
  

Plant Science Today, ISSN 2348-1900 (online) 

 OPEN ACCESS 

 

ARTICLE HISTORY 

Received: 20 August 2024 
Accepted: 08 September 2024 

Available online 
Version 1.0 : 19 September 2024 
Version 2.0 : 01 October 2024 

 

 

Additional information 

Peer review: Publisher  thanks Sectional Editor 
and the other anonymous reviewers for their 
contribution to the peer review of this work. 
 

Reprints & permissions information is 
available at https://horizonepublishing.com/
journals/index.php/PST/open_access_policy 
 

Publisher’s Note: Horizon e-Publishing Group 
remains neutral with regard to jurisdictional 
claims in published maps and institutional 
affiliations. 
 

Indexing: Plant Science Today, published by 
Horizon e-Publishing Group, is covered by 
Scopus, Web of Science, BIOSIS Previews, 
Clarivate Analytics, NAAS, UGC Care, etc 
See https://horizonepublishing.com/journals/
index.php/PST/indexing_abstracting 
 

Copyright: © The Author(s). This is an open-
access article distributed under the terms of the 
Creative Commons Attribution License, which 
permits unrestricted use, distribution and 
reproduction in any medium, provided the 
original author and source are credited (https://
creativecommons.org/licenses/by/4.0/) 
 

CITE THIS ARTICLE 

Thimmareddy H, Pazhanivelan S, Ragunath 
KP, Sathyamoorthy NK, Sivamurugan AP, 
Vincent S, Sudarmanian NS, Satheesh S, 
Pugazenthi K. Comparative Analysis of Leaf 
Area Index and Maize Yield Estimation 
Assimilating Remote Sensing and DSSAT 
Crop Simulation Model. Plant Science 
Today. 2024; 11(4): 137-148. https://
doi.org/10.14719/pst.4736 

Abstract   

Maize is a global staple crop, impacting food security, economic 

development, and agricultural sustainability. This study investigates the 

integration of Sentinel-1A Synthetic Aperture Radar (SAR) data with the 

DSSAT CERES-Maize crop simulation model to estimate Leaf Area Index (LAI) 

and rabi maize yield in Belagavi district, Karnataka. Field data, including LAI, 

days to anthesis, silking, grain filling and farmers' field practices, were 

collected for model calibration and validation, supplemented by crop-

cutting experiments (CCE) to determine actual yields. The study revealed 

strong correlations between LAI values obtained from remote sensing (RS) 

and field observations, with RS-derived LAI showing an average agreement 

of approximately 96.07% compared to field measurements. The DSSAT 

model exhibited slightly better performance, averaging 97.09%. Statistical 

analysis for LAI showed an R² value of 0.853 for RS and 0.864 for DSSAT, 

indicating strong correlations with observed LAI values. For maize yield 

estimation, the DSSAT model demonstrated higher accuracy with an 

average yield of 8129 kg/ha, compared to RS-derived yield averages of 

7533.9 kg/ha and CCE yield averages of 8096.6 kg/ha. The average 

concordance between DSSAT and CCE yields was 94.19%, while RS and CCE 

yields had an average concordance of 92.29%. Statistical analyses revealed 

coefficients of determination of 0.854 for DSSAT-CCE and 0.867 for RS-CCE 

comparisons. The study underscores the value of combining RS data with 

DSSAT for comprehensive and accurate crop yield forecasting, highlighting 

the potential for improved agricultural assessments and decision-making. 
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Introduction   

Agriculture is a crucial contributor to both national and international 

economies. Globally, it accounts for around 4% of GDP, while in the case of 

India it is 18.2%. This share can rise to over 25% in many developing 

countries, which is vital to economic stability (1). Agriculture is also a 

significant source of employment, engaging approximately 26.5% of the 

global workforce, with much higher figures in low-income nations, where up 
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to 60-70% of the population depends on it for their 

livelihoods (2). As the global population grows, currently 

surpassing 8.1 billion in 2023, the demand for food is 

expected to rise significantly, necessitating innovations in 

agricultural practices to ensure productivity and 

sustainability (3). Thus, estimation of yield becomes 

paramount for farm planning and management. Accurate 

yield predictions help governments and organizations 

anticipate food shortages or surpluses, manage grain 

reserves, and stabilize food prices (4). Traditional yield 

estimation methods, such as Crop Cutting Experiments 

(CCE), involve physically harvesting a portion of the crop 

and extrapolating the results to estimate total yield (5). 

While CCEs are considered accurate, they are resource-

intensive and often not feasible for large-scale applications 

(6). 

 To monitor crop growth and forecast yields non-

invasive and scalable, remote sensing (RS) presents a 

competitive option for large-scale yield estimates. Crop 

health and growth phases, directly tied to yield potential, 

may be evaluated by analyzing RS data, such as vegetation 

indices and spectral reflectance patterns (7). By adding 

environmental and management aspects, RS data may be 

linked with crop simulation models, such as DSSAT, to 

improve yield forecast accuracy (8). 

 Among crop simulation models, the Decision 

Support System for Agro technology Transfer (DSSAT) is the 

most used worldwide. DSSAT is a worldwide partnership 

that simulates crop growth, development and yield by 

integrating meteorological, soil and crop management data 

(9). By simulating the biological processes that control crop 

development, the model enables users to evaluate the 

effects of various management techniques and 

environmental factors on crop performance. DSSAT is a 

valuable instrument for yield assessment and agricultural 

research since it has been widely verified and used in 

various agro-ecological zones. The model is beneficial for 

evaluating the possible effects of climate change on 

agriculture and for creating adaptation strategies since it 

can simulate crop responses to changing weather 

conditions, soil types and management approaches (10).  

 The advantages of both methods are combined by 

incorporating remote sensing data into crop simulation 

models. Crop models may be updated and calibrated using 

real-time, high-resolution data from remote sensing, which 

makes the models' forecasts more accurate and true to the 

field (11). This fusion improves yield projections by 

strengthening their resistance to uncertainties and 

fluctuations in weather, pests and illnesses. Furthermore, 

this integrated approach makes early warning systems and 

prompt intervention tactics easier. For example, 

abnormalities found by remote sensing can start 

simulations that forecast possible yield losses, allowing for 

proactive risk mitigation. This is essential for ensuring food 

security because it enables more effective resource 

management and reduces financial losses for farmers (12). 

The study addresses the need for timely and accurate 

agricultural information using an integrated approach. This 

is important because it can help improve yield predictions, 

optimize crop management practices and ensure 

sustainable agricultural development in areas like Belagavi 

district, the second-largest rabi maize producer in 

Karnataka, India. It covers an area of 64,714 hectares, with a 

total production of 2.73 lakh tonnes and a productivity of 

4.23 tonnes per hectare (12). 

 

Materials and Methods 

Study area 

The Belagavi district is situated in the northwest region of 

Karnataka, India. It is roughly between latitudes 15°23' 

and 16°58' N and longitudes 74°5' and 75°28' E (Fig. 1). 

With the Western Ghats to the west and the plains to the 

east, its geography is varied, which contributes to its 

changeable climate. A distinct rainy season, which runs 

from June to September, is followed by a dry season (14). 

The district is subject to a tropical monsoon climate. Over 

2,500 mm of rain falls annually in the western portion of 

the area, compared to 700-900 mm in the eastern section. 

This represents a significant variation in yearly rainfall. 

Agribusiness is supported by the region's average 

temperature, which varies from 15°C in the winter to about 

35°C in the summer (15). 

Ground Truth Data collection and CCE 

Ground truth is an essential component of crop 

classification, as it is used to validate the accuracy of 

classification algorithms and as an input for their 

development (16). When collecting ground truth data, 

specifics like the crop name, coverage, condition, growth 

stage, irrigation status (irrigated or rainfed), expected 

yield and sowing and harvesting dates are usually 

included. Ground truth data about land use and cover is 

gathered (17). Using a stratified sampling technique, this 

data was collected from specific sample locations 

throughout the research region, guaranteeing thorough 

coverage of various kinds. In all, 369 ground truth points 

(GTP)-crop and non-crop sites-were gathered for this 

investigation. Classification, validation and accuracy 

evaluation were then conducted using these points. Crop 

Cutting Experiments (CCE) were performed at more than 

70 locations and 30 were finalized as monitoring sites to 

validate yield spread across the district. 

Satellite data 

Utilizing the Sentinel-1A satellite equipped with the C-SAR 

instrument provides reliable and extensive monitoring 

capabilities (18). Synthetic Aperture Radar (SAR) offers a 

notable benefit, as it operates at wavelengths unaffected 

by cloud cover or lack of illumination, enabling continuous 

data collection regardless of the time of day (19). Sentinel-

1's various imaging modes, with different resolutions and 

dual polarization, ensure comprehensive coverage and 

detailed observations (20). Ground Range Detected (GRD) 

and Single Look Complex (SLC) datasets from Sentinel-1A 

SAR, featuring VV and VH polarizations in Interferometric 

Wide (IW) swath mode, were collected at 12-day intervals. 

These datasets were essential for crop identification and 

mapping in the study area. Data from August 29, 2022, to 
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February 25, 2023, were sourced from the Alaska Satellite 

Facility (https://asf.alaska.edu/). This period corresponds 

with the typical Maize growing season in the study region, 

ensuring complete coverage of all crop growth stages 

(Table 1). 

Integrating SAR-based remote sensing products and 

crop simulation model 

Crop yield simulation using the DSSAT model 

Under the sponsorship of IBSNAT, USA, the Decision Support 

System for Agro technology Transfer (DSSAT) was developed 

through global cooperation (9). The meteorological, crop 

and soil databases are combined into standard formats by 

the DSSAT software program for assessment. Next, for every 

crop in any part of the world, the user can duplicate the 

outcomes of crop management techniques across several 

years. For this reason, the current study used the DSSAT 

crop simulation model. Crop growth and development of 

Maize were simulated daily by the CERES-Maize model, 

which was included in the DSSAT v. 4.8 version.  

Fig. 1. Study area map with ground truth points 

S.No Date of Pass dB value Crop Calendar for Rabi Maize 

D1 29.08.2022 -17.50         

  

  

D2 10.09.2022 -17.50         

D3 22.09.2022 -17.64         

D4 04.10.2022 -17.61 

Sowing 
Window 

      

D5 16.10.2022 -17.80       

D6 28.10.2022 -18.42 

Vegetative 
stage 

    

D7 09.11.2022 -17.98     

D8 21.11.2022 -18.31       

D9 03.12.2022 -17.94   

50 % anthesis 

  

D10 15.12.2022 -17.47   

Grain filling 
D11 27.12.2022 -17.32     

D12 08.01.2023 -17.39       

D13 01.02.2023 -17.52       50 % Dough 
stage D14 13.02.2023 -17.74         

D15 25.02.2023 -18.31           Maturity/Harvest 

Table 1: Date of satellite pass with mean temporal backscattering (dB) values for the maize monitoring site and crop calendar  

https://asf.alaska.edu/
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Input data for the DSSAT crop simulation model 

Weather data  

The minimum required weather variables are Maximum 

and Minimum Temperature ( ̊ C), Solar Radiation (MJ m-2) 

and Precipitation at daily time scale. Daily weather data 

for the 30 monitoring sites of each district for the cropping 

period of Rabi 2022-23 was collected from the NASA Power 

web portal (https://power.larc.nasa.gov/), available in 0.5 

x 0.625-degree resolution. The daily data was checked for 

errors and missing values and was corrected. The 

Weatherman tool was used to create the weather file as an 

input to the model (Fig. 2).  

Soil data  

The soil data utilized in this study was collected from the 

International Research Institute for Climate and Society 

(IRICS) at Michigan State University and the International 

Food Policy Research Institute's (IFPRI) database. These 

data, available at a scale of 1:10,000 with a 5-minute 

resolution, offer detailed insights into soil characteristics 

(https://doi.org/10.7910/DVN/1PEEY0). 

Crop Management data  

The primary maize hybrids in the Belagavi district are 900-

M-Gold, DKC-9141, NK-9141 and DKC-9133 (Table 2). Field 

visits were conducted during the rabi season of 2021-22 

and 2022 - 23, i.e., the first week of October (vegetative 

stage), the third week of November (flowering stage) and 

the first week of January (harvesting stage). Crop 

management and other operations, viz., land preparation, 

initial soil conditions, planting geometrics, irrigation and 

water management, fertilizer management, organic 

residue application, chemical applications, environment 

modifications, etc., were gathered by interacting with 

Fig. 2. Created weather file for DSSAT model for one of the monitoring sites of Belagavi district  

S.
No Particulars 900-M-Gold NK-6240 DKC-9141 DKC-9133 

1. Duration 110-120 days 110-125 days 115-125 days 110 days 

2. Season 

Irrigated: 
June-Sept (Kharif)              

Oct- Jan (Rabi)  
Feb-May (Zaid) 

Irrigated: 
June-Sept (Kharif)                  

Oct- Jan (Rabi)  
Feb-May (Zaid) 

Rainfed: 
June-Sept (Kharif)                  

Oct- Jan (Rabi) 

Irrigated: 
June-Sept (Kharif)              

Oct- Jan (Rabi)  
Feb-May (Zaid) 

Irrigated: 
June-Sept (Kharif)                  

Oct- Jan (Rabi)  
Feb-May (Zaid) 

Rainfed: 
June-Sept (Kharif)                  

Oct- Jan (Rabi) 

3. Grain yield Irrigated: 6500 - 8500 kg/ha 
Irrigated: 6500 – 7500 kg/ha 

Rainfed: 5500 – 6500 kg/ha 
Irrigated: 6500 – 8500 kg/ha 

Irrigated: 6000 - 7500 kg/ha 

Rainfed: 5500 - 6000 kg/ha 

4. 
Salient 

features 

Attractive orange colour 
kernels with good keeping 

quality 

Good tip-filling, compact 
ears 

Wider adaptability 

High-yielding hybrid 
suitable for assured rainfall 

and support irrigation 
geographies. 

  

An orange-yellow dent with 
bold kernels with excellent 

tip. 

It is a very uniform and 
appealing plant type. 

Widely adapted hybrid with 
outstanding yield and 

stability. 

Stable yielder across the 
environments, good 

responsiveness to high input 
management. 

Good stay green 
character with high fodder 

yield, suitable for 26000 
plants per acre density. 

Robust Big Ears with 
more rows per cob 

Relatively better tolerant 
to stalk rot 

It is a high-yielding, input
-responsive hybrid suitable 

for irrigated and assured 
rainfall areas. 

Bold, attractive grains, 
good colour, good kernel 

quality 

Stable-yielding hybrid 
suitable for rainfed 

conditions 

Wider adaptability, 
tolerance to low moisture 

stress and response to high 
inputs, good management 

and planting density.  

Table 2: Description of Maize varieties considered for the study 

https://plantsciencetoday.online
https://power.larc.nasa.gov/
https://doi.org/10.7910/DVN/1PEEY0


141 

Plant Science Today, ISSN 2348-1900 (online) 

farmers and the Department of Agriculture officials.  

Cultivar file 

The cultivar files described the genetic coefficients of the 

cultivars 900-M-Gold, DKC-9141, NK-9141 and DKC-9133. 

The genetic coefficients needed for Maize in the DSSAT 

CERES-Maize model are represented in Table 3. 

Model Calibration and Validation 

Three input files were compiled to run the DSSAT model 

using collected datasets. To compute the genetic coefficient 

for 900-M-Gold, DKC-9141, NK-9141 and DKC-9133 varieties 

with spatial analysis mode in DSSAT, the model was 

calibrated using data gathered during the 2021-22 rabi 

Maize crop growing season and was validated with the 2022

-23 yield data. Actual yield information from the farmer's 

fields in the research area was collected as observed yield 

data. The quality of the simulation results was assessed 

using various criteria, including the coefficient of 

determination (R²), which measures the proportion of 

variance in the observed data explained by the model. 

Additionally, root mean square error (RMSE) was used to 

evaluate the average magnitude of prediction errors, 

indicating how closely the simulated values match the 

observed data. Normalized root mean square error (NRMSE) 

was also employed to provide a scaled measure of 

prediction error, facilitating comparisons across different 

datasets or units. Graphs between the observed and 

simulated values were created to quickly assess the 

modelling accuracy using linear regression and the 

correlation coefficient. The model was then run for the 30 

monitoring sites (Fig. 3) and simulated the yields. 

Observed LAI from monitoring sites 

Five plants were randomly selected during the ground 

truthing process for each monitoring site to validate the 

observed LAI and compare it with the crop simulation 

model and remotely sensed data LAI. Typically, this output 

was based solely on the phenological and physiological 

mechanisms that control plant qualities. It was determined 

by taking one-month interval measurements of the length 

and width of the fully 

expanded third leaf starting at 

30 DAS and continuing 

until harvest. 

 

LAI = 

L x W x K x No. Of Leaves 

Spacing (cm) 

GC 
code Description 

Genetic co-efficient 

NK-6240 DKC-9141 DKC-9133 900-M-GOLD 

P1 

  

Thermal time from seedling emergence to the end of the juvenile phase 
(expressed in degree days above a base temperature of 8°C) during which 

the plant is not responsive to changes in photoperiod. 
169.6 265.0 212.0 262.3 

P2 
The extent to which development (expressed as days) is delayed for each 

hour increases in photoperiod above the longest photoperiod at which 
development proceeds at a maximum rate (considered 12.5 hours). 

0.243 0.27 0.270 0.159 

P5 
Thermal time from silking to physiological maturity (expressed in degree 

days above a base temperature of 8°C). 934.1 940.0 869.4 930.0 

G2 Maximum possible number of kernels per plant. 918.0 920.0 920.0 890.0 

G3 
Kernel filling rate during the linear grain filling stage and under optimum 

conditions (mg day-1). 8.00 8.00 8.00 8.00 

PHINT 
Phyllochron interval; the interval in thermal time (degree days) between 

successive leaf tip appearances. 36.76 39.0 38.7 38.90 

Table 3: Genetic co-efficient (GC) of Maize used in DSSAT CERES-Maize model 

Fig. 3. Schematic representation of methodology of DSSAT CERES-Maize crop simulation model 
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Where, 

L- Length of the leaf (cm), W-Width of the leaf (cm), K-

Constant factor (0.70) 

 For every field, six to ten Leaf area measurements 

were obtained; the average was then computed to 

determine the LAI. At the end of the growing season, yield 

data from each field were collected from the farmer's fields. 

Finally, from the available data, 30 monitoring sites spread 

across the research region were selected to supply data to 

the CERES-Maize module for simulation and validation. 

Regression analysis was performed by combining the study 

region's data into a single dataset and comparing the 

predicted yield with the observed yield. 

Retrieving LAI from dB images of SAR data 

The dB (backscattering) values of maize fields were acquired 

from monitoring fields using a point sampling tool in QGIS. A 

linear regression between the simulated LAI values and the 

dB values was created using the simulated LAI values from 

monitoring the maize fields in the research region. Selection 

queries were made using Map Algebra syntax. Mathematical 

calculations were done using operators and functions with 

the QGIS raster calculator tool. Using a raster calculator, 

point-specific LAI was created in this study by replacing the 

calculated regression values with dB values in dB photos 

taken during the crop's flowering stages.  

Maize yield estimation assimilating remote sensing 
techniques with the DSSAT model 

The DSSAT simulated yield was integrated with the remote 

sensing data using LAI values extracted from dB images of 

the SAR data. A linear regression equation was created to 

calculate Maize yield for the research area using the DSSAT 

simulated yield and spatially simulated LAI values (Fig. 4).  

 

Results  

Leaf Area Index Estimation 

The analysis of Leaf Area Index (LAI) estimates from Remote 

Sensing (RS) and the DSSAT model, compared to observed 

LAI values across 30 samples, shows varying levels of 

agreement. The RS-derived LAI exhibited percentage 

agreement with observed LAI values ranging from 91.54 % 

to 99.79 %, with an average congruence of approximately 

96.07 % (Fig. 5). The RS model's performance is quantified 

by an R² value of 0.853 (Fig. 6), indicating a strong 

correlation with observed LAI. However, the Root Mean 

Square Error (RMSE) of 0.1396 and Normalized Root Mean 

Square Error (NRMSE) of 4.09 % suggest some discrepancy 

between RS predictions and observed values. The spatial 

LAI estimated has been depicted in Fig. 8. 

 The DSSAT model, on the other hand, showed 

slightly higher accuracy, with percentage agreement 

ranging from 93.55 % to 99.02 % and an average agreement 

of 97.09 % (Fig. 5). The model's R² value of 0.864 (Fig. 6) 

indicates a robust correlation with observed LAI, marginally 

outperforming the RS model. The DSSAT model also 

demonstrated lower RMSE (0.1217) and NRMSE (3.46 %) 

values, suggesting a closer alignment with the observed 

data. 

Maize Yield Estimation 

The comparative analysis of yield data from DSSAT, Remote 
Sensing (RS), and Crop Cutting Experiment (CCE) sources 

reveals notable differences in their performance. The DSSAT 

model showed an average yield of 8129 kg/ha, while RS 

Fig. 4. Schematic representation of the Maize yield estimation by integrating SAR satellite products and the DSSAT CERES-Maize model 
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yield 

averaged 7533.9 kg/ha, and CCE yield averaged 8096.6 kg/

ha (Fig. 9). The DSSAT model recorded the highest yield at 

9723 kg/ha, while the RS method reported the lowest yield 

at 6035 kg/ha. 

 The concordance between DSSAT and CCE yield 

values ranged from 88.75% to 99.64%, demonstrating a high 

consistency overall. Similarly, the concordance between RS 

and CCE yield values varied between 86.09% and 98.48%. 

Statistical analysis revealed that the coefficient of 

determination was 0.854 for the DSSAT-CCE comparison 

and 0.867 for the RS-CCE comparison, indicating linear solid 

relationships in both cases. The RMSE was calculated to be 

466.84 kg/ha for DSSAT and 617.94 kg/ha for RS, while the 

NRMSE 

values 

were 

5.77% 

and 

7.63%, 

respectively, indicating that DSSAT provided predictions 

closer to the observed CCE yield values. The spatial yield 

distribution is depicted in Fig.10.  

Discussion 

Leaf Area Index Estimation 

The results highlight fundamental differences between the 
RS and DSSAT models in estimating LAI. While effective in 

capturing LAI variability, the RS model shows some 
limitations in accuracy, as evidenced by its higher RMSE and 
NRMSE values. These limitations could be attributed to 

factors such as the spatial resolution of remote sensing data 
and potential errors in satellite imagery interpretation. 
Despite these challenges, the RS model provides a valuable 

Fig. 5. DSSAT simulated LAI, Remote Sensing (RS) LAI, Observed LAI and concordance between them  

Fig. 6. Correlation between observed and modelled LAI  
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Fig. 7. Spatial LAI map of Belagavi district  

https://plantsciencetoday.online


145 

Plant Science Today, ISSN 2348-1900 (online) 

 

Fig. 8. DSSAT simulated yield, Remote Sensing (RS) yield, CCE yield and concordance between them  

Fig. 9. Correlation between modelled and CCE yield  
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Fig. 10. Spatial yield map of Belagavi district  
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tool for large-scale agricultural monitoring, especially in 
regions where ground-based data collection is challenging 

(18). 

 The DSSAT model, with its more detailed simulation 
of crop growth dynamics and incorporation of site-specific 

factors, demonstrates superior accuracy in LAI estimation. 

Its higher R² value and lower error metrics suggest it is more 

reliable for precise LAI predictions. This makes the DSSAT 

model particularly useful for site-specific agricultural 

applications requiring detailed crop management decisions 

(19). 

 The findings suggest that while the DSSAT model 

generally offers better accuracy (94 %), the RS model's (92 

%) ability to cover large areas quickly and efficiently should 

not be overlooked. Integrating both models could 

potentially enhance overall LAI estimation, combining the 

spatial coverage of RS with the detailed crop growth 

simulation of DSSAT. This approach could provide more 

robust tools for precision agriculture and improve resource 

management and crop productivity (20). 

Maize Yield Estimation 

The results suggest that the DSSAT model offers yield 
predictions closely aligned with observed CCE data. The 

high agreement percentages and the lower RMSE and 

NRMSE values indicate that DSSAT is a reliable tool for yield 

estimation, likely due to its detailed modelling of crop 

growth processes (21; 22). The strong correlation between 

DSSAT and CCE yields is consistent with other studies that 

have validated DSSAT's accuracy in different agricultural 

settings (2). 

 In contrast, while RS data also showed a strong 

correlation with CCE yield, the higher RMSE and NRMSE 

values suggest more significant variability and potential 

inaccuracies in yield estimation using this method. This 

variability may be attributed to limitations in remote 

sensing techniques, such as spatial resolution constraints or 

environmental factors that may not be fully captured in RS 

data (23; 5). 

 The R² values for DSSAT and RS compared to CCE 

indicate that both methods can explain a significant portion 

of the variability in observed yields, with RS showing a 

slightly stronger correlation. However, the lower prediction 

errors associated with DSSAT suggest that it is more precise 

in yield estimation. This precision is crucial for making 

informed agricultural decisions and improving crop 

management practices. 

 These findings underscore the complementary 

strengths of DSSAT and RS methods in yield prediction. 

DSSAT's process-based modelling approach allows for more 

precise yield predictions, while RS offers valuable large-

scale yield estimates that can be integrated with ground-

based observations. Combining these methods could 

enhance the accuracy and scalability of yield predictions, 

providing a more robust tool for agricultural planning and 

decision-making (24). 

 

Conclusion   

The study successfully integrated Sentinel-1A SAR data with 

the DSSAT CERES-Maize crop simulation model to estimate 

LAI and maize yield. Ground truth data collection and CCE 

were used to validate the accuracy of these methods. The 

analysis of LAI revealed strong correlations between 

Remote Sensing RS, DSSAT model outputs and observed 

data. While RS data showed higher agreement with 

observed LAI, the DSSAT model had slightly lower RMSE and 

NRMSE values, indicating a closer fit to ground-truth 

measurements. The DSSAT model demonstrated high 

accuracy for maize yield estimation, with linear solid 

relationships and lower prediction errors than RS data, 

which showed more significant variability. This study 

highlights the complementary strengths of RS and DSSAT 

methods in crop monitoring and yield prediction, 

emphasizing their potential for improving agricultural 

assessments and informed decision-making in diverse 

landscapes. 
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