
  

Plant Science Today, ISSN 2348-1900 (online) 

 OPEN ACCESS 

 

ARTICLE HISTORY 

Received: 25 June 2024 
Accepted: 29 September 2024 

Available online 
Version 1.0 : 13 November 2024 

 

 

 

Additional information 

Peer review: Publisher thanks Sectional Editor 
and the other anonymous reviewers for their 
contribution to the peer review of this work. 
 

Reprints & permissions information is avail-
able at https://horizonepublishing.com/
journals/index.php/PST/open_access_policy 
 

Publisher’s Note: Horizon e-Publishing 
Group remains neutral with regard to jurisdic-
tional claims in published maps and institu-
tional affiliations. 
 

Indexing: Plant Science Today, published by 
Horizon e-Publishing Group, is covered by 
Scopus, Web of Science, BIOSIS Previews, 
Clarivate Analytics, NAAS, UGC Care, etc 
See https://horizonepublishing.com/journals/
index.php/PST/indexing_abstracting 
 

Copyright: © The Author(s). This is an open-
access article distributed under the terms of 
the Creative Commons Attribution License, 
which permits unrestricted use, distribution 
and reproduction in any medium, provided 
the original author and source are credited 
(https://creativecommons.org/licenses/
by/4.0/) 
 

CITE THIS ARTICLE 

Karthik DS, Preetha G, Keerthana B, Suganthy 
M, Chitra N, Raja K. Bio-fumigants as grain 
protectants in storage-A review . Plant Sci-
ence Today (Early Access). https://
doi.org/10.14719/pst.4176 

Abstract  

Agriculture is a global lifeline, especially in developing nations like India, 

where over 70% of the population relies on it. Protecting food grains from 

insect pests during post-harvest storage is crucial, particularly in regions 

lacking advanced storage technologies, leading to significant losses. Fumi-

gation is still a key strategy for safeguarding stored grains. Methyl bromide 

(MBr) and aluminium phosphide (AlP) are the widely used chemical fumi-

gants. Phosphine is used to a greater extent today, but there are frequent 

reports that several storage pests have developed resistance to this fumi-

gant. The United Nations World Meteorological Organization declared me-

thyl bromide as an ozone-depleting chemical in 1995, and hence, most of 

the developed countries have phased out its use. Therefore, there is an ur-

gent requirement to develop alternatives having a possible replacement for 

these fumigants. Biofumigants are organic compounds derived from various 

plant sources, including essential oils, botanical powders, and plant resi-

dues or from microbial volatiles. They release volatile compounds toxic to 

pests but safe for humans and the environment, offering a sustainable pest 

management approach. Plants such as mustard and radish produce glucos-

inolates that release isothiocyanates, known for their pesticidal properties. 

Essential oils from eucalyptus, clove, and mint and volatiles from certain 

fungi and bacteria also exhibit fumigant properties. Biofumigants disrupt 

insect physiological and biochemical processes, leading to mortality or re-

duced reproduction. Studies showed their efficacy against pests like red 

flour beetle, lesser grain borer, and rice weevil. Unlike chemical fumigants, 

biofumigants do not leave harmful residues, preserving grain quality and 

aligning with organic farming practices. Shifting to biofumigants offers a 

promising, eco-friendly, and effective alternative for post-harvest pest man-

agement, ensuring food safety and sustainability.   
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Introduction  

India's total food grain production is estimated to be 3,296.87 lakh tonnes, 

which is an increase of 140.71 lakh tonnes compared to the 3,156.16 lakh 

tonnes produced during 2021–22. The total food grain production in India 

has increased significantly due to advancements in new technologies, but 

the rate of postharvest losses remains unchanged at 10% (1). In India, it is 
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estimated that food grains of about 14 million tonnes, val-

ued at around 7000 crores, are lost annually due to storage 

issues. Notably, insects are accountable for causing dam-

age estimated at 1300 crores of these losses (2). Post-

harvest losses encompass the diminution in both the vol-

ume and integrity of agricultural products from the mo-

ment of harvest until they reach the final consumer. This 

decline manifests through several phases, including har-

vesting, sorting, transportation, processing, and storage. 

In less economically developed countries, the magnitude 

of post-harvest losses fluctuates between 20 and 50%, 

contrasting with more economically advanced countries, 

where the range is generally 10 to 20%. The impact of 

these losses is most acutely felt in developing nations, 

affecting economic stability, social well-being, and envi-

ronmental sustainability, thereby exacerbating issues of 

food scarcity (3). It is estimated that by 2050, there will be 

around 9.1 billion people in the world, and there will be a 

need to increase food production by approximately 70% to 

meet the upcoming demands of the increasing global pop-

ulation (4). 

 The stored grains preserved in different storage 

structures are generally attacked by coleopteran and lepi-

dopteran pests. The activity of insect pests is aggravated 

by storing the produce in bags and conducive weather (25–

35°C and 50–80% RH) prevailing in the storage area. Since 

the 1970s, the only fumigant used against stored grain pro-

tection is phosphine (5). Even today, aluminium phosphide 

is the only fumigant recommended and being used in In-

dia. The long-term use of synthetic fumigants has led to 

the accumulation of residues in various environmental 

components (such as water, food, air, and soil), negatively 

impacting non-target organisms, ecosystems, and human 

health. Resistance of stored product insect pests to phos-

phine was also a major problem throughout the world. 

 In recent years, there has been a growing interest in 

studying and evaluating biofumigants for the management 

of stored grain pests in both developing and developed 

countries due to the rise of insect resistance to traditional 

chemical fumigants. Considering the toxic impact of chem-

ical fumigants on non-target organisms and the environ-

mental concerns, biofumigants are being considered as 

alternatives to synthetic fumigants in agriculture and pub-

lic health, and the need for biofumigants arises from the 

shortcomings and potential dangers of conventional 

chemical fumigants along with the growing demand for 

sustainable, organic, and safer methods of food produc-

tion. 

Major Stored Grain Insect Pests              

The majority of stored product pests that infest stored 

grains primarily belong to the insect-order Coleoptera and 

Lepidoptera, representing approximately 60 and 10% of 

the total species of pests affecting stored products, re-

spectively (6, 7). Stored grains are infested by different 

types of insect pests (Table 1), which results in losses both 

qualitatively and quantitatively. In India, the pests red 

flour beetle, Tribolium castaneum (Herbst.), rice weevil, 

Sitophilus oryzae (L.), and pulse beetle, Callosobruchus 

chinensis (L.) are considered significant threats to stored 

grains (8). Insect infestation can also lead to changes in the 

amino-acid and protein composition, available carbohy-

drates, fats, and organoleptic characteristics of stored 

food (9). 

Bio-fumigants          

In recent years, there has been an increasing concern over 

the safety and sustainability of using synthetic chemicals 

for grain protection. Synthetic fumigants such as methyl 

bromide and phosphine, though effective, pose environ-

mental and health risks, and pests have developed re-

sistance to them. This has led to a growing interest in alter-

native, eco-friendly methods for grain preservation (10).  

 Biofumigants are natural substances derived from 

certain plant species, predominantly mustard, radish, and 

brassicas, which release volatile compounds with insecti-

cidal properties. These compounds are found promising in 

controlling a range of pests, including insects and fungi, 

providing an eco-friendly alternative to conventional 

chemical fumigants. Biofumigants originating from plants 

typically exhibit specificity towards different insect spe-

cies, are quickly biodegradable, and have a high level of 

acceptance (11). 

 Biofumigants work primarily by releasing volatile 

organic compounds (VOCs) that have toxic effects on grain 

pests. These compounds interfere with the nervous sys-

tems of insects, resulting in paralysis or death. Additional-

ly, bio-fumigants can inhibit the growth of fungi and molds 

that contribute to the deterioration of grain quality. Biofu-

migation is considered an alternative to traditional fumi-

gation methods and proves to be effective in pest manage-

ment, particularly in the protection of stored product 

pests. Biofumigation involves the utilization of volatile 

chemicals (allelochemicals) emitted from decomposing 

plant matter to control a broad range of pests, insects, 

nematodes, bacteria, fungi, viruses, and weeds (12). Unlike 

synthetic chemicals, bio-fumigants degrade quickly, leav-

ing minimal to no harmful residues in the stored grains. 

This rapid breakdown reduces environmental impact and 

ensures the safety of food products for human consump-

tion (13). 

Plant Derived Biofumigants         

Plants, as natural chemical factories, produce a variety of 

bioactive organic compounds primarily for defense against 

insect pests (14). These compounds emit volatile odors, 

hence referred to as plant volatile organic compounds 

(VOCs). Traditionally, farmers globally have utilized these 

compounds in combating pests that attack stored grains. 

Numerous volatile compounds from plants and their con-

stituents have effectively been employed as powerful fu-

migants to combat insect pests in stored grains (15–17). 

 The fumigant toxicity is from 75 different plant spe-

cies across many families, including Rutaceae, Anacardi-

aceae, Zingiberacea, Chemopodiaceae, Graminaceae, Cu-

pressaceae, Lamiaceae, Lauraceae, Apiaceae, Pinaceae, 

Asteraceae, Araceae, Myrtaceae, Brassicaceae (Cruciferae), 

and Liliaceae, which are demonstrated for their efficacy 
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against stored grain pests (17, 18). Volatile compound 2, 3-

Dimethylmaleic anhydride, with a maximum yield of 

0.38%, extracted from the rootstock of a taro vegetable, 

Colocasia esculenta, has been discovered to exhibit toxicity 

against a wide diverse insect species when utilized as a 

fumigant (18). 

 Coumaran, a biofumigant extracted from the Lanta-

na camara, has been identified as toxic for adult speci-

mens of T. castaneum, C. chinensis, and S. oryzae, exhibit-

ing LC50 values of 0.27, 0.38, and 0.45 μg/L after a 24 h ex-

posure period (15). A major component of Illicium verum 

(star anise) volatiles, trans-anethole, has shown potent 

fumigant toxicity against C. ferrugineus (rusty grain beetle) 

by partially inhibiting the insect's acetylcholinesterase 

activity. This study highlights the potential of trans-

anethole as a biofumigant for controlling stored grain 

pests (19). 

 A bioactive molecule, dihydro-p-coumaric acid, has 

been extracted from the foliage of Tithonia diversifolia, 

exhibiting significant toxicity against R. dominica, T. casta-

neum, and S. oryzae. This compound has been recognized 

for its potent acetylcholinesterase (AChE) inhibitory prop-

erties, with the degree of inhibition directly correlating to 

the dosage administered, and it has no detrimental impact 

on the germination of seeds (13). Different plant volatiles 

showing fumigant toxicity are given in Table 2. 

 Apart from plant volatiles, essential oils from differ-

ent plants like eucalyptus, lavender, and peppermint have 

been recorded for their toxicity against stored grain insect 

pests. These essential oils work by disrupting the respira-

tory system of insects or acting as neurotoxins. Among the 

different constituents of essential oil, monoterpenoids 

have garnered the most interest due to their potent fumi-

gant activity against insects infesting stored products (17). 

Different essential oils of some plants with fumigant activi-

ty are given in Table 3. 

 The essential oils from a plant can consist of hun-

dreds of distinct compounds, yet specific constituents pre-

dominate in higher amounts. The major component of 

essential oil in Eucalyptus spp. is 1,8-cineole, whereas lin-

alool is prevalent in Ocimum spp., limonene is found abun-

dantly in Citrus spp., myrcene (Curcuma longa), carvone 

Sl.No. Common name Scientific name Commodity References 

1. Lesser grain borer Rhyzopertha dominica (Fabricius) (Coleoptera: Bostrichidae) All cereal grains, corn, rice, 
wheat and millet (55) 

2. Saw-toothed grain beetle  Oryzaephilus surinamensis (L.) (Coleoptera: Silvanidae) Flax, wheat barley, oats, and 
sunflower (56) 

3. Rice weevil  Sitophilus oryzae (L.) (Coleoptera: Dryophthoridae) Sorhum, wheat, barley, rice (57) 

4. Maize weevil  Sitophilus zeamais Motschulsky (Coleoptera: Curculionidae) Pasta and grains (58, 59) 

5. Confused flour beetle Tribolium confusum (Coleoptera: Tenebrionidae) Milled products, sunflower, 
peas, millets, and spices (60) 

6. Angoumois grain moth Sitotroga cerealella (Olivier) (Lepidoptera: Gelichiidae) Corn, millet, wheat, barley, rice 
and sorghum (61) 

7. Merchant grain beetle Oryzaephilus mercator (Fauvel) (Coleoptera: Silvanidae) Processed flours, and cereals (62) 

8. Granary weevil Sitophilus granarius (L.) (Coleoptera: Curculionidae) Wheat, sorghum, barley, rye, 
oats, corn (63) 

9. Long headed flour beetle Latheticus oryzae Waterhouse (Coleoptera: Tenebrionidae) Maize and Sorghum (64) 

10. Red flour beetle Tribolium castaneum (Herbst) (Coleoptera: Tenebrionidae) Rice flours, oil seeds, peas and 
beans (65) 

11. Rusty grain beetle Cryptolestes ferrugineus (Stephens) (Coleoptera: Laemophloeidae) Rye, oats, flours, triticale, 
wheat (65) 

12. Flour mill beetle  Cryptolestes turcicus (Grouvelle) (Coleoptera: Laemophloeidae) Milled flour, and broken grains (65) 

13. Indian meal moth  Plodia interpunctella (Lepidoptera:  Pyralidae) Common pest of stored grains (66) 

14. Pulse beetle  Callosobruchus chinensis (L.) (Coleoptera: Chrysomelidae ) Pigeon pea, lentil cow pea, and 
chickpea (67, 68) 

15. Drug stored beetle  Stegobium paniceum (Linnaeus) (Coleoptera: Anobiidae) 
Herbs, dried fruits, spices, 
tobacco, processed foods and 

cereals 
(69) 

16. Khapra beetle Trogoderma granarium Everts (Coleoptera: Dermestidae) Oil seeds (70) 

17. Pea weevil  Bruchus pisorum (Linnaeus) (Coleoptera: Chrysomelidae) Peas (71) 

18. Cowpea beetle Callosobruchus maculatus (Coleoptera:Chrysomelidae ) Beans, green gram,  peas, cow 
pea (72, 73) 

19. Yellow meal worm Tenebrio molitor L. (Coleoptera: Tenebrionidae) Prefers decaying grain or 
milled cereals (74, 75) 

20. Ground nut bruchid Caryedon serratus (Olivier) Oilseeds (73) 

21. Bean weevil Acanthoscelides obtectus (Coleoptera: Chrysomelidae ) Lentil, soybean and chickpea (76) 

22. Flat grain beetle  Cryptolestes pusillus (Schönherr) (Coleoptera: Laemophloeidae) Cereals and pulses (77) 

Table 1. Major insect pests damaging stored grain. 
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(Carum carvi), asarone (Acorus calamus), and glucosin-

olates are characteristic of botanical plants in the   

Brassicae family. Cyanohydrins are significant in Manihot 

esculenta Crantz, thiosulphinates (Allium spp.), methyl 

salicylate (Securidaca longepedunculata Fers), and both 

carvacrol and β-thujaplicine are notably found in Thujopsis 

dolabrata (17). In the diverse experiments conducted, es-

sential oils were primarily extracted from aerial parts of 

plants (71.88%) and leaves (28.51%) of the extractions. 

Other plant materials utilized for extracting essential oils 

included resin, gum, rhizomes, and roots (20). 

 The essential oils as fumigants, alongside the signif-
icant binding affinities of their primary components, offer 
considerable promise for their development into natural 
fumigants aimed at managing pests in stored products, 
particularly in maize. Compounds such as 1,6-Dioxaspiro 

[4,4] non-ene γ-terpinene, β-farnesene, trans-chry-

Sl.
No. Plant species Family Plant parts 

used Product Active compound Insect listed References 

1. Cinnamomum aromaticum 
(Nees.) Lauraceae Bark Extract Cinnamaldehyde T. Castaneum,  S. zeamais (78) 

2. Feoniculum vulgare (M.) Apiaceae Fruits Extract Phenylpropenes,      
(E)-anethole S. Oryzae,  L. serricorne (55) 

3. Thespesia populnea (L.) Malvaceae Leaves Extract Phenol C. maculatus (79) 

4. Baccharis salicifolia (Ruiz & 
Pavón) Asteraceae Leaves Extract β-Pinene T. castaneum,  S. zeamais (80) 

5. Lantana camara (L.) Verbanaceae Leaf Extract Coumaran T. Castaneum, R. dominica, 
and S. oryzae (15) 

6. Colocasia esculenta var. 
esculenta (L.) Schott Araceae Rhizome Extracts 2, 3-Dimethylmaleic 

anhydride 
T. castaneum, C. chinensis, 
and S. oryzae (18) 

Table 2. Plant volatiles showing fumigant toxicity.  

Sl.
No. Plant family Common name Botanical name Plant parts 

used Insect tested References 

1. Apiaceae Ajowan caraway Carum copticum Seed Sitophilus oryzae (Coleoptera: Curculio-
nidae) (81) 

2. Lamiaceae Shirazi thyme Zataria multiflora 
Leaves and 
stems 

Brevicoryne brassicae (Hemiptera: 
Aphididae) (82) 3. 

Asteraceae 
White wormwood Artemisia sieberi 

4. Marigold Tagetes minuta 

5. 
Apiaceae 

Dill Anethum graveolens 
Fruits Callosobruchus chinensis (Coleoptera: 

Chrysomelidae) (83) 
6. Cumin Cuminum cyminum 

7. Labiatae Japanese catnip Schizonepeta tenuifolia Whole 
plant Lycoriella ingenua (Diptera: Sciaridae) (84) 

8. Illiciaceae Star anise Illicium verum Fruits 

Reticulitermes speratus (Blattodea: 
Rhinotermitidae) (85) 

9. Compositae Cacalia Cacalia roborowskii Whole 
plant 

10. Labiatae Japanese catnip Schizonepeta tenuifolia Herba 

11. 
Liliaceae 

Onion Allium cepa 
Bulb 

12. Garlic Allium sativum 

13. Apiaceae Caraway Carum carvi Fruits 
Sitophilus zeamais (Coleoptera: 
Curculionidae), Tribolium castaneum 

(Coleoptera: Tenebrionidae) 
(86) 

14. Lamiaceae Corsican mint Mentha microphylla 
Aerial parts 

Sitophilus oryzae 
(Coleoptera:Dryophthoridae) 

(87) 
15. Asteraceae Judean wormwood Artemisia judaica 

Tribolium castaneum 
16. Rutaceae Mandarin orange Citrus reticulata Fruits 

17. Lamiaceae Russian sage Perovskia abrotanoides Flower 
Sitophilus oryzae (Coleoptera: 
Dryophthoridae), Tribolium castaneum 

(Coleoptera: Tenebrionidae) 
(88) 

18. Atherospermateceae Chilean laurel Laurelia sempervirens 
Leaves Tribolium castaneum (Coleoptera: 

Tenebrionidae) (89) 
19. Winteraceae Winter's bark Drimys winteri 

20. Asteraceae Russian wormwood Artemisia vestita Aerial parts Sitophilus zeamais 
(Coleoptera:Curculionidae) (90, 91) 

21. Rutaceae Lemon Citrus limonum Leaves Tenebrio molitor (Coleoptera: Tenebrio-
nidae) (92) 

Table 3. Essential oils with fumigant activity. 
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santhenyl acetate, α-phellandrene bornyl tiglate,                  

p-cymene, bornyl acetate, bornyl isovalerate, and terpinen
-4-ol found in the essential oil extracted from the aerial 
parts of Chrysanthemum parthenium L. have been identi-
fied as potent fumigants effective against the maize wee-
vil, S. zeamais (21). 

 The compounds derived from plant extracts have 
been evaluated for their fumigant efficacy against stored 
grain pests. Experiments have been conducted using pure 
compounds sourced commercially or synthesized in the 
laboratory (22, 23). 

 Active components exhibiting toxicity to insects in 
their vapor stage can be classified into five, which include 
sulfur-containing compounds, di-n-propyl disulfide, dime-
thyl disulfide, allyl disulfide, diallyl trisulfide, allyl thiosul-
fate, and diethyl trisulfide; monoterpenoids; alkaloids, 
such as Z-asarone; cyanates and cyanohydrins and others, 
which include terpinolene, benzene derivatives, bornyl 
acetate, and methyl salicylate (17). 

 Specific phytochemicals, such as limonene, euge-
nol, and thymol, found in many plants, have been identi-
fied as effective biofumigants. They exhibit strong insecti-
cides against a range of stored grain pests by interfering 
with their nervous system (24). 

 Plants from the Brassicaceae family are predomi-
nantly used for biofumigation purposes; they control pests 
through the release of isothiocyanates (ITCs) like methyl,  
2-propenyl, 3-butenyl, 4-pentenyl, benzyl, and methyl thio 
butyl, produced when myrosinase enzymes in neutral pH 
conditions and the presence of water, hydrolyze glucosin-
olates (GSLs). Glucosinolates are sulfur-containing com-
pounds (thioglucosides) generated as secondary metabo-
lites. In addition to brassicas, families Caricaceae, 
Moringaceae, Salvadoraceae, and Tropaeolaceae are also 
recognized for their biofumigant properties (25). 

 Essential oils and specific components were ex-
plored for their efficacy as potential fumigants in combat-
ing pests in stored grains. Biofumigants offer the benefit of 
introducing innovative mechanisms against storage insect 
pests, which can minimize the likelihood of developing 
cross-resistances and also provide a way of the creation of 
molecules with specific targets (8). 

 Through the investigation of a diverse array of Bras-
sicaceae seed species, researchers were able to extract an 
unidentified isothiocyanate (ITC) from the seed oils of Eru-
ca sativa, Diplotaxis spp., and Sinapis arvensis with various 
concentrations, viz., 98, 92, and 33%. This was later de-
scribed as methyl thiobutyl isothiocyanate. In a space fu-
migation study, the efficacy of this methyl thio butyl isothi-
ocyanate was evaluated against four conventional ITCs, 
which included methyl, ethyl, allyl, and butyl. The findings 
revealed that allyl and methyl ITCs exhibited superior 
effectiveness in exterminating both the adult and larval 

stages of stored-product pests. A concentration of 1 μL/L−1 

air and exposure time of 3 h were enough to kill all the 
tested adult insects. The activity of methyl thio-butyl ITC 
was comparable to that of allyl and methyl ITCs except for 
Tribolium, which was found to be much more susceptible 

to the two ITCs (26). 

Fungi Derived Biofumigants         

Muscodor albus, identified as a fungi-derived biofumigant, 
possesses the capability to manage the pathogens during 

storage. Research findings revealed that it can generate 

more than 20 volatile compounds, each exhibiting bacteri-

cidal, insecticidal, and fungicidal properties. Conidia from 

various mycotoxin-producing fungi, namely Fusarium cul-

morum, Aspergillus carbonarius, A. ochraceus, A. flavus,    F. 

graminearum, Penicillium verrucosum, and A. niger, were 

effectively neutralized or inhibited from sprouting by being 

subjected to volatile compounds emanating from 2 g of M. 

albus infected grains in hermetically sealed containers 

over 24 h at 20°C. The primary volatile substances pro-

duced by M. albus, 2-methyl-1-butanol (2MB) and isobutyr-

ic acid (IBA), in concentrations of 100 μL/L and 50 μL/L, 

exhibited varying degrees of fungicidal activity against 

these 7 fungi when applied separately at 20°C. A synergis-

tic effect was observed when IBA and 2MB were combined, 

resulting in approximately 94% of the conidia being eradi-

cated or their germination suppressed. The experiment 

was meticulously designed under a controlled atmosphere 

(CA) maintained at 3°C for 72 h exposure to four different 

concentrations of 2MB and IBA. A mixture of 100 μL/L IBA 

and 50 μL/L 2MB was found to destroy or inhibit the germi-

nation of conidia from all 7 fungi. The controlled atmos-

pheric conditions did not significantly alter the viability of 

the conidia nor the effectiveness of the volatiles. This sug-

gests that the key volatile compounds of M. albus hold 

considerable promise for managing plant pathogens in 

both ambient and controlled atmospheric storage envi-

ronments, especially at temperatures below 5°C. However, 

to achieve a comprehensive spectrum of fungicidal effica-

cy, a combination of volatile compounds may be neces-

sary rather than relying on individual substances (27). 

Mode of Action of Biofumigants          

AChE activity inhibition in adults of T. granarium by A. sa-
tivum essential oil was observed both in vitro and in vivo, 

which contains fumigant-active compounds like diallyl 

disulfide and diallyl trisulfide, suggesting that the insecti-

cidal mechanism of essential oils and their components 

can involve multiple biochemical pathways (28). The mon-

oterpenoids contribute to insect mortality by inhibiting 

the activity of the acetylcholinesterase enzyme (AChE), 

which is crucial for nerve impulse conduction in insects. 

Hence, the inhibition was observed in in vitro conditions 

and not in in vivo conditions (29). 

 The essential oil did not impact oxidative phos-

phorylation or the activity of cytochrome C-oxidase, 

either in vitro or in vivo. Utilizing pentoxyresorufin as a 

benchmark substrate for cytochrome P4502B1-dependent 

enzymes, which play a role in activating genotoxic sub-

stances like cyclophosphamide, (30) observed that          

β-myrcene, a monoterpenoid, competitively helps in the 

inhibition of pentoxyresorufin-O-depenthylase and it was 

also demonstrated on Earthworm, Eisenia fetida, and          

d-limonene of Citrus spp. (31). The principal component of 

peel oil exhibits neurotoxic effects. Similarly, isosafrole 
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and safrole are key components of the essential oils from 

S. albidum and C. odoratum, respectively, in T. castaneum, 

which help in the inhibition of α-amylase both in vitro and 

in vivo conditions (32).  

 The fumigant toxicity investigations using monoter-

penes (such as menthol, β-pinene, menthone, linalool, 

α-pinene, and limonene) were effective against adults of 

Sitophilus oryzae and did not find a direct link between 

insect toxicity and the inhibition of acetylcholinesterase 

(AChE). Menthone, derived from wild mint, Mentha arvensis 

L., recorded high toxicity (LC95 25 mL/L) towards the adults 

of S. oryzae. On the contrary, the less toxic effect of β-

pinene (LC95 107 mL/L) demonstrated significant inhibition 

of AChE (ki = 0.0028 mM). This led to the hypothesis that 

monoterpenes might target additional sensitive sites be-

yond AChE inhibition, such as cytochrome P450-

dependent monooxygenases, indicating a complex mode 

of action for these compounds (33).  

 The fumigant effects of terpenes viz., SEM76 and 

ZP51, derived from the plants of labiatae, and limonene, 

an essential oil, promote the inhibition of acetylcholines-

terase (AChE) and octopamine receptors in adults of       

R. dominica and found that the inhibitory effect of AChE 

recorded a maximum (65%) with extremely toxic terpene 

(ZP51), while it was moderately toxic in SEM76 at about 

27% and very low toxic of about 2% for (+)-limonene (2%), 

which was the less toxic. Furthermore, it was noted that 

inhibition of AChE did not correlate directly with levels of 

insect mortality. This suggests that while AChE inhibition is 

a mechanism of action for some terpenes, the overall tox-

icity of these compounds against insects may involve mul-

tiple pathways, including the activation of octopamine 

systems (34). However, the relevance of this inhibition to 

insect mortality remains unclear, indicating that the mech-

anisms by which essential oils and their components exert 

insecticidal effects are varied and not fully understood. 

Efficacy of Biofumigants in Grain Storage        

The essential oils (EOs) have demonstrated remarkable 

efficacy against various Coleopteran species, as evidenced 

by their LC50 values, which represent the concentration 

needed to achieve 50% mortality. Notably, the fumigation 

with Ocimum gratissimum EO from the Lamiaceae family 

exhibited significant insecticidal activity, achieving LC50 

values of 0.50 μL/L against S. oryzae, 0.20 μL/L against       

C. chinensis, 0.20 μL/L against R. dominica, and 0.19 μL/L 

against saw-toothed grain beetle, though it was less effec-

tive for T. castaneum with an LC50 value of 24.9 μL/L (35–

37). 

 The rice weevil, S. oryzae, the most extensively re-
searched insect among curculionids, is especially vulnera-

ble to Carum copticum (Apiaceae), with an LC50 value of 

0.91 μL/L, indicating its significant susceptibility. The La-

miaceae family emerged as the most effective group of 

plants in terms of fumigation efficacy. Essential oils from 

Salvia fruticosa, Thymus persicus, S. pomifera, S. officinalis, 

Thymbra capitata, and O. vulgare demonstrated substan-

tial toxicity against rice weevil, S. oryzae, LC50 spanning 

from 1.5 to 9 μL/L, highlighting their potent insecticidal 

properties (35). 

Beyond the Lamiaceae, specific plants from other families 

also demonstrated notable effectiveness against S. oryzae 

adults when used as fumigants. L. nobilis from the Laura-

ceae family exhibited an LC50 value of 8.0 μL/L; Eucalyptus 

spp. showed LC50 values ranging from 7 to 8.5 μL/L (38, 39); 

and C. limon had an LC50 value of 9.89 μL/L, indicating their 

significant insecticidal efficacy (40). 

 Essential oil extracted from the fruits of L. salicifolia, 

a plant within the Lauraceae family, also demonstrated 

strong insecticidal properties against S. zeamais in fumiga-

tion experiments, with an LC50 value of 4.4 μL/L, highlight-

ing its potential as an effective biofumigant. It was ob-

served that essential oil from Allium sativum 

(Amaryllidaceae) is considered the most potent against    T. 

castaneum, showcasing an LC50 value of 1.52 μL/L, indicat-

ing its superior efficacy as a fumigant (41). 

 Similar to their impact on Curculionidae, essential 

oils (EOs) from the Lamiaceae family exhibit significant 

toxicity towards T. castaneum. Specifically, Rosmarinus 

officinalis, with an LC50 of 1.17 μg/mL and LC50 of Mentha 

spp., ranging between 12 and 13 μL/L after a 24h exposure, 

have shown the highest insecticidal efficacy when used as 

fumigant agents (42). Moreover, essential oils from other 

plant families also display notable knockdown capabili-

ties. For example, Achillea wilhelmsii from the Asteraceae 

family achieved an LC50 of 10.02 μL/L against T. castaneum 

(43), while Eucalyptus spp. from the Myrtaceae family 

showed LC50 ranging from 11 to 14 μL/L (42). Citrus reticu-

lata  from the Rutaceae family demonstrated an LC50 of 

3.49 μL/L , and Pistacia lentiscus from the Anacardiaceae 

family had an LC50 of 8.44 μL/L, underscoring the broad 

potential of essential oils as fumigants across various plant 

families (44). While a significant portion of essential oils 

(EOs) have demonstrated effectiveness against the target 

storage insects when used as fumigants, some essential 

oils exhibited very low or no insecticidal activity toward 

stored product pests (45). 

Impact of Food Grains After Biofumigation in Storage     

The impacts of essential oils for biofumigation and their 

constituents for the nutritional quality of food grains and 

the persistence of fumigant residues are notably scarce. 

Wheat grains essential oils exposed to fumigations of Men-

tha piperita at an insecticidal dosage of 200 mL/L for about 

48 h have not observed any notable changes in germina-

tion (46). It was found that the nutritional quality and ger-

mination rate of 500 g red gram, fumigated for more than 6 

months with essential oil of M. arvensis (0.1 mL)  in 1l of 

desiccator, remained unchanged (47).  Similarly, there was 

observed no alteration in the nutritional quality of sor-

ghum treated with 167 mL/L of M. arvensis oil for 3 months 

(48). It was reported that wheat fumigated with 1,8-cineole 

had residue levels of 85 ppm and 62 ppm after 1 and 6 days 

of aeration, respectively (49). 

 The potential issue of strong odors from essential 

https://plantsciencetoday.online


7 

Plant Science Today, ISSN 2348-1900 (online) 

oils transferring to treated commodities suggests that 

odor tainting could be a significant drawback of using 

plant-based fumigants. This underscores the necessity for 

further research into the potential effects of odor tainting, 

impacts on nutritional value, and residue presence in 

stored grains treated with essential oils (50). The effect of 

47 different monoterpenoids using the seeds of Lactuca 

sativa L. of various chemical groups on germination was 

studied and recorded that 50% of the monoterpenoids 

inhibited the growth of seedlings, and germination was 

affected for 5% (51). The wheat flour, derived from wheat 

fumigated with monoterpenoids at a dosage of 200 mL/kg 

at temperatures between 5 and 10°C, showed no change in 

rheological properties, though a persistent carvacrol odor 

was detected in the flour (52).   

 

Discussion 

Plant-based fumigants often fall short of an ideal fumi-

gant's critical attribute, namely, the requisite vapor pres-

sure necessary for effective diffusion and penetration into 

materials to eradicate pests. The variability in evaporation 

rates among monoterpenoids at a temperature of 26 ± 1°C. 

For example, 1,8-cineole exhibited rapid evaporation with-

in 2.5 h, limonene evaporated at a moderate pace taking 4 

h, while menthol, α-terpineol, and linalool demonstrated 

significantly slower evaporation rates, requiring up to 4 h. 

The vapor phase of 1,8-cineole is notably minimum, regis-

tering below 1 mm Hg at 20°C, a stark contrast to synthetic 

fumigants like phosphine (with a vapor pressure of 31,920 

mm Hg at 23°C), methyl bromide (1,250 mm Hg at 20°C), 

and sulphuryl fluoride (12,087 mm Hg at 20°C), which ex-

hibit considerably higher vapor pressures for effective pest 

control (53). 

 Many essential oils exhibiting fume properties will 

have less toxicity to mammals. LD50 values, measured in 

milligrams per kilogram of body weight for rats, highlight 

this low toxicity for various essential oils, including A. cala-

mus oil at 0.78 mg/kg, caraway oil at 3.50 mg/kg, eucalyp-

tus oil at 4.44 mg/kg, thyme oil at 2.84 mg/kg, and pepper-

mint oil at 4.41 mg/kg. Similarly, key constituents of these 

oils demonstrate low toxicity levels: anethole at 2.09 mg/kg, 

carvacrol at 0.81 mg/kg, 1,8-cineole at 2.48 mg/kg,         

p-cymene at 4.75 mg/kg, limonene at 4.60 mg/kg, linalool 

at 2.79 mg/kg, and terpineol at 4.3 mg/kg. However, it is 

crucial to mention that not every plant compound in es-

sential oils is beneficial. Specifically, (+)- fenchone and 

estragole in F. vulgare, an essential oil that has proven 

highly effective against pests like S. oryzae, C. chinensis, 

and L. serricorne, have been identified as carcinogenic sub-

stances (54). 

 Regulatory authorities have established acceptable 

daily intake (ADI) guidelines for specific plant-derived com-

pounds, with anethole having an ADI range of 0 to 9.6 mg 

and others like citral, linalool, and methyl salicylate being 

set at a range of 0 to 0.5 mg, while menthol's ADI is deter-

mined to be between 0 to 0.2 mg. Despite these specifica-

tions, a considerable number of plant products known for 

their fumigant properties currently lack designated ADI 

levels.  

 

Conclusion  

The use of biofumigants as grain protectants in storage is a 

promising and sustainable approach to addressing the 

global challenges of post-harvest losses. The natural origin 

of these substances offers significant advantages over con-

ventional chemical methods, including reduced toxicity to 

non-target organisms and minimal environmental impact. 

However, the practical application of biofumigants is not 

without challenges. Issues such as variability in efficacy, 

the need for optimized application techniques, and regula-

tory hurdles must be addressed to realize their full poten-

tial. Despite these challenges, the future of biofumigants in 

grain storage is optimistic. With continued research and 

development, coupled with supportive policy frameworks, 

biofumigants could revolutionize the way we protect our 

stored grains. They could provide an effective, eco-friendly 

solution that not only ensures food security but also con-

tributes to the broader goal of sustainable agriculture.  
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