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Abstract   

The increasing generation of Municipal Solid Waste (MSW) is a significant 

global concern, with landfills receiving around 1.4 billion tonnes of MSW 

yearly. Inadequate landfill management contributes to environmental 

degradation, with landfill leachate being a substantial outcome of MSW 

decomposition. Leachate contains inorganic nutrients, volatile and 

dissolved organic molecules and heavy metals and its properties vary 

depending on waste composition, moisture content and seasonal elements. 

Heavy metals found in leachate include Pb, Cu, Cr, Ni, Mn, Hg, Fe, Zn and Cd 

and Emerging Organic Contaminants (EOCs) such as Persistent Organic 

Pollutants (POPs), Endocrine Disrupting Chemicals (EDC), pharmaceuticals 

and Personal Care Products (PCPs) are also prevalent. Microplastics (MPs) 

have been found in raw leachate samples at concentrations ranging from 

49.0 ± 24.3 to 507.6 ± 37.3 items/L. Landfill leachate production ranks 

among the most aggressive pollutants to the environment, particularly to 

soil and poses a danger of contaminating both surface and groundwater. 

This review examines the potential impacts of landfill leachate on soil 

quality and the broader implications of this phenomenon, summarizing 

recent scientific studies and presenting the direct and indirect effects of 

leachate on soil based on the literature. Bibliometric analysis of 

publications in the Scopus database reveals a growing scholarly interest in 

this topic, with the number of publications in the Science Citation Index 

(SCI) database increasing dramatically to over 464 articles between 2009 

and 2024. 
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Introduction   

Worldwide, the increasing generation of Municipal Solid Waste (MSW) is 

becoming a significant concern. On average, about 1.04 kilograms of waste 

is produced globally per person daily. Waste generation rates differ 

significantly across countries, ranging from 0.5 to 2.3 kilograms per person 

daily. By 2050, 3.40 billion tonnes of MSW will be generated globally, with 19 

% and 40 % growth rates in industrialized and developing countries, 

respectively (1). The statistics on global MSW generation are shown in Table 

1 (2). Top 10 Indian City's waste generation are shown in Table 2 (3). Most 
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MSW comes from everyday activities, including residential, 

commercial and institutional sources. The increasing 

volume of solid waste highlights the need for safe landfills. 

Many cities find landfills to be an unsuitable technique for 

safe disposing of MSW. Landfills receive around 1.4 billion 

tonnes of MSW annually, accounting for 70 % of total MSW. 

Landfills in India need 1240 acres of land annually, with 

just 21% of MSW being adequately managed and disposed 

of. However, the remaining MSW is disposed of in 

unsanitary landfills without sufficient treatment (4), which 

degrades the environment. According to (5) and (6), 

inadequate landfill management can lead to 

environmental degradation. The health impacts studied 

included mortality, adverse birth and neonatal outcomes, 

cancer, respiratory problems, gastroenteritis, vector-

borne illnesses, mental health issues and cardiovascular 

diseases. However, occupational risks were not 

considered in the assessment (7). 

 The significant outcome of MSW decomposition is 

the generation of landfill leachate, which is the aqueous 

effluent produced from solid waste due to its physical, 

chemical and biological transformation within landfills (8). 

Municipal solid waste (MSW) composition varies widely 

across different regions but generally consists of a 

combination of biodegradable and non-biodegradable 

materials derived from organic and inorganic sources. 

MSW is typically collected from residential areas, offices, 

institutions and commercial establishments, comprising 

items such as organic waste (e.g., food scraps and yard 

trimmings), paper, plastics, metals, glass and a variety of 

other materials, including electronic waste, inert 

substances, pharmaceuticals and debris from 

construction, demolition and renovations. The approach 

to managing MSW differs by locality but generally follows 

three key stages: (i) waste generation at the source, (ii) 

collection and transportation and (iii) disposal, processing 

and treatment (9).  

 MSWs contain organic biodegradable components 

and compacted waste layers, creating an anaerobic 

environment in landfills (10). Most landfills receive and 

dispose of municipal, commercial and mixed industrial 

garbage. One tonne of landfilled waste produces 

approximately 0.2 m3 of landfill leachate during 

decomposition (11). Leachates from various landfills have 

similar constituents (12) and contain inorganic nutrients, 

volatile and dissolved organic molecules and heavy 

metals, which occur when water flows through a landfill 

and absorbs dissolved elements from degraded garbage 

(13). A well-designed landfill can reduce leachate leaking 

into the soil. To improve landfills, surface runoff should be 

altered and proper vegetation and leachate should be 

collected and pumped to a treatment facility (14). 

 Landfill leachate is characterized using standard 

criteria such as COD, TOC, BOD, suspended particles, pH, 

ammonia and heavy metal concentrations. The BOD 5/

COD and COD/TOC ratios indicate the biodegradability and 

oxidation of organic carbon. Several variables influence 

landfill leachate quality, including waste type, operational 

conditions, climate, hydrogeology and landfill age (15). 

Landfill leachate properties vary depending on waste 

composition, moisture content and seasonal elements 

such as temperature and precipitation (16). Microplastics 

(MPs) concentration in raw leachate samples ranged from 

49.0 ± 24.3 to 507.6 ± 37.3 items/L. A potential correlation 

was found between the concentration of MPs in raw 

leachate samples from landfill sites and the annual 

leachate (17). Heavy metals found in leachate include Pb, 

Cu, Cr, Ni, Mn, Hg, Fe, Zn and Cd (18), with different 

concentrations for each landfill. Heavy metals remain in 

polluted sites for an extended period and, unlike other 

pollutants, cannot be degraded chemically or biologically 

(19). Recent years have seen a lot of attention paid to 

Emerging Organic Contaminants (EOCs), like Persistent 

Organic Pollutants (POPs), Endocrine Disrupting 

Chemicals (EDC), pharmaceuticals, Personal Care Products 

(PCPs), antibiotic resistance genes and disinfection by-

products, due to their prevalence in landfill leachate and 

their potential for harm to the environment and people 

Region 
Total MSW 

(million tonnes) 

MSW per 
capita (kg/

person/day) 

North America 320 2.3 

Central America and the 
Caribbean 

80 0.9 

South America 140 0.95 

Northern Europe 60 1.3 

Western Europe 110 1.4 

Southern Europe 80 1.2 

Eastern Europe 120 1.0 

West Asia and North Africa 150 0.8 

Sub-Saharan Africa 220 0.55 

Central and South Asia 280 0.5 

East and South-East Asia 580 0.75 

Oceania 15 0.5 

Australia and New Zealand 20 1.4 

Table 1. Statistics of global MSW generation 

Source: UNEP, 2024 

MSW generation in tons per day (TPD) in India, CPCB 

Cities 1971 1999 2004 2010 2015 

Mumbai 2039 5355 5320 6500 11000 

Delhi 766 4000 5922 6800 8700 

Chennai 508 3124 3036 4500 5000 

Hyderabad 593 1556 2187 4200 4000 

Kolkata 1574 3692 2653 3670 4000 

Bangalore 529 2000 1669 3700 3700 

Ahmedabad 381 1683 1302 2300 2500 

Surat 74 900 1000 1200 1680 

Pune 205 700 1175 1300 1600 

Jaipur 178 580 904 810 1000 

Table 2. Top 10 Indian Cities and Their Waste Generation Patterns  

Source: Dutta, 2020 

https://plantsciencetoday.online


487 

Plant Science Today, ISSN 2348-1900 (online) 

(20). (17) found MP concentrations in raw leachate 

samples ranging from 49.0 ± 24.3 to 507.6 ± 37.3 items/L. 

Over the past two decades, 172 pharmaceutical and PCPs 

have been found in landfill leachate worldwide, including 

antibiotics, anti-inflammatories, stimulants and beta-

blockers (21). Due to its properties and content, landfill 

leachate production ranks among the most aggressive 

pollutants in the environment today, mostly in soil and 

poses a danger of contaminating both surface and 

groundwater (22). 

 This review aims to examine the potential impacts 

of landfill leachate on soil quality and the broader 

implications of this phenomenon. The main aims of this 

review were to (i) summarise the most recent scientific 

studies on landfill leachate and (ii) present the direct and 

indirect impacts of leachate on soil based on the 

literature. Studies in the literature have examined the 

impact of landfill leachates on soil physical, chemical and 

biological properties. Modern remedial techniques to treat 

soil degradation from landfill leachate are also presented 

here. 

Scientific focus on leachate impact on soil 

The Scopus database was selected to methodically 

monitor the effects of landfill leachate on soil among 

reputable publications because of its consistency in 

citation records. Only peer-reviewed English-language 

literature was the subject of this literature search. 

Bibliometric data were gathered by deciding on the best 

sources of information, establishing search parameters 

and creating the dataset. Following data cleaning and 

anomaly identification, bibliometric analysis was 

performed (Fig. 1). About 653 publications with titles, 

abstracts, and keywords like "landfill leachate impact on 

soil"-such as "landfill AND leachate AND impact AND on 

AND soil"-were analyzed when they were retrieved on July 

3, 2024. After that, 168 publications were found using 

Boolean search terms like "landfill AND leachate AND 

impact AND on AND soil." The growing number of papers 

about the effects of landfill leachate on soil during the 

previous 16 years (from 2009 to 2024) indicates a growing 

scholarly interest in this topic (Kurniawan et al., 2021d). 

Consequently, the total number of publications in the 

Science Citation Index (SCI) database (2009-2024) 

concerning the effect of landfill leachate on soil increased 

dramatically to over 464 articles (Fig. 2) (23). 

 

 

 

 

 

Bibliometric analysis on current hotspot 

A bibliometric analysis was carried out using data 

gathered from Scopus and VOS viewer to visualize the 

network, as shown in Fig 3. 

 Searching the Scopus database with the keywords 

"landfill AND leachate AND impact AND on AND soil," 

about 168 documents were found. All key terms were used 

as the unit of analysis in a co-occurrence analysis. It was 

decided that ten keyword occurrences would be minimal. 

108 keywords out of 3284 matched the criterion. The 108 

keywords exhibit significant connectedness.  

Impact 

Soil structure 

Xu et al. (24) found that increasing landfill leachate 

concentrations decreased soil strength, leading to plastic 

deformation. The dislocation between soil particles and 

plastic lateral deformation occurred due to leachate 

pollution and axial load, ultimately destroying the soil 

structure (25). Giri and Reddy (26) showed that leachate 

significantly influences pore water pressure and forms 

numerous pores in the soil. Meanwhile, water adsorption 

by soil particles increased (27). 

 At higher landfill leachate concentrations, the 
maximum pore radius saturated with leachate expanded 

from 1.03 to 1.18 μm, while the radius of other pores grew 

from 11.01 to 135.73 μm. Pore sizes in leachate-

contaminated soil were primarily between 0.02-1 μm and 

3-12 μm (28). Increased leachate concentrations led to 

Fig. 1. Method of Bibliometric Analysis 

Fig. 2. Trends of landfill leachate-related publications in the body of 
knowledge (2009-2024)  
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greater soil porosity, forming an unstable honeycomb 

structure and reducing particle uniformity. The specific 

surface area rapidly increased, stabilizing between 500 

and 650 kg/m². Additionally, higher leachate levels caused 

a significant decrease in particle size and a sharp rise in 

pore volume (29). 

Compaction 

(30) found that soil contaminated with leachate exhibits 
lower dry density, likely due to chemical interactions 

between the leachate and soil pore fluid properties. The 

study suggests that incorporating leachate into the soil 

could improve compaction efficiency, potentially reducing 

soil volume in landfill cells. Nayak et al. (31) observed a 

decrease in maximum dry density is likely due to these 

chemical reactions between the acidic leachate and the 

soil. At high leachate concentrations, an excessive amount 

of leachate in the soil can trigger further chemical 

reactions between the acidic leachate and the soil 

particles. The compaction study showed that as the 

percentage of liquid leachate increased, both the 

maximum dry unit weight and the optimum moisture 

content decreased (32). Adding moisture facilitates 

compaction by making the soil easier to knead and 

capable of achieving higher dry density. However, the dry 

density decreases at higher moisture content as the soil 

becomes more saturated with water. Liquid leachate 

increases soil saturation, contributing to the observed 

reductions in maximum dry unit weight and optimum 

moisture content (33). 

Hydraulic conductivity 

According to Zheng et al. (34) an increase in leachate 

concentration results in an increase in the soil's hydraulic 

conductivity; high ion content in leachate causes an 

increase in mass loss due to the dissolving of clay 

minerals; channels emerge in the soil; and adequate pore 

space expands. The more significant permeability channel 

formed by the soil particles and the infiltration of heavy 

metal ions into the soil causes an increase in hydraulic 

conductivity. A summary of studies on the impact of heavy 

metals on hydraulic conductivity found in the literature is 

furnished in Table 3 (35). 

 Nayak et al. (31) observed changes in soil structure 
after leachate contamination. They found that replacing 

pore water with leachate increased the void ratio of the 

soil. The increase in pore fluid volume and hydraulic 

conductivity was attributed to the leachate's capacity to 

dissolve clay minerals within the soil. Xie et al. (36) studied 

soil compacted with various concentrations of leachate 

and observed that hydraulic conductivity to leachate was 

consistently higher than that to demineralized water 

across all compacted samples. This difference was 

primarily attributed to the lower viscosity of leachate than 

water. Long-term soil exposure to leachate led to a 

notable decrease in hydraulic conductivity to both 

leachate and water, especially in samples with more 

significant voids. This decrease was due to reduced active 

pore space, influenced by thicker diffuse double layers, 

clay particle rearrangement, chemical precipitation and 

biofilm formation within soil pores. Microbial activity 

significantly reduces soil hydraulic conductivity (37-39). 

This reduction occurs as biofilms and colonies form on 

mineral particle surfaces and grow within soil pores, 

obstructing them and contributing to decreased hydraulic 

conductivity (40,41). 

Figure 3. Vosviewer network visualization on recent hotspots   
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Soil Nutrient Imbalance 

Changes in soil pH can limit nutrient availability (42). 

Rahman et al. (43) reported that copper, zinc and nickel 

are crucial micronutrients for plants in small amounts but 

become toxic in excess. 

 Rao (44) reported that nitrogen levels in the 

contaminated soils were notably high, ranging from 115 to 

262 kg/acre, with the control soil sample showing a lower 

value of 62 kg/acre. The phosphorus content in the dump 

yard soils varied between 73 and 91 kg/acre, while the 

control site had a lower 34 kg/acre value. The elevated 

nitrogen and phosphorus levels in dump site soil are likely 

due to the high organic matter (45). Potassium levels in 

the dump site soils ranged from 157 to 363 kg/acre, 

compared to a low of 15 kg/acre at the control site. 

Although potassium is essential for plant growth, 

anthropogenic activities can elevate its levels, potentially 

contaminating groundwater. According to Agbeshie et al. 

(46), the high nutrient content at the dump site, mainly the 

organic carbon and exchangeable bases, significantly 

affected soil bulk density, porosity and nutrient 

availability. High concentrations of calcium, magnesium, 

sodium, potassium, ammonium, iron, chloride, sulfate, 

nitrate and hydrogen carbonate ions in leachate and soil 

increase osmotic pressure, hindering water uptake by 

plant roots and impairing growth (47). Letsoalo (48) 

suggests that essential nutrients and chromium affect 

plants' absorption of calcium (Ca2+) and magnesium (Mg2+) 

through soil interactions. Dimethyl arsenic acid in soil 

reduces concentrations of essential macronutrients (P, K, 

Ca, Mg) and micronutrients (B, Cu, Fe, Mn) in plants (49). 

Soil microbes 

(50) reported that bacteria found at waste or leachate 
dumpsites can include Arthrobacter, Bacillus, E. coli, 

Klebsiella, Micrococcus, Proteus, Serratia marcescens, 

Klebsiella aerogenes, Staphylococcus aureus, Alcaligenes 

sp., Proteus mirabilis and Salmonella. Fungi isolated from 

waste dumpsites include Aspergillus, Fusarium, Mucor, 

Penicillium, Rhizopus and Saccharomyces. Aspergillus niger, 

Aspergillus flavus, Rhizopus and yeast species were 

explicitly isolated from dumpsite leachates. Wydro et al. 

(51) experimented using soil treated with different doses 

of leachate (50 LL and 100 LL). They found that the highest 

total number of bacteria was observed in pots treated with 

50 LL (1.05 x 10^7 cfu/g DM, T1), while the lowest number 

was in the control pots (1.43 x 10^6 cfu/g DM, T3). 

According to (52), leachate (LL) contains a mixture of 

soluble organic matter, heavy metals, PAHs and other 

toxic substances, which, when introduced into the soil, 

can affect its activity and reduce the number of 

microorganisms (Fig 4.) (53). The presence of these toxic 

substances can interfere with the adaptability of some 

organisms, resulting in a decrease in their numbers (54). 

Wydro et al. (51) also reported that leachate alters the 

structure of the microbial community, as indicated by the 

T-RFLP approach, affecting microbial richness and relative 

abundance in the soil. Daniel et al. (55) suggested that 

heavy metals indirectly impact soil enzymatic activities by 

altering the microbial community responsible for enzyme 

synthesis. These heavy metals affect soil microorganisms 

by modifying their diversity, population size and overall 

activity within the soil microbial communities. Heavy 

metals like lead, silver and cadmium penetrate bacterial 

plasma membranes and generate superoxide ions in the 

cytosol. These ions, converted by Super Oxide Dismutase 

(SOD) into hydrogen peroxide or hydroxyl radicals, oxidize 

lipids, proteins and DNA. Reactive Oxygen Species (ROS) 

and other oxidative intermediates further damage cellular 

components. Cells produce antioxidant enzymes such as 

catalase, SOD and glutathione peroxidase to mitigate ROS. 

However, the oxidative stress caused by heavy metals can 

result in apoptosis, necrosis, tissue damage and 

malignancy (53). 

Contaminants Hydraulic conductivity (cm/s) Change in hydraulic conductivity Reference 

Pb 4.7 × 10-9 
Hydraulic conductivity was found to be close to 

each other because the soil samples were 
mainly composed of sand. 

(34) 
Cu 4.8 × 10-9 

Pb + Cu 4.3 × 10-9 
Pb + Cu + Cd 2.4 × 10-9 (m/s) 

0-4 mg/L Pb+2 ~Increase from 1.25 × 10-9 to 2.2 10-9 
As the concentration increased, hydraulic 

conductivity also increased  (69) 

0-40 mg/L Pb+2 Decrease from 2 × 10-5 to 7.8 x 10-7 
As the concentration increased, hydraulic 

conductivity decreased  (70) 

0-10 mM Pb+2 Increase from 10-9 to 10-7 
As the concentration increased, hydraulic 

conductivity also increased (71) 

0 mg/kg Pb or Zn+2 

1,000 mg/kg Pb+2 

1,000 mg/kg Zn+2 

2.2 × 10-8 

5 × 10-8 

4.8 × 10-8 (m/s) 

As the concentration increased, hydraulic 
conductivity also increased  (34) 

0-10 g/L Cu+2 
3.54 × 10-6 

42.25×10-6 
As the concentration increased, hydraulic 

conductivity also increased.  (72) 

0-100 ppm Cu+2 

0-1,000 ppm Cu+2 

0-100 ppm Pb+2 

0-1,000 ppm Pb+2 

0-100 ppm Zn+2 

0-1,000 ppm Zn+2 

1.7 times increase 2.6 times increase 
one time increase 

1.2 times increase 1.4 times increase 
2.2 times increase 

As the concentration increased, hydraulic 
conductivity also increased. (73) 

Table 3. Impact of Heavy metals on Hydraulic conductivity of soil  
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Heavy metal 

Heavy metals are major pollutants in landfill leachate and 

can remain in landfills for about 150 years if leaching 

occurs at 400 mm/year (56, 57). Their toxicity disrupts the 

biological balance and impairs natural purification 

processes (58). Leachate production and heavy metal 

mobility are influenced by rainfall ( posing risks to soil, 

groundwater and surface water (59). Non-threshold 

pollutants like arsenic, chromium (VI), cadmium, mercury 

and lead are toxic even in small amounts (60,61). 

Torkashvand et al. (56) reported copper, cadmium, lead, 

iron, and nickel concentrations in landfill leachate from 

Iran as 1, 0.45, 0.85, 14 and 1.1 mg/L, respectively. Pasalari 

et al. (62) found manganese levels in Iranian landfill 

leachate ranging from 3.2 to 8.1 mg/L. Beinabaj et al. (63) 

indicated that iron concentrations in Nigeria were the 

highest among the metals, at 22.94 mg/L. Johar et al. (64) 

discovered the highest concentrations of cadmium (Cd) 

and silver (Ag) in soil samples from a landfill in New Delhi, 

India, highlighting the landfill as a significant source. The 

soil exhibited a higher Cd and Ag adsorption capacity than 

iron (Fe) and copper (Cu). The high level of transferable Cd 

is particularly concerning due to its potential for 

significant plant uptake and accumulation (65). 

Mitigation measures 

Landfill leachate significantly threatens soil and water 

resources, leading to degradation. Without adequate 

containment measures, leachate can directly contaminate 

surrounding soil and seep into groundwater, exacerbated 

by rainfall. Various industrial and scientific initiatives have 

been implemented to mitigate leachate release, each 

tailored to specific environmental conditions and with 

varying biomedical implications. The landfill liner is crucial 

to preventing leachate from seeping into the subsoil (66). 

The foundation of a landfill site should be designed to 

support the weight of the overlying waste and cover 

material. The foundation material must have sufficient 

compressive strength to bear this load. 

 In some cases, grouting or other techniques may be 
needed to reinforce the foundation. For a landfill liner to 

be effective, it must exhibit specific properties such as 

swelling behaviour, strength and low permeability. Clay 

with a higher content of Montmorillonite, combined with 

overburden pressure, needle punching density, and areal 

density, demonstrates better self-healing properties and 

low hydraulic conductivity. However, hydraulic 

conductivity increases with higher water pressure in 

clayey soil (67). Using nanotechnology, (68) discussed the 

application of nanoclay and nanofiber filters during the 

landfill stage for solid waste management to control 

leachate leakage from landfill liners.  

 

Conclusion   

Landfill operations are vital for waste disposal, but landfill 

leachate, produced by chemical and biological reactions 

within landfills, can contaminate soil and groundwater, 

posing environmental health risks. This review explored 

the effects of landfill leachate on soil structure, hydraulic 

conductivity and heavy metal impact. Recent innovations, 

such as advanced landfill liners with nanotechnology, are 

essential for preventing leachate contamination. 

Developing new bioinoculants shows promise in reducing 

heavy metals in landfills. Biochar and Hydrochar are 

effective for treating landfill leachate due to their 

customizable adsorption properties, though challenges 

like limited research and the difficulty of scaling 

laboratory methods to treat the average 167 million 

tonnes of leachate produced globally. Further research 

could enhance their effectiveness, mitigating waste and 

providing sustainable ecosystem services. 

 

Figure 4. Mechanism of Heavy Metal Toxicity on Bacteria     
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