
Plant Science Today, ISSN 2348-1900 (online) 

 OPEN ACCESS 

ARTICLE HISTORY 
Received: 13 July 2024 
Accepted: 30 September  2024 
Available online 
Version 1.0 : 02 November 2024 
Version 2.0 : 10 November 2024 

Additional information 
Peer review: Publisher  thanks Sectional 
Editor and the other anonymous reviewers for 
their contribution to the peer review of this work. 

Reprints & permissions information is 
available at https://horizonepublishing.com/
journals/index.php/PST/open_access_policy 

Publisher’s Note: Horizon e-Publishing 
Group remains neutral with regard to 
jurisdictional claims in published maps and 
institutional affiliations. 

Indexing: Plant Science Today, published 
by Horizon e-Publishing Group, is covered by 
Scopus, Web of Science, BIOSIS Previews, 
Clarivate Analytics, NAAS, UGC Care, etc 
See https://horizonepublishing.com/journals/
index.php/PST/indexing_abstracting 

Copyright: © The Author(s). This is an open-
access article distributed under the terms of 
the Creative Commons Attribution License, 
which permits unrestricted use, distribution 
and reproduction in any medium, provided 
the original author and source are credited 
(https://creativecommons.org/licenses/
by/4.0/) 

CITE THIS ARTICLE 
Kumar S, Kumar A, Sen H,  Janeja HS, Maity 
S, Banerjee S, Singh P, Arun M. Channapur. 
Small Millets: A Multifunctional Crop for 
Achieving Sustainable Food Security under 
Climate Change. Plant Science Today. 2024; 
11(4): 1220-1229. https:/doi.org/10.14719/
pst.4113 

Abstract  

Millets, a varied collection of small-seeded crops from the Poaceae family, are 

re-emerging as a viable alternative for sustainable food and nutritional 

security in the context of climate change. Historically a staple in India, millet 

consumption declined during the Green Revolution due to emphasis on rice 

and wheat. However, their nutritional enrichment and climate resilience are 

rekindling interest. Over ten millet species, including sorghum, pearl, and 

finger millet, are cultivated globally and thrive in marginal lands with minimal 

water and low nutrients. Their C4 photosynthetic pathway enhances water-

use efficiency, making them suitable for hot, dry climates. Despite their 

benefits, millets face challenges, such as consumer preferences for rice and 

wheat and vulnerabilities to extreme weather events. Nevertheless, they offer 

significant nutritional advantages, including high levels of dietary fiber, 

essential amino acids, vitamins, and minerals. India is a leading millet 

producer, cultivating various types and experiencing a recent production 

surge. Investigations into the resilience of millets underscore their capacity to 

endure environmental stresses. Strategies for improving millet crops include 

conventional breeding, mutation breeding, and advanced techniques like 

CRISPR-Cas9. Bio-fortification efforts aim to address micronutrient 

deficiencies, with promising results in finger millet varieties. Advancements in 

genetic engineering and genome editing tools are revolutionizing millet 

improvement. The pangenome concept, which explores genetic diversity 

within species, offers a framework for developing enhanced cultivars. 

Integrating wild millet varieties into breeding programs can further unlock 

their potential. Comprehensive policy initiatives supporting millet cultivation, 

research, and public awareness are crucial for promoting these nutrient-rich 

grains, enhancing food security, and fostering sustainable agriculture. 
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Introduction  

Millets have re-emerged as a potential crop for sustainable food and 

nutritional security in the face of climate change. Once a staple food in 

India, their consumption declined due to the Green Revolution's focus on 

high-yielding cereals like rice and wheat (1). However, a renewed interest 

stems from their exceptional nutritional profile and remarkable resilience to 

harsh environmental conditions. 
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Over ten millet species are cultivated globally, 

including Sorghum bicolor (sorghum), Pennisetum 

glaucum (pearl millet), Eleusine coracana (finger millet), 

Panicum sumatrense (little millet), Setaria italica (foxtail 

millet), Panicum miliaceum (proso millet), Echinochloa 

esculenta (barnyard millet), Paspalum scrobiculatum (kodo 

millet), Urochloa ramosa (browntop millet), Fagopyrum 

esculentum (buckwheat millet), and Amaranthus caudatus 

(amaranth millet). These grains are categorized into naked 

(finger millet, pearl millet, sorghum) and husked (kodo 

millet, foxtail millet, little millet) varieties based on the 

presence or absence of a rigid outer hull (2). 

Small millets demonstrate exceptional adaptability. 
Unlike major cereals with high fertilizer requirements, they 

thrive in marginal lands with low nutrient availability and 

minimal water resources. Their short life cycles, inherent 

pest and disease resistance, and extended shelf life 

contribute to their suitability for rain-fed regions of Africa 

and Asia, where millets were first domesticated millennia 

ago (3). Dwivedi et al. (4) highlight their remarkable 

tolerance to environmental stresses, including drought, 

heat, and low soil fertility. This resilience allows them to 

flourish in challenging environments where other crops 

struggle. 

Millets possess a unique advantage in the form of 

the C4 photosynthetic pathway. Unlike the C3 pathway 

used by major cereals like rice and wheat, C4 

photosynthesis employs a more efficient mechanism for 

carbon dioxide fixation. This allows millets to concentrate 

CO2 around the enzyme responsible for its assimilation, 

boosting their photosynthetic efficiency, particularly in hot 

and dry environments (5). While the C4 pathway requires 

slightly more energy, the benefits outweigh the 

drawbacks. This enhanced efficiency translates into 

improved water-use efficiency, allowing millets to thrive in 

conditions where C3 plants struggle (6). 

Beyond their hardiness, millets offer a plethora of 

nutritional benefits. They are rich in dietary fiber, essential 

amino acids, vitamins, and storage proteins (7). Despite 

these advantages, consumer preference for rice, wheat, 

and maize has limited millet consumption and research 

efforts due to factors like taste, texture and higher yields 

(8,9,10). 

Asia and Africa remain the primary centers for millet 

production and consumption. India is the world's largest 

producer, accounting for roughly 80% of Asia's and 20% of 

global millet production. Notably, India cultivates all 

millet varieties and ranks the fifth-largest exporter (11, 12). 

Rajasthan, Maharashtra, Karnataka, Gujarat, and Madhya 

Pradesh lead millet production in India. Sorghum and 

pearl millet dominate Indian production, constituting 

nearly 90% of the national output (13, 84, 85). The 

remaining 10% comprises finger millet, proso millet, 

foxtail millet, and other small millet (Table 1, Figure 1). 

Encouragingly, India witnessed a 27% increase in millet 

production during 2021-22, reaching 15.92 million metric 

tons (14). This upsurge signifies a growing recognition of 

millet’s potential in a climate-changing world. 

Climate change poses a substantial risk to global 

food security since the heightened frequency and severity 

of extreme weather events such as droughts, floods and 

heat waves adversely affect agricultural production. 

Millets, however resilient, are not exempt from these 

problems. Prolonged droughts can induce water stress 

across various growth stages, affecting germination, 

flowering, and crucial grain development. Finger millet, in 

particular, exhibits sensitivity to changing rainfall 

patterns. Inconsistent or unpredictable rainfall can lead to 

uneven germination, hindered crop establishment and 

ultimately, reduced yields. Conversely, excessive rainfall 

events can create water-logging conditions, promoting the 

development of root rot diseases. 

While climate change threatens crop productivity, 

millet can also play a vital role in mitigating nutritional 

deficiencies associated with changing weather patterns. 

Finger millet, for example, is a valuable source of iron and 

zinc, essential micronutrients often deficient in diets, 

particularly in developing countries. This inherent 

nutritional richness makes finger millet a promising 

candidate for biofortification programs, aiming to develop 

crops with enhanced micronutrient content (15). Recent 

research has identified fifteen potential candidate genes in 

finger millet that potentially regulate iron and zinc 

homeostasis. These genes, with high sequence similarity 

to their counterparts in major cereals like rice, wheat, 

maize, barley and foxtail millet, offer exciting avenues for 

biofortifying other cereal crops (16). 

This review delves deeper into the scientific basis 

for millet resilience, exploring their physiological 

adaptations. It also emphasizes the scientific evidence of 

climate change's impact on millet production, introduces 

the concept of bio-fortification and highlights finger 

millet's potential in addressing micronutrient deficiencies.  

Figure 1. Status of millet production in India (84, 85)  

Regions 
The Area (lakh 

hectares) 
Production  
(lakh tons) 

India 138(20%) 173 (20%) 

America 53 (7%) 193 (23%) 

Europe 8 (1%) 20 (~2%) 

Asia 162 (23%) 215 (25%) 

Australia& New 
Zealand 

6 (~1%) 12 (~1%) 

Africa 489 (68%) 423 (49%) 

World 718 863 

Table 1: Area and production of millet worldwide (FAO, 2021) . 
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Millets: Champions of Climate Resilience and 

Sustainable Agriculture 

Millets emerge as powerful contenders in the fight against 

climate change due to their exceptional resilience to 

various environmental stresses. Stress, as defined by Dey 

& Raichaudhuri (17), refers to adverse environmental 

conditions that disrupt an organism's normal 

physiological processes. These stresses are abiotic (non-

living) or biotic (living). Abiotic stresses, including 

temperature extremes, drought, flooding, salinity and air 

pollution, are the leading culprits behind significant crop 

losses globally (18). Climate change poses an alarming 

threat, with these stressors becoming increasingly 

prevalent and severe (19). 

Millets: Masters of Water Conservation 

One of the most attractive qualities of millets is their 

exceptional drought tolerance. Unlike major cereals like 

rice and maize, which require significantly higher water 

inputs (20), millets thrive with considerably less water 

during their growth period (21). Typically, millet 

cultivation requires only 350-500 mm of water, contrasting 

rice's minimum requirement of 1100-1250 mm and maize's 

800-1000 mm. This inherent water efficiency makes millets 

a beacon of hope in regions facing water scarcity. The over

-dependence on rice cultivation, a system heavily reliant 

on irrigation, has significantly exacerbated water scarcity 

issues in various parts of India (22). By requiring 

significantly less irrigation, millets offer a sustainable 

alternative, reducing the strain on precious water 

resources (23). 

Short Maturation Periods and Enhanced Efficiency 

Millets possess a significant adaptation characterized by 

an exceptionally brief maturation time spanning 84 to 98 

days. Barnyard millet enhances this efficiency by ripening 

in only 45 to 50 days, almost half the duration required for 

rice, which takes 120 to 140 days. This rapid growth cycle 

allows millets to swiftly complete their life cycle, 

minimizing their vulnerability to prolonged drought. 

Furthermore, millets possess the C4 photosynthetic 

pathway, a powerful mechanism that enhances their 

ability to utilize water and nutrients efficiently (24). This 

pathway promotes water conservation and allows for 

adaptive biomass allocation, improved growth and 

superior tolerance to high temperatures. 

Adaptability to Marginal Lands and Reduced 

Greenhouse Gas Emissions 

Millets demonstrate extraordinary adaptability, thriving in 

marginal lands unsuitable for major cereals due to low 

nutrient content (25). Unlike major cereals requiring 

significant fertilizer inputs, millets exhibit remarkable 

nutrient-use efficiency, excelling in environments where 

other crops struggle. This characteristic expands the 

potential land area suitable for cultivation. 

Moreover, compared to major cereals like wheat, 

rice, and maize, which rely heavily on synthetic fertilizers, 

millets require minimal to no fertilization (26, 27). This 

significantly reduces greenhouse gas emissions associated 

with fertilizer production and use, particularly nitrous 

oxide, a potent greenhouse gas released during nitrogen 

fertilization (28). 

The combined attributes of drought tolerance, 

namely water efficiency, short maturation periods, 

reduced hydraulic conductivity per unit leaf area, and 

minimal fertilizer requirements, establish millets as 

successful model crops for climate-resilient agriculture. 

Millets possess several genes conferring tolerance to 

various abiotic stresses (Table 2). Their ability to thrive in 

marginal lands and their low greenhouse gas footprint 

further contribute to their environmental sustainability. 

The following section will delve deeper into the 

exceptional nutritional profile of millets and their 

potential to address dietary needs in a changing climate. 

S.NO Crop Gene Character References 

1. Foxtail millet SiASR1 Tolerance to drought and oxidative stresses. (60) 

2. Foxtail millet SiARDP  Drought and salt tolerance (61) 

3. Foxtail millet SiLEA14 Salt and osmotic stress tolerance. (62) 

4. Foxtail millet SiDREB2 Drought tolerance. (63) 

5. Foxtail millet SiNF-YB8 Drought and salt tolerance. (64) 

6. Foxtail millet EcHSP17 Heat tolerance (65) 

7. Foxtail millet EcbZIP17 Heat tolerance (66) 

8. Finger millet EcDehydrin7 Drought tolerance. (67) 

9. Foxtail millet SiPHT1 Phosphate homeostasis. (68) 

10. Foxtail millet SiHAK1 Mediation of K homeostasis under K+-deficiency and salt stress. (69) 

11. Foxtail millet SiATG8a Drought and nitrogen starvation tolerance and. (70) 

12. Finger millet Ec-apx1 Drought tolerance. (71) 

13. Finger millet EcbHLH57 Drought and salinity tolerance. (67) 

14. Finger millet EcbZIP60 
Drought, osmotic, salt, and methyl viologen-induced stress 

tolerance. (66) 

15. Finger millet EcGBF3 Drought tolerance. (31) 

16. Finger millet DREB2A Heat tolerance. (72) 

Table 2: Various genes identified in millet conferring tolerance to abiotic stress.  
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Global Status of Millet Germplasm Resources 

The conservation of germplasm resources is paramount 

for safeguarding genetic diversity within a species. This 

diversity serves as a vital foundation for developing 

improved crop varieties with desirable traits, such as 

enhanced yield, disease resistance and improved 

nutritional content (29). Fortunately, a significant 

collection of small millet germplasm exists worldwide, 

with an estimated 133,849 accessions currently 

safeguarded in gene banks (30). 

The International Crops Research Institute for the 
Semi-Arid Tropics (ICRISAT) plays a critical role in this 

conservation effort, meticulously preserving over 10,193 

small millet germplasm accessions from 50 countries (31). 

Notably, Asia holds the majority of these conserved 

accessions (around 64.4%), followed by Africa (13.8%) and 

Europe (13.5%) (32). This geographic distribution reflects 

the historical centers of millet domestication and 

cultivation. 

Specific millet varieties exhibit distinct 

conservation patterns. Foxtail millet germplasm, for 

instance, is primarily preserved in China, India, France, 

and Japan (33). Finger millet collections are mainly 

concentrated in India and various African nations like 

Kenya, Ethiopia, Uganda and Zambia. Proso millet, with 

roughly 29,000 accessions constituting the largest share of 

conserved germplasm, is predominantly preserved in 

Russia, China, Ukraine, and India (34). ICRISAT itself 

safeguards 849 proso millet accessions (35). Kodo millet 

and barnyard millet boast over 8,000 germplasm 

accessions, primarily conserved in India and the USA for 

kodo millet (36) and Japan and India for barnyard millet 

(37). Little millet germplasm, with around 3,000 

accessions, is predominantly found in India (38). 

India shows its strong dedication to the 

conservation of millet germplasm. As of 2022, the ICAR-

Indian Institute of Millet Research (IIMR) has meticulously 

preserved 48,462 millet accessions within their Millet Gene 

Bank (MGB). Furthermore, recent reports indicate the 

characterization of 5472 sorghum and small millet 

germplasm accessions (39). 

Strategies for Millet Improvement: Conventional and 

Advanced Techniques 

Small millets, characterized by self-pollination, offer a 

unique opportunity for crop improvement through various 

breeding methods. Pedigree selection, a cornerstone of 

conventional breeding, has significantly influenced millet 

variety development. This approach involves selecting 

desirable traits from indigenous landraces and refinement 

through controlled hybridizations and subsequent 

selection cycles. It has resulted in the release of 248 small 

millet varieties across six species (Kodo millet, barnyard 

millet, finger millet, foxtail millet, proso millet, and little 

millet) in India. Additionally, the USA has released 19 proso 

millet varieties using similar methods. However, 

hybridization for harnessing heterosis (hybrid vigor) 

presents challenges due to small millets' floral 

morphology and anthesis behavior. The development of 

male sterile lines offers a potential solution to exploit 

heterosis. Currently, finger millet has a single documented 

male sterile line, INFM 95001, utilizing a Genetic Male 

Sterility (GMS) system derived from mutagenesis (31). 

Mutation breeding emerges as another valuable 

tool in overcoming these limitations. This technique has 

led to the development of 13 small millet cultivars in India, 

with a focus on finger millet (8 cultivars), kodo millet (3 

cultivars), and little millet (2 cultivars). Notably, a study by 

Rodiansah et al. (47) demonstrated the successful 

induction of polyploidy in foxtail millet, resulting in plants 

with altered morphology (more diminutive stature and 

seed production) but possessing larger leaves, panicles, 

and bolder seeds. This approach holds promise for 

exploring novel traits. 

Double haploid (DH) technology offers a powerful 

tool for accelerating breeding by significantly reducing 

generation times (48). In foxtail millet, CRISPR-Cas9 

technology has been successfully employed to manipulate 

the SiMTL gene, creating a haploid inducer line (49). This 

advancement paves the way for developing DH lines in 

foxtail millet, potentially expediting breeding cycles (84, 

85). 

The Rise of Advanced Breeding Techniques 

Recent breakthroughs in genome editing tools like zinc-
finger nucleases (ZFNs), transcription activator-like 

effector nucleases (TALENs), and the CRISPR/Cas system 

have revolutionized crop improvement (50). The potential 

of CRISPR is exemplified by the development of "Xiaomi," 

a foxtail millet mutant with a shortened life cycle and 

reduced stature, enabling researchers to achieve five to six 

generations annually in controlled environments. This 

distinctive attribute makes Xiaomi a C4 model plant, an 

excellent research instrument, like Arabidopsis as a C3 

representative. Moreover, CRISPR offers the exciting 

prospect of precisely targeting specific Quantitative Trait 

Loci (QTLs) associated with desirable agronomic traits, 

enabling the development of improved millet varieties 

(51). 

Genetic Engineering for Enhanced Traits 

The first attempts at genetic modification in finger millet 

involved the introduction of the prawn pin gene, 

conferring resistance against the fungal pathogen 

Pyricularia grisea (52). Similar approaches have been 

employed to express rice chitinase (chi11) for resistance 

against leaf blast disease (53). Furthermore, transgenic 

finger millet lines expressing serine-rich protein (PcSrp) 

and mannitol-1-phosphate dehydrogenase (mtlD) have 

demonstrated enhanced salt and drought tolerance (54). 

Notably, Ramegowda et al. (2013) (55) successfully 

developed transgenic finger millet plants (f35S and fBx17) 

expressing OsZIP1, leading to a significant increase in zinc 

and manganese accumulation. Recently, Agrobacterium-

mediated transformation has been established in kodo 

millet (56). These successful applications in finger millet 

and kodo millet provide a foundation for extending 

genetic modification approaches to other small millets, 

accelerating their improvement (31). 
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Biofortification: Addressing Micronutrient Deficiencies 

Efforts are underway to establish biofortified small millet 

cultivars by traditional breeding and recombinant DNA 

technology to combat micronutrient deficiencies in 

developing countries. Finger millet varieties like VR-929 

(Vegavathi), CFMV-1 (Indravati), CFMV-2, and little millet 

CLMV-1 (57) are examples of successful biofortification 

initiatives. These efforts hold immense potential for 

improving nutritional and food security in vulnerable 

populations. 

Pan Genomics and Unleashing Millet Potential 

The pangenome concept serves as a robust framework for 

understanding the complete genetic makeup of a species. It 

covers both the core genome, shared by all individuals, and 

the accessory genome, exhibiting variation among 

individuals (58). This approach provides comprehensive 

information on genomic diversity, including conserved 

elements essential for species survival and variable 

elements contributing to phenotypic variation. While the 

super-pangenome concept delves into genetic diversity 

across an entire genus, its application to small millets 

remains unexplored. Integrating wild millet varieties into 

breeding programs is significant for unlocking these crops' 

resilient potential. Their genetic diversity can be valuable 

for breeders seeking to develop improved cultivars with 

enhanced traits (59). 

Using the pangenome approach, breeders can 

identify and incorporate advantageous genes from 

landraces and wild relatives into cultivated varieties, thus 

developing superior cultivars with enhanced traits such as 

higher yields, improved nutritional content, and better 

stress tolerance (59). This approach has been successfully 

applied in other crops and could significantly accelerate 

genetic improvements in small millets. Breeders can 

develop improved cultivars with improved traits by 

harnessing the genetic diversity within the species and wild 

varieties. Furthermore, policy initiatives promoting millet 

cultivation, research and public awareness play a crucial 

role in the broader adoption and consumption of these 

nutrient-rich grains. This multifaceted approach holds 

immense promise for enhancing food and nutritional 

security and promoting sustainable agricultural practices. 

Challenges and Limitations of Millets 

Although millets are abundant in nutritional value and 

climate tolerance, various hurdles impede their broad 

adoption and use. A key limitation is the existence of 

antinutrients, including tannins, polyphenols, phytic acid, 

and enzyme inhibitors (specifically trypsin and amylase 

inhibitors), which markedly diminish the bioavailability of 

essential minerals (73). These antinutritional factors can 

limit nutrient absorption, potentially negating the inherent 

nutritional advantages of millets (74). Phytates, for 

instance, bind to minerals and inhibit their absorption, 

while tannins can reduce protein digestibility. These 

compounds pose challenges, especially in populations that 

rely heavily on millet as a staple food and are at risk of 

mineral deficiencies. Addressing these challenges involves 

exploring processing techniques such as germination, 

fermentation and malting, which have been shown to 

significantly reduce antinutrient levels in millets. For 

example, fermentation can lower phytate content by up to 

40%, improving mineral bioavailability. Further breeding 

efforts to minimize these antinutrients in millets, thereby 

enhancing their nutritional value, may help promote their 

utilization as a reliable source of dietary minerals (75). 

Future research may include identifying genetic variants 

with naturally low antinutrient levels,  developing 

biofortified varieties that maintain high nutrient content 

while minimizing antinutrients, and exploring enzymatic 

treatments that break down antinutrients during processing

. 

Another critical challenge lies in the insufficient 

conservation efforts for certain millet varieties. While finger 

millet, foxtail millet and proso millet germplasm are 

relatively well-represented in global gene banks, other 

small millets face a significant conservation gap. This leads 

to the potential loss of valuable landraces as farmers shift 

towards cash crops and improved varieties of widely 

cultivated cereals (72). 

Millet production is also significantly hampered by 

various biotic stresses, which pose a substantial threat to 

small-scale farmers' livelihoods and necessitate the 

development of resistant cultivars to enhance the overall 

efficiency and sustainability of millet farming systems (76). 

Blast disease, for instance, can cause yield losses of up to 

88% in finger millet. Similarly, blast, rust and smut pose 

significant threats to foxtail millet, while proso millet suffers 

from sheath blight, bacterial spot and head smut. Other 

small millets, including barnyard millet, kodo millet and 

little millet, are susceptible to grain and head smut, leaf 

spot diseases and shoot fly infestations (77). Stem borers 

further attacks, particularly for finger millet and barnyard 

millet cultivation. 

Lodging presents another challenge in millet 

cultivation. Stem weakness, improper crop management 

practices, and unfavorable environmental conditions can 

contribute significantly to lodging. This can lead to severe 

yield and quality losses, emphasizing the need for 

developing cultivars with enhanced lodging resistance, 

enabling them to withstand challenging environmental 

conditions (78). 

Grain shattering, where mature seeds detach 

prematurely from the panicle, is another critical factor 

contributing to yield losses in millets. This phenomenon 

reduces harvest efficiency and seed quality. Breeding 

programs focused on developing shattering-resistant or 

shattering-tolerant small millets are crucial to minimize 

yield losses and ensure the sustainability of millet-based 

farming systems. 

Thus, overcoming these challenges through targeted 

research efforts on antinutrient reduction, germplasm 

conservation, disease and pest resistance breeding, lodging 

resistance improvement and the development of shattering

-tolerant varieties is essential to unlock the full potential of 

millets and promoting their widespread adoption for more 

sustainable and food-secure future.  
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Opportunities 

Nutritional Powerhouses for Combating Malnutrition 

Small millets are a treasure trove of essential nutrients, 

boasting high levels of iron, calcium, zinc, and dietary fiber. 

Finger millet, for example, contains around 364 mg of 

calcium per 100 g, significantly higher than other cereals 

like rice and wheat. This makes it an excellent option for 

addressing calcium deficiency, particularly in children and 

women prone to osteoporosis. Similarly, small millets like 

kodo and barnyard millet provide 3.5-4 mg of iron per 100 g, 

helping alleviate anemia in regions with iron-deficient diets. 

The high dietary fiber content, especially in foxtail millet (8.0 

g/100 g), supports digestive health and helps regulate blood 

sugar levels, making millet a beneficial addition for diabetic 

individuals (79). This unique nutritional profile positions 

them as a powerful tool for combating deficiencies in 

regions facing micronutrient malnutrition (Table 3). Their 

inclusion in dietary regimes can significantly improve 

overall nutrition and well-being, particularly in vulnerable 

populations.  

Promoting Biodiversity and Sustainable Agriculture 

Cultivating small millets offers a valuable strategy for 
conserving biodiversity. Compared to major cereal crops, 

they have a demonstrably lower environmental impact. 

Conservation of genetic diversity also ensures the 

preservation of essential traits such as nutrient use 

efficiency, early maturation and stress tolerance, which are 

vital for food security in regions facing climatic uncertainties 

(80). Integrating them into agroecological farming systems 

promotes sustainable agricultural practices by fostering 

crop diversity within ecosystems. This diversification 

enriches the agricultural landscape and enhances the 

resilience of agricultural systems in the face of 

environmental challenges. 

Enhancing Crop Rotations and Diversification 

The incorporation of small millets into crop rotation 
strategies presents a multifaceted benefit. These rotations 

disrupt the life cycles of pests and diseases associated with 

major cereal crops, thereby improving pest and disease 

management. Millets’ genetic diversity and pest resistance 

help reduce disease pressure, as they are generally less 

affected by common pests and diseases of major cereals 

like rice and wheat. Small millets enhance soil fertility by 

improving organic matter content and promoting microbial 

activity. Their extensive root systems help break down 

compacted soil, facilitate better water infiltration, and 

increase soil aeration. Their minimal requirement for 

external inputs, such as fertilizers, makes them suitable for 

low-input farming systems, promoting sustainable and 

resilient agricultural practices (81). This approach fosters a 

more sustainable and resilient agricultural landscape.  

Catering to Health and Wellness Trends 

The growing consumer awareness of the nutritional value of 

millet has opened up a vast market potential for millet-

based products. These include innovative food items such 

as gluten-free snacks, healthy beverages, and nutritious 

flours. Millets are particularly well-suited for individuals 

managing diabetes due to their low to moderate glycemic 

index and high dietary fiber content (82). These factors 

contribute to better blood sugar control and promote 

overall health, aligning perfectly with the growing focus on 

preventive healthcare and functional foods. 

Fueling Research and Development 

Millets present a fertile ground for ongoing research and 

development endeavors. Exploring avenues for crop 

improvement, including breeding for enhanced yield, 

increased disease resistance and superior nutritional 

quality, holds immense promise. Additionally, 

advancements in processing technologies and the 

development of optimized agronomic practices can further 

streamline small millet cultivation, making it a more 

attractive proposition for farmers (83). 

Strengthening Food Security in Marginalized Regions 

Small millets demonstrate remarkable adaptability, thriving 

in challenging environments where mainstream crops 

struggle. Their suitability for cultivation in marginalized and 

remote areas makes them a crucial contributor to food 

security and livelihood improvement for populations in 

such regions (1). By promoting the cultivation and 

consumption of small millets, we can empower vulnerable 

communities and build more resilient food systems. 

Consequently, little millets present significant 

opportunities to tackle critical problems in global food 

security, nutrition and agricultural sustainability. By 

harnessing their potential through targeted research, 

development and market expansion efforts, we can unlock 

a brighter future for food systems and human health. 

Food grain 
Carbohyd
rates (g) 

Protein 
(g) Fat (g) 

Energy 
(K.Cal) 

Crude 
fibre (g) 

Mineral 
matter (g) 

Ca 
(mg) P (mg) 

Fe 
(mg) References 

Small millet 

Finger millet 66.82 11.98 1.92 1342 7.16 2.7 392 210 4.72 (40) 

Foxtail millet 60.9 12.3 4.3 331 8 3.3 31 290 2.8 (41) 

Kodo millet 71.80 7.7 4.48 1388 6.12 2.6 39.63 378.65 3.55 (42) 

Little millet 65.55 10.13 3.89 1449 1.93 1.5 16.06 130 1.26 (43,44) 

Proso millet 70.4 12.5 1.1 341 3.91 1.9 14 206 0.8 (43,44) 

Barnyard millet 65.5 6.2 2.2 307 1.75 4.4 20 280 5 (43,44) 

Cereals 

Rice 78.24 6.8 0.52 1491 7.94 0.6 7.49 96 0.65 (45) 

Wheat 64.72 11.8 1.47 1347 10.59 1.5 39.36 315 3.97 (45) 

Maize 73.94 8.90 3.28 365 2.7 21.40 0.7 (46) 

Table 3: Nutrient composition comparison of small millet and fine cereals per (100 g)  
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Conclusion 

Despite sometimes being referred to as "orphan crops" due 
to their lower yields than major cereals, small millets hold 
immense potential for sustainable agriculture and 
enhanced food security. They offer a critical lifeline for 
subsistence farmers, providing sustenance with minimal 
resource requirements. Their integration into diversified 
cropping systems alongside other crops can significantly 
enhance soil health and reduce reliance on chemical inputs. 
This diversification fosters a more resilient and sustainable 
agricultural landscape. 

Establishing robust millet-based value chains 
presents a compelling strategy for creating sustainable 
market opportunities. Investments in millet processing and 
marketing infrastructure can empower farmers by 
improving market access and stimulating economic growth 
in rural areas. As we strive towards a more sustainable 
agricultural future, embracing millets offers a powerful 
solution for fostering resilience, preserving biodiversity, and 
safeguarding cultural heritage. 

Millets are renowned for their remarkable 
adaptability and resilience, thriving in diverse and often 
challenging environmental conditions, including drought-
prone regions and low-nutrient soils. Their frugal water 
requirements make them well-suited for cultivation in arid 
and semi-arid areas. Additionally, millets boast a superior 
nutritional profile and are rich in dietary fiber, essential 
amino acids, vitamins, and storage proteins. Notably, their 
utilization of the C4 photosynthetic pathway enhances their 
overall photosynthetic efficiency. These characteristics 
render millet a significant asset for creating biofortified 
foods amid the problems posed by climate change. 
Moreover, their suitability for low-input agriculture makes 
them an excellent solution for implementing climate-smart 
management techniques. 

In conclusion, adopting small millets in agricultural 
practices presents many benefits for farmers, consumers, 
and the environment. Their role in promoting sustainable 
agriculture, enhancing food security, and fostering climate 
resilience necessitates further research, development, and 
market expansion efforts. By harnessing the full potential of 
these versatile grains, we can cultivate a brighter future for 
food systems and global well-being. 
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