Genomic Selection (GS) 

Genomic selection involves using molecular markers 
across the entire genome for genomic-enabled prediction 
(GP) to evaluate the performance of candidates for selec-
tion. In a GS programme, there are two basic populations 
1) the Training population and 2) the Testing population. 
The genotypic and phenotypic data of the training popula-
tion are combined to derive genomic estimated breeding 
values (GEBVs) in a testing population (only genotyped but 
not phenotyped). Therefore, GS aids in the prediction of 
genetic and breeding values by analyzing genotypic data 
to identify the most suitable individual for future breeding. 
GS offers advantages over phenotypic selection by lower-
ing the cost per cycle and accelerating the time needed for 
variety development (84). Genomic selection has been 
carried out in forage lucerne (85) to predict yield and qual-
ity that could accelerate the development of lucerne culti-
vars. 227K SNPs were obtained by genotyping by sequenc-
ing (GBS), and phenotyping was carried out in different 
environments. With a large training population, a quality 
prediction of 0.6 was obtained for dry matter yield, ADF 
(acid detergent fiber), and protein content. Integration of 
QTL information to the genomic prediction model with a 
large number of training populations increased the predic-
tive quality by around 0.8. A wide array of markers can be 
used to identify QTL, which can then be integrated into a 
small set of markers for genomic prediction. Therefore, the 
result shows that the quality of the prediction depends 
upon the size of the training population, the number of 
markers used, and the integration of QTL effects. 

Integrated Omics Technologies  

The efficient development of superior cultivars is made 
possible by omics technologies, including genomics, tran-
scriptomics, proteomics, metabolomics, and phenomics. 
Enhancing the nutritional value, palatability, and digesti-
bility of the forage crops presents abundant opportunities 
to improve the quality of fodder (86). By employing various 
omics techniques, genes, their functions, the type of RNA 
or protein involved, their structure, and the pathway re-
sponsible for the development of the ultimate morpholog-
ical characteristic were identified (87). The genes that were 
identified were further manipulated or transferred to cre-
ate newer varieties or hybrids with desirable characteris-
tics (86). 

Genomics is the study of genomes and genes. It is 
crucial for understanding genetic variation and crop per-
formance. It is categorized into structural, functional, and 
epigenomics. Structural genomics investigates genome 
structure, chromosomal organization, and sequence varia-
tions. It facilitates the creation of detailed genetic and 
physical maps to identify genomic regions that influence 
specific traits. Functional genomics delineates gene func-
tion responsible for traits of interest. Epigenomics is the 
study of epigenetic modifications that influence gene ex-
pression, such as DNA methylation and histone modifica-
tions. These factors substantially contribute to the genetic 
improvement of crop species (88). Innovation in plant ge-
nomics has improved and quickened the breeding process 
in several ways (e.g., association mapping, marker-
assisted selection, ‘breeding by design’ gene pyramiding, 
and genomic selection etc.) (86). Genome-wide associa-
tion studies exploited in alfalfa highlighted the polygenic 
control of forage quality traits, and the genetic control for 
a given trait is different in leaves and stems. The study 
identified SNPs for stem protein content and also a ge-
nomic region on chromosome 8 linked with leaf ADL (acid 
detergent lignin) (89). 

Transcriptomics is the study of the transcriptome, 
which comprises every RNA transcript generated within a 
cell or tissue by the genome of an organism. It is a power-
ful tool for studying gene expression in response to differ-
ent stimuli over specific time frames. Initially, methods like 
cDNAs-AFLP, differential display-PCR (DD-PCR), and sup-
pression subtractive hybridization PCR (SSH-PCR) were 
used for transcriptome analysis, but they didn't offer a 
complete resolution. However, advanced techniques such 
as microarrays, digital gene expression profiling, next-
generation sequencing, RNA sequencing, and Serial Analy-
sis of Gene Expression (SAGE) have revolutionized RNA 
expression profiling (90). Elymus sibiricus, a significant for-
age grass in the Qinghai-Tibet region, faces challenges in 
commercial seed production due to its tendency for high 
seed shattering. The transcriptome analysis of two con-
trasting E. sibiricus genotypes (XH09 and ZhN03) was car-
ried out to identify the candidate genes involved in the 
seed shattering habit. Quantitative real-time PCR (qRT-
PCR) validated the expression profiles of 10 candidate 
transcripts involved in cell wall-degrading enzymes, lignin 
biosynthesis, and phytohormone activity. Eight of these 
genes were up-regulated in the low seed shattering geno-
type ZhN03, indicating their potential role in reducing seed 
shattering (91). 

Not all transcripts are translated into proteins, and 
post-translational gene regulation plays a crucial role in 
gene expression, and there is no correlation between tran-
script abundance and protein content. Thus, proteomics 
techniques help in analyzing total expressed proteins and 
their quantities, including post-translational modifications 
such as phosphorylation, acetylation, glycosylation, 
prenylation, sulfation, and ubiquitination (88). It is catego-
rized into sequence, structural, functional, and expression 
proteomics. Sequence proteomics identifies the sequence 
of amino acids using high-performance liquid chromatog-
raphy. Structural proteomics identifies protein structure 
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through computer-based modeling, and experimental 
methods, including crystallization, electron microscopy, 
nuclear magnetic resonance (NMR), and the X-ray 
diffraction of protein crystals. Functional proteomics iden-
tifies the function of the protein by different methods, 
such as yeast one or two hybrids and protein microarray 
profiling (90). 

Metabolomics is the study of metabolites present in 
a cell or tissue under specific conditions. The metabolome 
reflects the cell's phenotype, is influenced by environmen-
tal effects or mutations, and affects gene expression and 
protein function (92). Proteomics identifies only gene 
products, whereas metabolomics recognizes the protein 
expressions metabolically and the biochemical pathway 
that plays a crucial role in the functioning of the gene (90). 
Nuclear magnetic resonance (NMR) spectroscopy and 
mass spectrometry (MS) are the most commonly used 
techniques of metabolomics. Two common MS-based 
analyses are gas chromatography-mass spectrometry (GC-
MS) and liquid chromatography-mass spectrometry (LC-
MS). These high-throughput instruments play a vital role in 
providing necessary data for further research in the field of 
metabolomics (92). 

Accurate phenotyping information is required for 
selecting a breeding program in all genomics techniques, 
such as linkage and association mapping, genome-wide 
association studies, marker-assisted selection, genome-
assisted selection, haplotype-based breeding, etc. Howev-
er, collecting accurate phenotyping information is chal-
lenging, particularly in large-scale breeding programs 
where thousands of genotypes are screened per year at 
multiple locations. The challenge is more complicated for 
fodder crops, where multi-cuts are performed every sea-
son. The development of recent phenomics tools has the 
potential to phenotype various agronomical and nutrition-
al traits in fodder crops, which can aid in overcoming this 
challenge (86). 

Crop phenomics is defined as the multidisciplinary 
study of high throughput accurate acquisition and analysis 
of multidimensional phenotypes on an organism-wide 
scale through crop development (93). The phenotyping 
platforms are categorized into three types based on their 
imaging level: microscopic, ground-based, and aerial. 

These platforms allow the characterization of phenotypic 
traits at different levels of plant organization, including 
tissue, organ, individual plant, plot, and field (94). Assess-
ment of large breeding populations in Lucerne for herbage 
accumulation (HA) and determining the dry matter con-
tent by drying consumes more time and is highly expen-
sive. The efficiency of HA yield can be increased by the use 
of high throughput phenotyping (HTP). Phenomics-
assisted selection has been practised in Lucerne for herb-
age accumulation using unmanned aerial vehicles (UAVs) 
equipped with sensors. Estimation of four vegetation indi-
ces such as normalized difference vegetation index (NDVI), 
green normalized difference vegetation index (GNDVI), 
normalized difference red edge (NDRE), and green and red 
ratio Vegetation Index (GRVI) with the help of multispectral 
cameras showed a high correlation with HA. Additionally, 
data from spatial analysis controlled field variation and 
increased the heritability for both HA and NDVI (95). Simi-
larly, (96) reported that UAV-based high-throughput phe-
notyping (HTP) enhanced the selection efficiency for alfal-
fa biomass in small plots with spatial models, improving 
the estimation of genetic parameters and the accuracy of 
family selection. Traditional methods for assessing forage 
quality traits such as CP, ADF, and NDF used hazardous 
chemicals (97) but have largely been replaced by near-
infrared spectroscopy (NIRS), which is now the most wide-
ly used technique. However, NIRS requires proper sample 
preparation and standardization, as the spectral readings 
are highly influenced by particle size (98). In contrast, port-
able spectroradiometers allow in situ, non-destructive 
measurements with a broader spectral range (350-2500 
nm), capturing visible light absorption peaks where plant 
pigments are identified, unlike NIRS devices (750-2500 nm) 
(99). Several studies have reported the use of hyperspec-
tral devices for predicting nutritive traits such as CP, NDF, 
and NDFd (NDF digestibility) (100) and biomass yield 
(101,102). 

The omics approaches discussed above can be 
effectively utilized in forage crops in an integrated manner 
to gain a precise understanding of forage genotypes and 
to expedite forage breeding programs, especially for nutri-
tional traits, in a more efficient manner. Some of the addi-
tional omics studies related to forage nutritional traits are 
provided in Table 3. 

Crop Omics technology Trait of interest References 

Alfalfa  Genomics(GWAS) SNP markers on chromosome 8 linked to acid detergent lignin in leaves. (89) 

Maize Genomics(GWAS and QTL mapping) QTL region identified for low-Cd accumulation. (112) 

Trifolium repens  Metabolome and transcriptome  
Differential gene expression in anthocyanin and proanthocyanidin biosynthet-
ic pathways. 

(113) 

Lolium perenne  GWAS Water soluble carbohydrate accumulation. (114) 

Sorghum GWAS 
Crude protein, acid detergent fiber, neutral detergent fiber, hemicellulose and 
cellulose contents. 

(115) 

Sorghum Transcriptome and Metabolome Dhurrin metabolism (116) 

Oat GWAS β-glucan concentration (117) 

Alfalfa GWAS Lignin content (118) 

Oat Metabolome 
Metabolites such as Xylitol, undecylic, glutamic acid, isofucosterol, linolenic 
and methylmalonic were identified. 

(119) 

Alfalfa GWAS 19 QTL for dry matter yield,15 for ADF content and 15 for protein content. (85) 

Table 3. A summary of various omics studies in forage crops.  
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Future Prospects 

Sustained livestock productivity is feasible only when the 

cattle are fed with sufficient quantity of fodder and bal-

anced nutrients. To meet this, forage cultivars need to 

evolve with greater biomass and dense nutrients. Alt-

hough there are challenges in conventional breeding, par-

ticularly in perennial forages, numerous varieties have 

evolved, which have contributed to partially narrowing 

down the demand-supply gap of fodder requirement. Ex-

ploitation of Bajra x Napier hybrids, a milestone achieve-

ment in wide hybridization, contributed significantly to 

fodder biomass and nutrition of cattle. Further crossing of 

cultivated fodder maize with the teosinte will open up a 

way for the development of multi-tillering perennial fod-

der maize, which would substantially improve the total 

productivity and nutrient composition. The enormous var-

iability observed in the genetic resources of forages has to 

be harnessed through marker assisted breeding, as several 

QTLs have been reported for the quality traits of fodder 

crops. Practical exploitation of MAS would be feasible up-

on validation of some identified QTLs cross-verification in 

different populations or locations and fine mapping of the 

specific genomic regions. Routine regeneration tissue cul-

ture protocols are to be standardised to facilitate the fast-

er genetic transformation of identified candidate genes for 

quality traits. Developments in omics technologies have to 

be exploited to identify the genome sequences/candidate 

genes responsible for enhancing the quality/nutrient traits 

in forages. Therefore, an integrated approach governing 

conventional and biotechnological tools will definitely aid 

the forage breeders in developing nutrient-rich forage 

crops without any green fodder yield penalty, which would 

address the bridging of the demand gap as well as the nu-

tritional security of cattle.   
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