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Abstract   

The tomato is one of the most consumed vegetables and is rich in numerous 

beneficial and nutritious compounds. As climacteric fruits, tomatoes undergo 

significant metabolic changes during their growth and ripening. During fruit 

ripening, irreversible changes occur in the color, taste and appearance of the 

fruit. Shortly after ripening, the fruit begins to lose its shape and structural 

integrity. Approximately 50% of ripe tomatoes do not reach consumers. The 

primary cause of this loss is excessive fruit softening, which compromises the 

integrity of tomatoes during harvesting and transportation, making them 

susceptible to fungal and bacterial infections. Generally, fruit softening results 

from increased enzymatic activity that breaks down the fruit cell wall. 

Currently, chemical, physical and biotechnological methods are employed to 

extend tomato shelf life. These methods help reduce or inhibit the enzymatic 

activity responsible for fruit softening. The review provides a concise overview 

of these preservation methods. We focus on enhancing fruit preservation 

through plant genome modifications using modern biotechnological 

techniques, such as RNA interference (RNAi) and CRISPR/Cas9. Additionally, 

we will briefly discuss the advantages and limitations of these genetic 

engineering approaches. 
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Introduction   

Tomato (Solanum lycopersicum L.) is the second most important vegetable 

crop after potato. According to FAO data, 186 million tons of tomatoes were 

harvested in 2024. China is the leading producer of tomatoes. Tomatoes are 

widely consumed and served as a model plant for studying fruit development 

and functional genomics. The complete tomato genome has been sequenced, 

with epigenetic and RNA-seq data accessible through the Sol Genomics 

Network.  

 The shelf life and structural integrity of tomatoes significantly 

influence consumer purchasing decisions (1). Extending the shelf life of 

tomatoes can enhance their resistance to fungal and bacterial infections, 

thereby increasing consumer demand. Currently, various chemical, physical 

and biotechnological methods are employed to extend the shelf life of 

tomatoes (2-4). Physical methods for tomato storage primarily focus on 

modifying environmental conditions during storage. These techniques 
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include low-temperature storage, controlled atmospheres 

and advanced packaging technologies. A key factor in fruit 

ripening is the increased activity of enzymes that degrade 

cell wall carbohydrates. Storing fruits at low temperatures 

reduces enzymatic activity, thereby preserving their 

structural integrity for a longer period (5-7). Studies have 

shown that regulating the O2 / CO2 ration in tomato storage 

air extends shelf life more effectively than low-temperature 

storage alone (8). Pre-packaging treatment with hot water 

(5 min at 54°C) has been found to significantly extend shelf 

life compared to modified atmosphere packaging (MAP) (9-

11). 

 Chemical methods for extending the shelf life of 
tomatoes involve the use of natural or synthetic 

compounds. Antioxidants such as ascorbic acid and 

tocopherols help reduce oxidative stress and delay fruit 

degradation (12). Treating the tomato surface with a 

chitosan-allyl isothiocyanate (AIT) solution has been shown 

to extend shelf life by inhibiting microbial growth on the 

fruit skin (13). Genetic modification techniques are 

increasingly being used to enhance tomato fruit 

preservation. Genetic engineering enables the targeted 

manipulation of genes involved in fruit ripening, decay and 

shelf-life regulation. Fruit shelf life has been successfully 

extended by modifying the expression or nucleotide 

sequence of genes that regulate fruit ripening. (14, 15). 

 This review article explores various tomato storage 

methods, including physical, chemical and biotechnological 

approaches. We discuss the underlying mechanisms, 

effectiveness in preserving fruit quality and potential 

advantages and limitations of each approach. Additionally, 

we examine modern genome editing technologies, 

particularly the CRISPR/Cas9 system and their applications 

in tomato preservation. 

Increasing the Shelf Life of Tomato Fruits using Physical 

Methods 

Effect of changes in storage temperature on tomato fruit  

Temperature management is crucial for extending the 

storage life and maintaining the quality of tomato fruits. 

Cold storage is the primary physical method used to delay 

or reduce biotic and abiotic diseases in fresh fruits and 

vegetables (16). Higher temperatures accelerate metabolic 

activities such as respiration, ethylene production and 

enzymatic reactions, leading to faster ripening, softening 

and decay. In contrast, lower temperatures slow these 

processes, thereby extending the shelf life of tomatoes.  

Increasing the storage temperature from 18-20°C to 26°C 

reduced the average shelf life of tomatoes by 4 ± 1 days and 

increased fungal susceptibility by 11% ± 5% across most 

genotypes (17). Tomatoes ripen best at temperatures 

between 18°C and 21°C. However, low temperatures (5-12°

C) are commonly used for storage to delay ripening, reduce 

post-harvest losses and increase shelf life (17). Additionally, 

edible coating creates a protective barrier on the tomato 

surface, preventing moisture loss, microbial contamination 

and oxidative reactions. Ozone treatment is also employed 

as a complementary method to enhance fruit preservation. 

 

Increasing the Shelf Life of Tomato Fruits using Chemical 

Methods 

Chemical preservation methods effectively extend the shelf 

life of tomatoes by inhibiting microbial growth, reducing 

oxidative stress and delaying physiological deterioration. 

Ozone (O3) treatment has gained popularity as a promising 

method for preserving tomato fruits. As a powerful oxidizing 

agent and a natural antimicrobial agent, ozone effectively 

inhibits microbial growth, reduces spoilage and extends the 

shelf life. Research has explored the application of ozone 

treatment, its mechanisms of action and its impact on fruit 

quality and safety. Studies suggest that submerging 

tomatoes in O3-saturated water or in water bubbled with O3 

is more effective for removing pesticide residues. In addition 

to removal, ozone treatment also facilitates pesticide 

residue degradation (18). To maintain fruit quality and 

extend shelf life up to 12 days at room temperature, the 

optimal packaging method involves combining ozone 

treatment with perforated polyethylene packaging (19). 

 Edible coatings have emerged as a promising 

preservation technique for extending the shelf life of fruits. 

These coatings protect food products from light and 

ultraviolet radiation while also serving as a mechanical 

barrier with physical and biological properties. The 

formation of a semipermeable protective layer on the fruit 

surface alters the gaseous exchange of O2 and CO2, thereby 

reducing respiration rates and suppressing ethylene 

biosynthesis. This process ultimately delaying the ripening-

related changes, preserving fruit quality for an extended 

period (20). 

Improving the Storage of Tomato Fruits using Biotechnological 

Methods 

Fruit ripening is regulated by three main factors: ethylene, 

ripening-associated transcription factors and DNA 

methylation. Tomatoes are considered the genetic model 

for studying climacteric fruit ripening (21). Biotechnological 

advancements offer innovative strategies to extend the 

shelf life of tomatoes, enhance quality attributes and reduce 

post-harvest losses. These approaches include genetic 

modification, gene expression regulation and molecular 

breeding to improve fruit storage characteristics. 

Delaying ripening through genetic modifications 

Genetic modification techniques can be employed to alter 

the expression of genes involved in tomato fruit ripening, 

particularly those encoding ethylene biosynthesis enzymes, 

ethylene receptors and cell wall degrading enzymes. 

Suppressing or delaying the production and perception of 

these components can effectively extend the shelf life of 

tomatoes. Ethylene is key regulator of ripening, influences 

the expression of genes and transcription factors that drive 

this process. Delaying fruit ripening can be achieved by 

inhibiting ethylene biosynthesis or blocking ethylene 

hormone receptors (22-24). Several enzymes contribute to 

fruit softening, including polygalacturonase (PG), β-

galactosidase (β-gal) and N-glycoprotein-modifying 

enzymes such as α-mannosidase (α-Man) and β-D-N-acetyl 

hexosaminidase (β-Hex) (25). Suppressing the activity of α-
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Man and β-Hex using RNA interference (RNAi) has been 

shown to produce tomato lines with extended storage life 

(14). Genetic modification can also target genes involved in 

softening, color change and flavor development, allowing 

for extended storage while preserving desirable quality 

traits. Currently, RNAi and CRISPR/Cas technologies are the 

primary tools used to silence or completely knock out genes 

involved in tomato ripening (15). 

Use of RNAi in tomato fruit preservation 

RNA interference (RNAi) is a biotechnological method used 

to selectively silence genes involved in fruit ripening or 

quality degradation. RNAi-based approaches can delay 

ripening and extend storage life by targeting and 

suppressing the expression of genes associated with 

softening, decay other undesirable traits.  Studies have 

shown that silencing multiple genes through RNAi can 

significantly increase the shelf life of tomatoes. Ripening 

and senescence in plants are primarily regulated by type 2C 

protein phosphatases (PP2Cs). In tomato transgenic lines 

carrying the SlPP2C RNA interference (RNAi), delayed 

senescence and ripening were observed in leaves, flowers 

and fruits (26). Ethylene, a key ripening hormone, plays a 

crucial role in initiating, regulating and synchronizing the 

expression of genes involved in the ripening process. 

Silencing the aminocyclopropane-1-carboxylate (ACC) 

synthase (ACS) gene using RNAi delayed fruit ripening and 

extended storage time up to 45 days (27). Additionally, RNAi

-mediated suppression of genes responsible for ethylene 

synthesis (ACS2, ACS4, ACO1 and ACO3) and ripening-

related genes (RIN, TAGL1, FUL1, FUL2, LoxC and PE) in 

SlCMB1-RNAi tomato fruits resulted extended shelf life and 

delayed deterioration (28).  

Use of CRISPR/Cas in tomato fruit preservation  

The CRISPR/Cas9 is a genome-editing tool derived from the 

adaptive immune system of bacteria or archaea, which 

protects against invasive viruses or phages. Due to its 

simplicity low cost and high efficiency precision, CRISPR/

Cas has become the most widely used genome-editing 

technique in molecular biology laboratories worldwide (29, 

30). CRISPR (clustered regularly interspaced short 

palindromic repeats) and its associated Cas9 protein 

provide a precise and efficient method for modifying the 

genome of any living organism. The CRISPR/Cas-9 system 

consists of two key components: guide RNA (gRNA) and 

CRISPR-associated (Cas-9) proteins. The genome editing 

mechanism follows three main phases: recognition, 

cleavage and repair (31). The engineered single guided RNA 

(sgRNA) recognized the target sequence through 

complementary base pairing, while the Cas-9 nuclease 

indices double-strand breaks three base pairs upstream to 

the protospacer adjacent motif (PAM). The breaks are then 

repaired by either homology-directed repair (HDR) or non-

homologous end joining (NHEJ) in the cell.  

 CRISPR/Cas9 has been extensively used to 

characterized and edit various tomato traits, including: plant 

architecture and flower development (leaf, stem, flower, male 

sterility, fruit and parthenocarpy), fruit ripening, quality and 

nutrition (lycopene, carotenoid, GABA, total soluble solids, 

anthocyanin, shelf-life), disease resistance (late blight, TYLCV 

and powdery mildew), abiotic stress tolerance (heat, drought 

and salinity), C-N metabolism and herbicide resistance (32). 

CRISPR/Cas9 has been widely applied to enhance tomato 

fruit quality and shelf life. Knocked out of SBP-CNR and NAC-

NOR transcription factors led to delayed fruit ripening in 

some plants, while other exhibited partially ripening (21). 

However, when the ALC gene was mutated using CRISPR/

Cas9, long-shelf-life tomato lines were produced, but the 

overall ripening period remain unchanged (15). One of the 

key genes associated with fruit firmness is polygalacturonase 

(PG). CRISPR/Cas9-mediated mutation of PG in tomatoes 

resulted in fruits that retained their firmness longer under 

natural conditions compared to the control plants (33). 

Increase fruit storage through gene overexpression 

The shelf life of tomato fruit can be extended by increasing 

the activity of transcription factors or genes responsible for 

the synthesis of key enzymes involved in fruit ripening and 

senescence. Gene overexpression can be achieved through 

genetic engineering, transgenic approaches or gene editing 

technologies such as CRISPR-Cas. By introducing additional 

copies of specific genes or modifying their regulatory regions, 

researchers can enhance their expression levels, thereby 

improving fruit storage characteristics. Overexpression of 

SlMYB75 gene in tomato plants resulted in prolonged fruit 

storage and increased resistance to Botrytis cinerea (34). 

MADS-box genes, which encode transcription factors, play 

essential roles in various plant biological processes in 

tomatoes.  The SlFYFL gene, a meber of MADS-box family, was 

isolated and overexpressed, leading to delayed leaf 

senescence and fruit ripening, improved storability and 

elongated sepals. Additionally, carotenoid accumulation was 

reduced and ethylene content, ethylene biosynthesis and 

responsive genes were downregulated in transgenic tomato 

fruits (35). Furthermore, the overexpression of the SlMSI1 

gene in tomatoes has been shown to suppress genes linked 

to ripening, effectively promoting extended fruit storage (36).  

Benefits of Tomato Genetic Modification Techniques 

Genetic modification methods offer significant advantages 

over traditional selection techniques for improving plant 

characteristics. These methods are faster, more precise and 

specifically target desired traits without encountering 

unrelated ones. They allow for the introduction of desirable 

traits in plants in a shorter timeframe compared to 

traditional selection methods, which involve repeated 

cycles of crossbreeding and selection. They also enable 

researchers to make precise modifications at the molecular 

level, targeting specific genes or gene regions associated 

with the desired traits. This precision reduces the likelihood 

of introducing unintended changes in the plant's genetic 

makeup. 

 Currently, there are several gene-editing methods 

available, including zinc finger nucleases (ZFNs), transcription 

activator-like effector nucleases (TALENs) and CRSIPR/Cas. 

ZFNs and TALENs were among the first genome editing 

technologies. The efficiency of gene modification using ZFNs 

ranges from 1% to 10% (37). However, this method has low 

specificity, leading to a higher likelihood off-target mutations 
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(38). TALEN technology is approximately 30% effective in 

creating DNA mutations, with a low off-target mutation rate 

(39). In both ZFN and TALEN methods, the target DNA 

sequence is identified using a synthetically constructed 

protein.  

 CRISPR/Cas method is the most recently discovered 

genome editing method and is widely used today due to its 

simplicity and low cost. The genome of many organisms has 

been successfully edited by this method (40). The percentage 

of gene editing is as high as 75%-85% in CRISPR/Cas (41). By 

increasing the number of gRNAs, mutations can be 

introduced at multiple locations simultaneously. Since gRNAs 

are nucleotide sequences, they can be easily synthesized. 

When CSIPR/Cas genome editing is performed, experimental 

efficiency and side effects on other DNA fragments are 

eliminated during gRNA designing. 

 Using the CRISPR/Cas method for obtaining 
transgenic plants can reduce some concerns regarding the 

release of genetic constructs into the environment. This 

method allows for the modification of the plant genome 

without the need for antibiotic resistance genes, reducing the 

potential risks associated with their presence. 

Drawback of Tomato Genetic Modification Techniques 

However, genetic modification techniques also have certain 

limitations. For example, TALENs are unable to modify 

methylated DNA regions and the main limitation of ZFNs and 

TALENs is the formation of the endonuclease (FokI). The PAM 

sequence is important for DNA fragment editing by CRISPR/

Cas9. The PAM sequence consists of a 2-5 bp nucleotide 

sequence and is found in many locations in the genome. 

Since gRNAs are designed to target DNA containing this PAM 

sequence, the editing of any DNA fragment by CRISPR/Cas9 is 

somewhat limited (42). It is also necessary to pay attention to 

reducing the probability of off-target effects in genome 

editing using these methods (43). While these methods make 

it easier to reduce or completely stop the expression of genes, 

mainly by editing the genomes of plants, introducing a new 

gene into the plant genome or replacing a piece of DNA with a 

new one is somewhat difficult due to the low frequency of 

HDR in plants (44). 

 Countries have varying regulations on genetically 
modified plants. The European Union imposes strict 

restrictions, whereas the United States permits their cultivation 

and consumption. Asian countries have different views on this 

(45). The acceptance of transgenic plants by humans, 

particularly in the case of edible plants, is a significant concern. 

There are apprehensions about consuming plants that contain 

genetic constructs used for selection purposes, as well as those 

that include antibiotic resistance genes.  

 

Conclusion 

The quality of tomato fruit in the market is evaluated by its 

appearance. Since the softening of fruits is the result of the 

activity of enzymes in their skin, fruit storage is mainly carried 

out by reducing the activity of these enzymes using various 

methods such as chemical, physical and biotechnological. 

Since the use of chemical and physical methods requires 

special equipment and conditions, the use of biotechnological 

methods is currently developing. Using biotechnological 

methods, the activity of the genes responsible for the 

softening of the fruit shelf life is reduced or stopped. These 

modern biotechnological methods are especially convenient 

for farmers who do not have the necessary conditions for 

storage. 
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