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Abstract   

Aromatic rice is used extensively in many different cuisines around the 

world for its wonderful aroma and cooking qualities. Aromatic rice varieties 

such as Basmati and non-Basmati fragrant rice have gained popularity in 

both domestic and foreign markets, despite their origins being 

predominantly in Southeast Asia and the Indian subcontinent. The primary 

gene responsible for rice aroma is the fgr/Badh2/Os2-AP, situated on 

chromosome 8 and encodes betaine aldehyde dehydrogenase 2 (Badh2). 

Key aroma compounds are attributed to over 500 volatiles. The primary 

aromatic molecule in rice, 2-acetyl-1-pyrroline (2-AP), accumulates as a 

result of mutations in this gene and gives rice its distinctive scent. Aroma is 

not decided by single compound rather it is decided by volatile profile and 

also by environmental factors. The identification of Quantitative Trait Loci 

(QTLs) linked to fragrance features on different chromosomes has improved 

our comprehension of the genetic processes behind rice scent. Advances in 

genetic engineering, particularly CRISPR/Cas9 and TALEN have facilitated 

the manipulation of the Badh2 gene, enhancing aroma profiles in rice. 

Additionally, gene silencing and introgression techniques have also proven 

in increasing 2-AP content. The review explores the biochemical properties 

and advancement of aromatic rice, emphasizing its complex inheritance 

patterns and potential for breeding improvement.  
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Introduction   

Aromatic or scented rice is an exclusive small category of rice that is 

authoritative of better quality and holds a prominent place in the 

community for its aroma and cooking properties (1). Aromatic grain quality 

is the highest desired trait that boosts marketability and purchaser 

predilection over non-aromatic rice, both in domestic and international 

markets (2, 3). There are 2 classes of scented rice viz., long-grained basmati 

rice and small- to medium-grained (indigenous or landrace) fragrant non-

basmati rice (4). The demand for aromatic rice varieties has experienced a 

significant increase due to the shift in global preferences towards higher 

quality rice as well as the potential health benefits for individuals with 

diabetes and obesity (5). Rice aroma positively affects human health by 

improving sensory experiences and emotional well-being. The compound 2-

acetyl-1-pyrroline is integral to the unique fragrance of certain rice varieties, 
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which can elicit favorable emotions and alleviate stress (6).  

The ever-increasing demand for fragrant rice among 

consumers has therefore forced rice breeders to create 

new, high-yielding varieties of fragrant rice (7). The 

composition of several volatile compounds as well as the 

presence of a principal volatile compound known as 2-

Acetyl-1-pyrroline (2-AP) decide rice's aroma (8, 9) and are 

also found in the leaves and tissues of the seed (10). 

Furthermore, the appealing scent of rice may promote 

healthier dietary choices, thus enhancing overall nutrition 

and health results. Traditional breeding techniques have 

been used to enhance the 2-AP contents of rice varieties to 

create aromatic ones, including hybridization, pure line 

selection and mutational breeding (11, 12). The aromatic 

group’s genetic distinctiveness is made clear by its 

confined cross-compatibility with indica and japonica (13). 

Three isozyme patterns viz., Group I (indica), Group V 

(indica) and Group VI (tropical japonica) make up 

conventional scented rice varieties (14). A single locus on 

chromosome 8 (fgr) linked to fragrance was found as a 

result of research into the genetics of fragrance in rice and 

the expression of the Badh2 gene serves to suppress the 

synthesis of 2-AP in non-aromatic rice varieties, whereas 

the Badh2 gene loss function in aromatic rice cultivars (15, 

16). Enhanced aroma in rice elevates market value and 

consumer appeal, thus rendering them favorable for 

culinary uses and cultural relevance (17, 18). Nevertheless, 

these aromatic varieties encounter agronomic issues, 

including reduced yields and storage complications, which 

may affect their market viability (19). Recent crop breeding 

programmes have shown encouraging results from the use 

of genome editing (GE) technology (CRISPR/Cas9, TALEN, 

ZFN etc.) which modifies plant genomes in a controlled 

setting (20). Targeted genetic modification using CRISPR 

system can accelerate the transition for crop enhancement 

through precision breeding(21). The application of genome 

editing technologies necessitates extensive information on 

the genetic makeup, arrangement and functionality of 

pertinent genes in addition to data on novel genes and 

QTLs (22). The summary of different types of approaches 

on aroma enhancement is given in Table. 1. This review, 

highlights the biochemical properties, genetic basis and 

biotechnological advancements in understanding and 

improving the aroma of scented rice. 

Origin and Evolution of Aroma Rice: 

According to ancient records, aromatic rice originated in 

the Indian subcontinent and some proof indicates that 

aroma rice is tilled in China and other South Asian 

countries (23). Oryza rufipogan and Oryza longistaminata, 

two wild perennials that are thought to have been 

independently domesticated in Southeast Asia and West 

Africa respectively, are the common ancestors of rice. 

Oryza nivara and Oryza barthii, are 2 wild annuals that later 

gave rise to 2 cultivated species, Oryza sativa and Oryza 

glaberrima. Chloroplast DNA analysis determined that 

Oryza barthii is more strongly related to O. rufipogan than 

to O. longistaminata (Fig.1) (24). However, the 

characteristics of aroma rice - phenol reaction, translucent 

kernel nature, intermediate gel consistency and amylose 

content that makes it between indica and japonica (25). A 

total of 1688 rice cultivars were systematically collected 

and categorized into 6 distinct groups; among these 

classifications, Group V is indicative of aromatic rice (Fig. 

2)(14). The aromatic rice contains germplasm from 

Afghanistan, Bangladesh, China, India, Iran, Myanmar and 

Pakistan. The studies on genetic diversity identified that 

scented rice is more strongly associated with the japonica 

subgroup (27,28). A study investigated phylogenetic 

relationship of ten aromatic rice and 41 wild relatives and 

grasses, using chloroplast-encoded matK, which showed 

that scented rice is more related to the Oryza sativa 

japonica group (24). The Indian subcontinent's foothills of 

the Himalayas, which stretch across the states of 

Uttarakhand, Uttar Pradesh, Bihar and the Terai region of 

Nepal are the centre of origin and diversity for aromatic 

rices. Many aromatic rice landraces still exist there, despite 

the fact that their numbers are dropping alarmingly. From 

the foothills of the Himalayas, aromatic rices have spread 

to other areas: eastward to Bangladesh and Myanmnar as 

well as the Indian states of Assam, Bengal, Manipur and 

Odisha; north-west to Haryana, Punjab, Himachal Pradesh 

and Jammu-Kashmir in India and westward to 

Afghanistan, Pakistan, Iran and Iraq (19). The majority 

of aromatic rice accessions have acquired their cytoplasm 

as well as 29-47 % of their nuclear genome from the native 

Indian rice, which indicated that aromatic rice originated 

in the Indian subcontinent through hybridization between 

a local and wild population. This hybridization is thought 

to have happened between 4000 and 2400 years ago, not 

long after Japanese rice arrived in the area (29). 

Aromatic japonica and indica were linked to the presence 

of MITE at position 51 (30). 

Approches Contribution Reference 

Pure line selection 
Basmati- 370, Jeeraksala, Improved Jeeraksala, Improved Kalanamak, C435, K441, DP33, 

Madhuri selection A, N-10B, N-12, Type-9, Type-1, Type-23, Sugandha.  (12) 

Hybridization 
Kusama(LS), PAU 29-295, GR101, PNR-546, Narendra Sugandha Dhan NDR-6093, 

Ketkijoha, Nua kalajeera, Nya Dhusara, Nua Chinikamini, CR Dhan 907, CR Suganth Dhan 
(908, 909, 910), Gangawati Ageti, HUBR-2-1. 

 (12) 

Mutation breeding Geetanjali, ADT41 (Mutant line of Basmati-370)  (12) 

Molecular breeding Improved PB-1, PB-1718  (12) 

CRISPR and TALEN Improved IR-96, aromatic ASD-16,  (77, 79) 

Gene silencing Transgenic IR-64 aromatic line  (83) 

Gene pyramiding R365, R403 Hybrid line  (84) 

Table 1. Different types of approches on aroma enhancement. 
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Biochemical properties of aromatic rice: 

Volatile compounds responsible for aroma: 

Aroma is due to the chemicals present in the endosperm. 

Currently, rice has been found to contain over 500 volatile 

aroma influencing compounds. No single compound can 

be said to contribute a characteristic aroma, with the 

exception of 2-AP (31). Both the volatiles created during 

cooking and those already present in the rice are 

responsible for the distinctive scent of rice. Scented rice is 

enhanced by hydrocarbon volatile compounds like 

alcohol, aldehyde and ketone (32). More than a hundred 

volatile aromatic components, such as alcohols, ketones, 

esters, acids, pyridines, phenols, aldehydes, pyrazines, 

hydrocarbons and other materials, have been identified in 

cooked rice (33-36). The properties of major volatile 

compound are explained in Table. 3. 4-vinylphenol, (E)-2-

nonenal, (E,E)-2,4-decadienal and 2-methoxy-4-

vinylphenol are the 4 significant volatile components that 

were reported earlier. Besides the distinct flavor during 

cooking was produced by aldehydes, phenols and nitrogen 

(N2) and sulfur (S) based volatile aromatic compounds 

(VACs) (37). Commercial Basmati rice consists of aldehyde 

(5952), alcohols (1869), hydrocarbons (548), ketones (234), 

heterocyclic compounds (1220), phenols (534), disulphides 

(79), terpenes (257) (38-41). Identifying the compounds 

responsible for the distinctive aroma of rice was the 

primary intent of the scientists and research teams. GC-

MS, (gas chromatography-mass spectrometry) has made it 

simpler to detect and quantify organic volatile compounds 

in composites of sample materials and greatly enriched 

our understanding of the chemistry of rice fragrance (42). A 

study conducted a comparation of the volatile compounds 

between aromatic and non-aromatic rice and 70 aroma-

causing components are listed with a description of 

fragrance (43). The main constituents were alkanals, alk-2-

enals, alka(E)-2,4-denials, 2-pentyl-furan, 2-acetyl-l-

pyrroline and 2-phenylethanol, also believe that several 

other components also responsible for the overall aroma 

profile. Comparatively, the concentration of n-hexanal, (E)-

2-heptanal, 1-octen-3-ol, n-nonanal, (E)-2-octenal, (E)-2-€- 

4-decadienal, 2-pentylfuran, 4-vinylguaiacol, 4-vinylphenol 

is higher in non- scented rice. In Basmati rice, higher level 

of 2-phenylethanol and lower level of the n-hexanal was 

observed. The higher concentration of hexanal during rice 

storage indicates the higher possibility of rancidity and the 

development of oxidative off-flavors (44,45). A study 

revealed 16 hydrocarbon, 16 aldehyde, 15 alcohol, 4 acid, 

ketones and 10 other various components (46). In cooked 

rice, the main fragrance-producing compounds were n-

butanol, n-hexanol decanal, octanal, hexanal, 2-acetyl-1-

pyrroline, (E, E)-2, 4-decadienal, (E)-2-nonenal, 4-vinyl-

guaiacol and 4-vinylphenol (46, 47). Also, 2-amino 

acetophenone and 4, 5-epoxy-(E)-2-decenal are 2 

important scent compounds in rice (37). A significant 

volatile component of rice, hexanal is a derivative of 

linoleic acid and adds to the grain's green, fruity and 

grassy flavor with less smell (48). 4-vinyl guaiacol 

influences scent characteristics of Mailard- type systems 

and cooked odour (49). Undesirable, nutty, spicy and clove

-like scents are characteristic of guaiacol derivatives (50-

53).  

Anabolic reaction of 2-acetyl-1-pyrroline: 

The biochemical synthesis of 2-acetyl-1-pyrolline by 

polyamine degradation pathway reported (4). The initial 

discovery elucidated the biosynthetic pathway of 2-acetyl-

1-pyrroline through the polyamine pathway (54). An 

instant precursor of 2-acetyl-1-pyrroline, δ-1-pyrroline is 

crucial for controlling the rate at which 2-acetyl-1-

pyrroline is generated. The investigations found that 

proline, methylglyoxal, 1-pyrroline, glutamic acid and 

ornithine  are the essential precursors of 2-AP (55-57). The 

pyrroline-5-carboxylate synthetase (P5CS) and it's genes 

are involved in the 2-AP biosynthesis pathway (58). The 

expression of Badh2 gene associated with betaine 

aldehyde dehydrogenase (BADH) activity which suppress 

the production (15, 16). The illustration of the 2-AP 

biosynthesis pathway of fragrant rice was depicted in Fig. 

3.  

Genetic Basis of Aromatic Rice: 

Genes Responsible for Aroma: 

Identification of aroma gene and its role in biosynthesis was 

suggested (58).Rice’s flavor and fragrance are regulated by a 

single recessive gene (fgr gene) on chromosome 8 (59, 60), 

and encoding betaine aldehyde dehydrogenase (Badh2). 

Any changes or mutation in fgr gene caused the function 

loss of Badh2 enzyme, thereby raising the concentration of 2

-AP precursor, accretion of 2-AP (principal component of 

aroma), producing scent in aromatic rice (61-63).  Badh2 

gene 1509 bp long containing 14 intron and 15 exon that 

encodes a protein with 503 amino acids (64). It was 

Fig. 1. Origin of rice (24). 

Fig. 2. Classification of Oryza sativa groups (14, 26). 
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identified the main alterations in the badh2 gene, notably 

an 8 bp deletion and 3 SNPs in exon 7 (59) and reported 7 bp 

deletion in exon 2 and 803 bp loss between exons 4 and 5 

(65). Both the non-functional Badh2-E2 and Badh2-E7 alleles 

had very low transcription levels in comparison to the 

functional Badh2 allele, as shown by real-time RT-PCR and 

RNA gel plot analysis. This suggests that mRNA transcription 

is significantly suppressed by a loss of functional mutation 

in Badh2 (64) and 2-AP level rise in non-scented rice when 

the Badh2 transcript is suppressed (66). Furthermore, 

studies revealed single nucleotide deletions in Badh2 gene 

loci, intron 1, exon 1 splice sites, promoter and 5’ 

untranslated regions (67, 68). A few more candidate genes, 

including Osbadh1, OsGly and OsP5CS, have been 

discovered through integration mapping and map-based 

cloning, aside from the Osbadh2 gene and it is present 

on various loci, could be responsible for rice's high 

concentration of 2-AP and fragrance (4). Apart from the 

identified Badh2 gene, there is another Badh1 (Os04 g39020; 

92 % homology), which is a homolog of Badh2 (30), that is 

delineated on rice 4th chromosome. The monogenic, digenic 

and polygenic patterns of fragrance inheritance in rice, 

revealed complementary, dominant, recessive and 

duplicate gene interaction. Inheritance of fragrance can be 

challenging as it depends on the amounts of different 

volatile and semi volatile substances at different phases of 

rice growth and it is likely regulated by an unknown number 

of genes (inheritance). Presence of diverse aroma rice 

varieties shows various alleles of Badh2 gene (3). The Badh2 

gene locus has been found to have various mutations (Table 

2). A variety development program aimed at developing 

high-yielding scented rice through marker-aided selection 

of useful genes for aroma is made easier with the 

assistance of QTL analysis, which is one of the best ways to 

figure out the underlying genetics of aroma and other traits 

in the rice variety. 

Allele Location 
Sequence 
Variation Reference 

Badh-5’ UTR-1 5’ UTR 8 bp insertion  (68) 

Badh-5’ UTR-2 5’ UTR 3 bp deletion  (68) 

Badh-5’ UTR-3 5’ UTR 5bp deletion  (85) 

BAdh-5’ UTR-4 5’ UTR 253 bp deletion  (85) 

Badh-5’ UTR-5 5’ UTR MITE absent  (30) 

Badh1.1 Exon 1 2bp deletion  (34) 

Badh1.2 
Exon 1 and 

Intron 1 junction G/A SNP  (67) 

Badh2.1 Exon 2 7 bp deletion  (86) 

Badh2.2(1) Exon 2 7 bp deletion  (87) 

Badh2.2(2) Exon 2 75 bp deletion  (87) 

Badh2.4-5 Exon 4-5 806 bp deletion  (87) 

Badh2-E7 Exon 7 13 bp deletion  (62) 

Badh2.7 Exon 7 8 bp deletion  (87) 

Badh2.10 Exon 7 G/A SNP  (87) 

Badh2.13 Exon 13 C/T SNP  (87) 

Badh4.1 Exon 4 to Exon 5 803 bp deletion  (65) 

Badh4.2 Exon 4 to Exon 5 806 bp deletion  (87) 

Badh7.1 Exon 7 
8 bp deletion 

and 3 SNP  (59) 

Badh8.1 Exon 8 7 bp deletion  (33) 

Badh10.1 Exon 10 1 bp deletion  (34) 

Badh10.2 Exon 10 1bp deletion  (34) 

Badh10.3 Exon 10 G/T SNP  (34) 

Badh10.4 Exon 10 G/A SNP  (87) 

Badh12 Exon 12 3 bp deletion  (88) 

Badh13.1 Exon 13 3 bp insertion  (34) 

Badh13.2 Exon 13 C/T SNP  (34) 

Badh14.1 Exon 14 1bp insertion  (34) 

Badh14.2 Exon 14 G/T SNP  (34) 

Badh2-p 5’ UTR 8 bp insertion  (89) 

Table 2. Various mutation in Badh gene. 

Fig. 3. Anabolic reaction of 2-acetyl-1-pyrroline in aromatic rice (15). 
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QTLs Responsible for Aroma in Rice: 

The accessibility of the whole rice genome sequence creates 

new opportunities for QTL mapping and identification that 

confer aroma traits. The aromatic traits of scented rice may 

also be regulated by several Quantitative Trait Loci and a 

recessive gene (Badh2) (4,69). It was first used 4 markers 

(RFLPs, RAPDs, STSs, isozymes) and mapped 1 major QTL 

(Chromosome 8) and minor QTL on 4 and 12 chromosomes 

(70).There have been a few QTLs related specifically to 

aroma. The number of candidate genes linked to aroma was 

determined through genetic mapping and map-based 

cloning (4). It was found 3 QTLs on chromosomes 8

(2 QTLs) and 5(1 QTL) (71) (Fig. 4). A study disclosed QTL one 

on each of 3,4 and 8 chromosomes (32) (Fig.4). It was 

revealed QTL associated to aroma on chromosome 3's short 

arm (aro3.1), chromosome 4's long arm (aro4.1) and 

chromosome 8's long arm (aro8.1) (72). 

Volatile compound Formula 
Molecular 

weight (g/mol) Structure Nature of Aroma Reference 

α-terpineol C10H18O 154.25 

 

Floral, lilac  (90) 

2-acetyl-1-pyrroline C6H9NO 111.14 

    

Fishy  (91) 

1-hexanol 
C6H14O 

  
102.17 

 

Sweet alcohol  (92) 

Octanol C8H16O 128.21 

 

Strong, Fruity  (93) 

Nonanal C9H18O 142.24 

 

Orange-rose, green  (94) 

1-octen-3-ol C8H16O 128.21 

 

Powerful sweet 
earthy odour  (95) 

2-pentylfuran C9H14O 138.21 

 

Fruity aroma  (96) 

2-methyl-3-
furanthiol C5H6OS 114.17 

 

Roasted meat 
aroma  (97) 

Table 3. List of major volatile compound and their properties. 
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Badh2 Manupulation Through Genetic Engneering: 

CRISPR/Cas9 and TALEN: 

The production of desirable characteristics through 

conventional breeding is a laborious process. Utilizing 

molecular techniques, genome manipulation is a regulated, 

site-specific procedure that modifies DNA sequences using 

base editing, prime editing, zinc finger nucleases (ZFN), 

transcriptional activator-like effector nucleases (TALENs) 

and the Clustered Regularly Interspaced Short Palindromic 

Repeats (CRISPR)/CRISPR-associated protein 9 (Cas9) 

System (73). Badh2 was disrupted via TALEN-based genome 

editing, which raised 2-AP levels from 0.35 to 0.75 mg/kg. 

This level of 2-AP is nearly identical to that of the positive 

control variety of aromatic rice (74, 75). It was given 

evidence that the aroma of IR-96 was improved by genome 

editing (76). 20 T1 individuals were genotyped after 

Zhonghua 11's fragrant gene Badh2 was altered using 

CRISPR-Cas9 and a transgenic was produced that had an 

additional T base in the first exon of Badh2. The mutant had 

higher levels of 2-acetyl-1-pyrroline (0.9 mg/kg) and lower 

levels of Badh2 mRNA than the wild-type. In addition, the 

mutant varies significantly from the control in 5 yield-

related attributes, 3 cooking and eating-quality traits and 

tiller numbers and seed-setting rate. This offered a wealth of 

theoretical direction to quicken the fragrant rice breeding 

process (77). A CRISPR/Cas9 vector containing the rice U6 

promoter and a single-guide RNA (sgRNA) intended for 

targeting the second exon of the Badh2 gene was created in 

order to produce new alleles of Badh2 (66). In the non-

aromatic rice variety ASD16, they observed allelic variation 

in the Badh2 gene's exon 7 that contributed to aroma. 

Furthermore, during sequence analysis, 22 distinct 

mutations in the sgRNA region (from ~17 to +15 bp) were 

discovered in aromatic T0 lines. A mutant with 2 or 5 bp 

deletion produced a strong aroma, which was steadily 

passed down to the T1 generation. As a result, 13 novel 

alleles of the aroma gene might be employed for future 

breeding purposes (31). Using the CRISPR/Cas9 system 

medicated by Agrobacterium-mediated editing at the 

splicing site of a plant gene resulted in exon skipping and 

the development of 2 mutants, viz., Rbadh2△G and 

Rbadh2△AAG, in rice culture R317. A premature termination 

codon (PTC) was found in exon 3 as a result of the deletion 

of exon 2 during splicing, according to an analysis of the 

processed mRNA from the Rbadh2ΔG and Rbadh2ΔAAG 

mutants. They gazed into how OsBADH2 exon 2 skipping 

affected the concentration of 2-AP in the grains of 

homozygous transgene-free plants of Rbadh2ΔG and 

Rbadh2ΔAAG. They discovered that 2-AP accumulation is 

increased due to the loss of OsBadh2 function. Two mutants 

show a comparatively higher 2-AP than the positive control, 

but there is no other significant variation in mutants (78). 

Gene Silencing: 

Gene silencing constitutes a molecular mechanism that 

suppresses or inhibits the gene expression, serving an 

essential function in a multitude of biological processes 

across diverse organisms (19). The production of GABA 

gradient panicles, which could diminish the yield in 

transgenic plants, is facilitated by Badh2 (79). Although 

Badh2 expression can be suppressed by gene silencing to 

produce steadily fragrant lines quickly, conventional 

breeding yields simpler and likely higher 2-AP content. 

Historically, hp-RNA technology has been used in attempts 

to silence Badh2 gene. In addition, comparing wild type with 

Fig. 4. Quantitative traits loci of rice aroma (32, 70). 
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japonica rice variety’s development delayed when 

subjected to salinity stress due to silencing of Badh2 (66). 

The cDNA of Badh2 was joined in the opposite direction to 

produce a hairpin RNAi, which was then driven by the 35S 

promoter. In transgenic Nippon bare rice, the levels of 2-AP 

rose to 20-fold. Introduction of RNAi technology made 

recognition for micro-RNA, which offers a potent tool for 

gene knockdown in wide range of eukaryotic species, 

including rice (80). GABA's contribution to yield is supported 

by the transgenic IR-64 aromatic line. The elevation of 2-

pentylfuran and octanal in response to 2-AP induction 

suggests that their pathways coexist with 2-AP biosynthesis. 

Likewise, upregulating BADH2 also resulted in an expression 

of Badh2 gene dropped up to eight-fold in RNAi callus, up to 

14-fold in the leaves of transgenic IR-64 seedling and also 

enzyme activity is reduced by 40 %, thereby validating their 

function in 2-AP biosynthesis (81). A similar increase in 2-AP 

production was observed when hpRNA disrupted OsBadh2, 

indicating that different OsBadh2 gene expression levels 

affect scent accumulation. The 3 domains that the Badh2 

enzyme is expected to have been the oligomerization, 

substrate, and NAD binding domains. It is anticipated that 

Badh2 will catalyse the oxidation of 3-amino 

propionaldehyde, 4-amino butyraldehyde (ABald), and 

betaine aldehyde. Badh2 was found throughout the 

cytoplasm. Non-Functional Badh2 alleles led to an increase 

in 2-AP biosynthesis and an accumulation of AB-ald (64). 

Artificial microRNA (amiRNA) technology is more specific 

and effective method for gene silencing compared to RNAi 

using hp-RNA (82).  

Gene Pyramiding: 

Gene pyramiding is a breeding technique that combines 

multiple advantageous genes into a single genotype to 

enhance traits such as yield and resistance and its 

objectives include improving trait effectiveness, increasing 

resilience to biotic stressors, facilitating selection through 

molecular markers and optimizing breeding practices 

(83). Pyramiding of fragrance Badh2 gene (Wenxiang-1) and 

rice blast resistance Pi2 gene (R1179) with help of whole-

genome SNP genotyping Marker assisted selection on the 

Wenxiang-1/R1179 F2 segregation population with the 

functional markers Pi2-1 and Badh2-1, plants homozygous 

for both Pi2 and badh2 were selected. An analysis of the 

genetic composition of R365 revealed that 40.67 % of its 

entire genome was inherited from Wenxiang-1 and 59.33 % 

came from R1179.  As a result, obtained R365 and R403 are 

two elite hybrid line as the male parent with high 

productivity (84). 

 

Conclusion   

Aroma development in scented rice, a quality trait is 

controlled by both genetic and environment factors. 

Among the 500 identified aroma compounds, 2-Acetyl-1-

pyrroline (2-AP) is the principal aroma compound. Using 

CRISPR-Cas9, TALEN, gene silencing and gene pyramiding 

fragrance efficiency of the rice is possible through the 

engineered BADH2 gene. On the whole, the integration of 

traditional breeding methods with modern genetic tools 

holds great potential for the development of high-yielding, 

aromatic rice varieties. Further research in the biochemical 

pathways of aroma in rice will enable to manipulate the 

scented traits, preservation and improvement of aromatic 

rice. 
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