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Abstract   

Principal component analysis (PCA) was used to assess genetic variability 

and identify key yield-contributing traits among 50 rice genotypes 

evaluated over three seasons under saline conditions. The study aimed to 

select promising donor lines for developing salt-tolerant, high-yielding 

cultivars suitable for coastal regions. PCA identified three principal 

components (PCs) that explained 73.19%, 70.34% and 64.81% of the total 

genetic variation in seasons 1, 2 and 3, respectively. Key plant attributes, 

such as grain yield per plant, panicle grain density, total tiller number, and 

productive tiller count, showed significant positive associations with PC1 

across various growth stages, underscoring their crucial role in explaining 

the genetic diversity among the genotypes. Plant height, panicle length and 

hundred-grain weight also emerged as major contributors to variation. The 

PCA biplots consistently demonstrated positive correlations between grain 

yield and traits like panicle length, hundred-grain weight and tillering 

ability. In contrast, days to 50% flowering exhibited a negative association 

with yield. Genotypes G10, G49, G36, G41, G9, G4, G22 and G21 displayed 

favourable combinations of grain yield per plant, identifying them as 

potential donor lines for breeding programs aimed at improving rice yield 

and associated agronomic traits. This comprehensive PCA analysis 

highlights the effectiveness of the approach in capturing genotypic diversity 

and guiding the selection of promising germplasm for targeted trait 

improvement in rice. 
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Introduction   

Rice (Oryza sativa L.), the second most widely cultivated cereal crop, is the 
primary food source for 3.5 billion people worldwide, contributing up to 

50% of the daily caloric intake for Asian populations (1). With the global 

population projected to reach 11.2 billion by 2100 (2), increasing rice 

production is essential to meet future food demands and ensure global 

food security. However, agricultural productivity is increasingly threatened 

by soil salinization, which affects approximately 1 billion hectares globally, 

exacerbated by urbanization, industrialization and rising sea levels (3). 
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Salinity negatively impacts rice growth and yield, 

particularly by affecting yield-contributing traits, making it 

crucial to select genotypes that exhibit tolerance to saline 

soil (4).  

    Principal Component Analysis (PCA) plays a vital 

role in rice breeding by evaluating genetic diversity, 

identifying key components, maximizing variability and 

ranking genotypes. This study employed PCA to assess 

trait correlations and genetic variability among rice 

varieties grown under saline conditions over three 

cropping seasons in Annamalai Nagar, a coastal region in 

Tamil Nadu affected by seawater intrusion. The goal was 

to identify rice varieties with salinity tolerance based on 

yield and related traits using PCA biplot analysis, providing 

valuable insights for plant breeders in selecting donor 

varieties for developing salt-tolerant high-yielding rice 

cultivars suited to coastal saline soils. 

 

Materials and Methods 

The study was conducted over three seasons, from 
January 2022 to June 2023, at the Genetics and Plant 

Breeding experimental farm of the Faculty of Agriculture, 

Annamalai University, Tamil Nadu. The site is located at a 

latitude of 11°24'N, longitude 79°44'E, and an elevation of 

5.79 meters. Soil electrical conductivity (EC) was measured 

at the start of the experiment using a Systronics 

conductivity meter, with value recorded at 3.1, 3.0 and 3.1 

dsm-1, for seasons 1, 2 and 3, respectively.  

 The experimental sample included 50 genotypes 

sourced from the University of Agricultural Sciences, 

Bangalore (Table 1). Seedlings, aged 25 days, were 

transplanted into the main field using a Randomized Block 

Design (RBD) with three replications. Observations were 

recorded according to the Standard Evaluation System (5), 

with data collected from five randomly selected plants per 

genotype in each replication. The parameters evaluated 

included day to 50% flowering, plant height (cm), panicle 

length (cm), number of tillers per panicle, productive 

tillers per plant, grains per panicle, weight of a hundred 

seeds (g) and grain yield per plant (g).  

    Agronomic practices were followed as per standard 

recommendations based on crop requirements. Principal 

component analysis (PCA) was employed to identify traits 

contributing most to the variation among the 50 

genotypes across the three seasons. Principal components 

(PCs) were computed using STAR and XLstat software, 

derived from the mean values of eight quantitative traits 

across the 50 genotypes. 

 

Results and Discussion  

Eigenvalues, Proportion of variance and Factor scores 

Eigenvalues, Proportion of Variance Explained, and Factor 

scores of yield and its contributing traits for different PCs 

across all three seasons are provided in Table 2. In each 

season, the PCA identified three PCs (PC1, PC2 and PC3) 

with an eigenvalue greater than 1. An Eigenvalue greater 

than 1 indicates that the corresponding principal 

component accounts for more variance than any single 

original variable, suggesting that these three principal 

components capture a significant portion of the total 

genetic variation present among the rice genotypes 

studied. The cumulative percentage of variation explained 

by these three principal components was 73.19% in 

season 1, 70.34% in season 2 and 64.81% in season 3. 

These high percentages indicate that a substantial amount 

of the total genetic variation among the genotypes is 

represented by these three principal components. In 

contrast, the remaining five principal components 

accounted for only 26.81%, 29.66% and 29.56% of the 

variation in seasons 1, 2 and 3, respectively, indicating that 

a relatively small portion of the total genetic variation is 

explained by these components. A similar trend was 

reported in a 2021 study (6). 

 Table 2 illustrates the contribution of eight 

quantitative traits to the principal components across 

seasons 1, 2 and 3. The principal component analysis 

(PCA) conducted over the three seasons revealed 

differences in how various quantitative traits contributed 

to the genetic diversity among the rice genotypes. The 

analysis highlighted how each trait influenced the 

observed variability, its relationship with the principal 

components and the potential impact on genotype 

performance, as indicated by positive and negative 

loadings on the PCs. The cut-off limit for the coefficients of 

the principal component vectors was established based on 

guidelines from a study (7). Coefficients exceeding 0.3 

were considered to have a significant impact, while those 

below 0.3 were deemed to have minimal influence on the 

overall variation. 

Code Genotypes Code Genotypes Code Genotypes Code Genotypes Code Genotypes 

G1 PS267 G11 AC35361 G21 Vandana G31 AC39020 G41 B62655 

G2 AC35548 G12 JBT37/89 G22 CTH-1 G32 KRH2 G42 AC35415 

G3 PS360 G13 PS367 G23 PS376 G33 JBT36/169 G43 PS307 

G4 AC35450 G14 PS259 G24 BPT-5204 G34 JBT36/119 G44 PS242 

G5 AC36110 G15 PS91 G25 AC35187 G35 JBT36/79 G45 JBT38/116 

G6 PS36 G16 AC39010 G26 S-9 G36 JBT37/29 G46 JBT36/114 

G7 AC32525 G17 AC35170 G27 Dodda batta G37 AC35406 G47 TRY 3 

G8 PS366 G18 JBT38/96 G28 AC35066 G38 THANEE G48 IR 36 

G9 JBT37/85 G19 PS325 G29 JBT73/164 G39 PS329 G49 CSR 27 

G10 JBT37/154 G20 AC35135 G30 AC35298 G40 AC35341 G50 ADT 46 

Table 1. List of 50 rice genotypes used in the study 
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 In season 1, the traits number of tillers per plant 

(0.4469), number of productive tillers per plant (0.4297), 

grains per panicle (0.4481) and grain yield per plant 

(0.4782) exhibited high positive loadings on PC1, 

underscoring their significant role in the observed 

variability. These traits are valuable for enhancing yield 

and yield-related components in rice breeding programs, 

as they are positively correlated. Plant height (0.6755) and 

panicle length (0.5590) showed positive loadings on PC2, 

indicating their positive contribution to the variability 

captured by this component. These findings align with 

previous research (8). Conversely, plant height (-0.4756) 

and hundred seed weight (-0.7319) displayed negative 

loadings on PC3, suggesting an inverse relationship with 

the variability represented by this component. Similar 

results were reported in another study (9). 

 In season 2, the traits panicle length (-0.3746), grain 

yield per plant (-0.3298), grains per panicle (-0.4572), 

number of tillers per plant (-0.4696) and number of 

productive tillers per plant (-0.5098) showed negative 

loadings on PC1, indicating that genotypes with higher 

scores on this component are likely to underperform in 

these desirable traits. Conversely, plant height (0.6424) 

and days to fifty percent flowering (0.5115) exhibited 

positive loadings on PC2, while hundred seed weight (-

0.3531) showed a negative loading. In PC3, the number of 

tillers per plant (-0.3508) had a negative loading, whereas 

fifty percent flowering (0.6482), grain yield per plant 

(0.4955) and panicle length (0.4163) displayed positive 

loadings. These findings are consistent with previous 

study (8). 

 In season 3, the traits total tillers number (-0.43), 

productive tillers number (-0.5156), panicle length (-

0.3624), grains per panicle (-0.3236) and grain yield per 

plant (-0.4407) demonstrated negative loadings on PC1, 

indicating these traits contribute negatively to the 

variability captured by this component. Grains per panicle 

(-0.5345) also had a negative loading on PC2, while 

hundred seed weight (0.4557), plant height (0.4225) and 

days to fifty percent flowering (0.3231) exhibited positive 

loadings. On PC3, days to fifty percent flowering (-0.5513), 

panicle length (-0.4884) and plant height (-0.4572) showed 

negative loadings, whereas the number of tillers per plant- 

(0.4332) had a positive loading. These results are 

consistent with findings from previous studies (10, 11). 

 The differing PCA results across seasons indicated 

that environmental factors and seasonal conditions 

significantly influenced trait performance, leading to 

varying associations between agronomic traits and yield. 

In Season 1, key yield-related traits such as the number of 

tillers per plant, grains per panicle and grain yield per 

plant exhibited strong positive correlations, collectively 

contributing to increased yield, as evidenced by their high 

positive loadings on PC1. However, in Seasons 2 and 3, 

many of these same traits showed negative loadings on 

PC1, suggesting that environmental stress or suboptimal 

growing conditions negatively impacted these traits, 

resulting in lower yield performance. This shift in the 

importance of traits highlighted the complex interactions 

between genotype and environment. While favorable 

conditions in Season 1 enhanced yield components, 

potential stress factors, such as a saline environment, in 

Seasons 2 and 3 may have disrupted these relationships. 

 Trait associations common across all seasons, such 

as the positive influence of plant height and the mixed role 

of flowering time, underscore the complexity of trait 

selection in plant breeding. Plant height consistently 

demonstrated a positive correlation with yield throughout 

all seasons, establishing it as a valuable trait for yield 

improvement; however, an intermediate height is 

recommended to prevent lodging. Days to fifty percent 

flowering exhibited mixed associations, with earlier 

flowering benefiting yield in season 1, while delayed 

flowering in the subsequent seasons enhanced resilience 

under stress conditions. Hundred seed weight consistently 

displayed a negative association with yield, likely due to a 

trade-off between seed size and seed number. Breeding 

programs should prioritize traits that consistently enhance 

yield stability, such as optimal plant height while 

balancing traits that may have trade-offs, such as hundred 

seed weight. 

 SEASON 1 SEASON 2 SEASON 3 

TRAITS PC1 PC2 PC3 PC1 PC2 PC3 PC1 PC2 PC3 

DFF -0.200 0.291 -0.476 0.080 0.512 0.648 0.125 0.323 -0.551 

PH -0.125 0.676 -0.235 -0.109 0.642 -0.060 -0.226 0.423 -0.457 

NTPP 0.447 -0.113 -0.159 -0.470 0.219 -0.351 -0.430 0.292 0.433 

NPTPP 0.430 -0.253 -0.092 -0.510 0.161 -0.157 -0.516 0.139 0.140 

GPP 0.448 0.256 0.117 -0.457 0.070 0.009 -0.324 -0.535 0.003 

PL 0.295 0.559 0.366 -0.375 -0.230 0.416 -0.362 -0.300 -0.488 

HSW 0.210 -0.033 -0.732 -0.208 -0.353 -0.098 -0.229 0.456 0.114 

GYPP 0.478 0.061 -0.041 -0.330 -0.263 0.496 -0.441 -0.171 -0.169 

Eigenvalue 3.511 1.238 1.106 3.135 1.534 0.958 2.533 1.493 1.159 

Proportion of Variance 0.439 0.155 0.138 0.392 0.192 0.120 0.317 0.187 0.145 

Cumulative Proportion 0.439 0.594 0.732 0.392 0.584 0.703 0.317 0.503 0.648 

Table 2. Eigenvalues, Proportion of Variance Explained and Factor scores of the First Three Principal Components Across Three Growing Seasons. 

DFF - Days to fifty percent flowering, PH - Plant height, NTPP - No. of tillers per plant, NPTPP - No. of productive tillers per plant, GPP - Grains per panicle, PL - 
Panicle length, HSW - Hundred seed weight, GYPP - Grains yield per plant, PC - Principal component 
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 Across all three seasons, traits including days to fifty 

percent flowering, grain yield per plant, number of 

productive tillers per plant, plant height, number of tillers 

per plant, panicle length, grains per panicle and hundred 

seed weight emerged as significant contributors to the 

observed genetic diversity. Similar findings have been 

reported in other studies (10,12). Grain yield, grains per 

panicle and tillers per plant are examples of desirable 

traits with positive loadings on the principal components, 

indicating their contribution to the observed variability. In 

plant breeding, identifying superior genotypes for these 

traits may involve selecting genotypes with high scores on 

these principal components. Conversely, genotypes with 

high scores on components associated with negative 

loadings may perform poorly for those traits. By 

considering both the positive and negative loadings of 

traits across multiple principal components, breeders can 

select genotypes with desirable trait combinations, 

identify potential donors for specific traits and ultimately 

develop improved rice varieties with targeted trait 

enhancements. 

Scree plot Analysis 

The scree plot illustrated the percentage of variation 
accounted for by each Eigenvalue across the principal 

components (Fig. 1 - Fig. 3). In season 1, PC1 demonstrated 

the highest variation of 43.89%, with an eigenvalue of 3.51, 

outperforming the other PCs. This suggests that selecting 

genotypes based on their scores on PC1 would be 

beneficial for improving traits that significantly contribute 

to this component, namely total tiller number, grain yield 

per plant, grains per panicle and total productive tillers. In 

seasons 2 and 3, PC1 accounted for 39.19% and 31.66% of 

the variability, with eigenvalues of 3.13 and 2.53, 

respectively, maintaining its position as the highest among 

all components in both seasons. Similar findings have 

been reported in previous studies (11,13). PC1 was found 

to be the most reliable in explaining the maximum 

variation in the dataset across the three seasons, 

highlighting its significance in representing total genetic 

diversity. While environmental factors contributed to 

some variation in specific traits associated with PC1, yield-

related traits such as the number of productive tillers per 

plant, number of tillers per plant, grains per panicle, 

panicle length and grain yield per plant emerged as the 

major contributors. Breeders can identify desirable 

genotypes with favorable combinations of these 

important yield-related traits by focusing on those with 

high scores on PC1, which captures a substantial portion 

of the total variability. In breeding initiatives aimed at 

enhancing rice grain yield and related components, these 

genotypes can be prioritized during selection and 

considered as potential donors. 

Biplot Analysis 

The biplot diagrams (Fig. 4 - Fig. 6) illustrate the 
distribution and nature of diversity among genotypes and 

quantitative traits in relation to PC1 and PC2 across all 

three growing seasons. The PCA biplots revealed both 

consistent and divergent patterns in the traits contributing 

most to genotypic variation.  

 Across all seasons, the total tillers number 

consistently had the longest vector (Fig. 4 - Fig. 6), 

indicating that it was the primary driver of divergence 

among the genotypes. Similar findings have been 

documented in other studies (14), suggesting that 

variation in tiller production was a key factor 

distinguishing the performance of different genotypes 

throughout the study. However, the secondary traits 

contributing to genotypic variations differed slightly 

between seasons.  

 In season 1, productive tillers, grains per panicle, 

and plant height (Fig. 4) emerged as the other major 

contributors to genotypic divergence, which is consistent 

with the results of earlier studies (15,16). In season 2, the 

number of productive tillers per plant and grains per 

panicle (15) were the next most influential traits after total 

tillers number (Fig. 5). In contrast, in season 3, days to fifty 

percent flowering and productive tillers per plant (Fig. 6) 

were the secondary drivers of divergence. These seasonal 

Fig. 1. Scree Plots Illustrating the Eigenvalues and Percentage of Variance 
Explained by Principal Components for Season 1. 

Fig. 2. Scree Plots Illustrating the Eigenvalues and Percentage of Vari-
ance Explained by Principal Components for Season 2. 

Fig. 3. Scree Plots Illustrating the Eigenvalues and Percentage of Vari-
ance Explained by Principal Components for Season 3. 
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variations in key traits suggest that the relative 

importance of different yield-related traits may have been 

influenced by shifting environmental or management 

factors. The inclusion of days to fifty percent flowering as a 

key trait in season 3 implies that flowering time played a 

role in differentiating the genotypes during that particular 

year. Overall, the PCA biplots highlight the multifaceted 

nature of the genotypic diversity present, with tillering, 

panicle characteristics and flowering time emerging as the 

primary axes of variation across the three growing 

seasons.  

 The PCA biplots revealed consistent patterns in the 

relationships between various quantitative traits and grain 

yield per plant (GYPP) across the three growing seasons. In 

all seasons, a common set of traits showed a positive 

correlation with grain yield per plant, including panicle 

length (PL), hundred seed weight (HSW), and tillering traits 

such as the number of productive tillers per plant and total 

tillers per plant (8,17). The vectors for these traits 

consistently pointed in the same direction as the grain yield 

per plant vector, indicating a favorable association. 

Conversely, the duration to fifty percent flowering exhibited 

a negative correlation with grain yield per plant in both 

seasons 1 and 2, as its vector was oriented opposite to the 

grain yield per plant vector (17). The relationship between 

grains per panicle and grain yield per plant varied across 

seasons. In seasons 1 and 2, grains per panicle positively 

correlated with grain yield per plant (18). However, in 

season 3, the grains per panicle vector showed a slightly 

negative orientation relative to grain yield per plant (8). This 

variation suggests that while traits related to plant stature, 

yield components and phenology were consistently 

important determinants of grain yield, the specific 

relationships between individual traits and grain yield per 

plant may have been influenced by the unique 

environmental conditions of each growing season. 

 Regarding grain yield per plant, the top- performing 

genotypes in season 1 were G10 and G49; in season 2, G36, 

G41 and G9 and in season 3, G4. Genotypes G21 and G22, 

placed in the same quadrant and direction as grain yield per 

plant across seasons two and three, may be considered 

outstanding performers for yield. Given the positive 

correlation between grain yield per plant and several other 

traits, selecting genotypes based on this characteristic is 

likely to improve performance in those associated traits. 

The consistent identification of superior-performing 

genotypes across the three seasons highlights the value of 

PCA biplot analysis in distinguishing germplasm with 

favorable and unfavorable trait combinations for grain 

yield. This information can be used to select appropriate 

donor parents for future breeding efforts aimed at 

improving grain yield and related agronomic 

characteristics. 

 

Conclusion   

Principal component analyses were conducted across 

three seasons to identify key traits and genotypes for 

improvement in rice. The results highlighted that tiller 

production, panicle attributes and flowering time 

consistently contributed to genotypic diversity. Productive 

tillers, panicle length, and hundred-seed weight emerged 

as favourable as favourable yield-related characteristics. 

Genotypes such as G10, G49, G36, G41, G9, G4, G21 and G22 

demonstrated more effective combinations of these 

desired traits, particularly in their ability to balance 

important yield components under saline conditions 

across multiple seasons.  

Fig. 4. PCA biplot for PCA 1 Vs PCA 2 for season 1.  

Fig. 5. PCA biplot for PCA 1 Vs PCA 2 for season 2.  

Fig. 6. PCA biplot for PCA 1 Vs PCA 2 for season 3. 
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 The consistent superior performance of these 

genotypes, especially under stress-prone conditions, 

suggests that they may possess inherent salinity tolerance. 

Their ability to maintain key agronomic traits, such as tiller 

number, panicle length and grain yield, indicates potential 

physiological adaptations to salinity stress, including 

efficient ion regulation, osmotic adjustment and stress 

avoidance mechanisms. Further studies are required to 

confirm these adaptive traits. Therefore, these genotypes 

hold great promise as valuable resources for breeding 

programs focused on enhancing rice productivity in saline 

environments.  
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