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Abstract   

Rice cultivation is a key activity of Indian agriculture, contributing 

significantly to global rice production and exports. Optimal yield is crucial 

and influenced by various agronomical and environmental factors. For the 

experiment, the decision support system for agro technology transfer 

(DSSAT) of the rice crop model is utilized to validate the grain and straw 

yield in addition to resource productivity metrics and leaf area index. The 

study was conducted during the Zaid season from January to May in both 

2022 and 2023 at the Thensangampalayam village, Coimbatore district, 

Tamil Nadu. The CO-55 rice variety was used for 2 cultivation methods i.e., 

conventional and alternate wetting and drying (AWD), along with drone 

spray of nano urea. The model was calibrated and validated with the input 

of comprehensive datasets of soil profile, meteorological parameters, crop-

specific cultivation methods, agronomic practices and genetic coefficients. 

AWD consistently outperformed the conventional method in both grain and 

straw yields. DSSAT simulations achieved a high accuracy of 99.78 % in 

grain yield and 91.67 % in straw yield between the 2 cultivation methods. 

The AWD also outperformed in water use efficiency with 2.3 kg/m3 

compared to conventional at 1.8 kg/m3. Leaf Area Index was recorded high 

in the conventional method at heading stage with 6.96 and AWD at 6.46. The 

study provides valuable information on adaptive farming practices and 

climate-resilient crop management strategies.  

 

Keywords   

Rice; DSSAT model; grain yield; straw yield; genetic coefficient; alternate 
wetting and drying   

 

Introduction   

Rice (Oryza sativa L.) is a staple crop of critical importance in India and is 

essential for global food security. In 2024, global rice exports are projected 

to reach approximately 22.9 million tons. (India Rice stat, 2024). With India 

positioned as the second largest producer of rice, achieving optimal yield 

remains a crucial objective amidst increasing population and to cater its 

needs along with changing climatic conditions. Recent research 

accentuates the use of model-based simulation models to analyze soil and 
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meteorological parameters for predicting rice yield 

responses to changing climate and population growth. 

understanding how yield changes are linked with 

environmental variability and management interventions. 

Therefore, achieving sustainable production and food 

system resilience requires predicting rice yield under 

diverse conditions using highly developed computer-

based tools that simulate crop growth and development. 

 Rice is cultivated under different ecosystems 

namely irrigated, rainfed lowland, deep water and upland 

(1). Based on the topography and ecosystem of the 

experimental location, the selection of specific cultivars or 

varieties (2) and cultivation methods of rice also play a key 

role in bringing variations in rice yield. Traditionally, rice 

cultivation relies on conventional methods that demand 

significant water usage. Ineffective water management 

can result in decreased yields, highlighting the critical 

need for adopting efficient cultivation practices to achieve 

optimal rice production 

 Proper irrigation management and timely 

application of nitrogen are crucial factors in the cultivation 

of rice (3). In addition to the foliar application of nitrogen 

at recommended doses, nano urea is also employed. This 

dual approach aims to enhance nutrient efficiency and 

improve overall crop performance. Drone spraying of nano 

urea in rice crops at crucial stages of crop growth like 

active tillering and panicle initiation is a new frontier in 

precision agriculture. Due to its nanoscale formulation, 

nano urea presents major advantages over traditional 

urea with regards to enhancement in the efficiency of 

nutrient uptake and less harm to the environment. Drone 

application ensures precision targeting and uniform 

coverage of any nutrient for optimal delivery at the right 

place of the plants. It has been observed that nano urea 

can increase crop yield significantly by decreasing 

nitrogen losses caused by leaching and volatilization. 

According to the studies (4,5), this technology has the 

potential to enhance fertilizer use efficiency, reduce huge 

amount of fertilizer and GHG emissions (6), therefore 

making it a promising addition to enhance rice 

productivity. 

 Environmental factors, such as temperature, solar 

radiation, rainfall, humidity, evapotranspiration and CO2 

emissions significantly impact crop production by 

disrupting irrigation schedules, photosynthetic activity 

and physiological metabolism, which directly affect the 

grain and straw yield of plant (7). Minimal variations in 

temperature can affect the performance of the cultivar 

and also the genetic coefficient of rice crop. Solar 

radiation is a crucial factor closely related to the leaf area 

index (LAI). Leaf growth significantly impacts the 

photosynthetic activity of rice, which in turn influences the 

accumulation of photosynthetic products in the grain 

during the filling stage and affects overall yield (8). 

 The DSSAT is a crucial tool for agronomic research 
and decision-making, providing detailed simulations of 

crop growth and yield. Developed and maintained by the 

University of Florida, DSSAT integrates multiple crop 

models, including CERES-Rice and Oryza2000, to offer 

comprehensive forecasts of plant development and 

productivity. The system allows users to evaluate the 

impacts of various environmental, meteorological and 

management conditions on crop performance. By 

accounting for factors such as soil characteristics, weather 

patterns and agricultural practices, DSSAT facilitates the 

optimization of crop management strategies and 

improves understanding of crop responses to different 

conditions. (9).  

 Recent study, simulations and validation tests 

carried out emphasize the reliability and usefulness of 

DSSAT in rice production studies. For yield prediction, 

calibration and validation of rice cultivars, cultivation 

methods, soil parameters, environmental factors and 

nitrogen levels using DSSAT are required in simulating 

yield under varying conditions (10). 

 A study on optimizing transplanting windows for 
rice cultivars in Punjab, India (11), by validating their 

prediction power on field data using DSSAT (11) compared 

DSSAT with other models projecting rice phenology and 

yield under projected climatic scenarios, which clearly 

offered better accuracy and applicability (12), employed 

the DSSAT in simulating upland rice yield responses to 

variable plant densities and nitrogen management 

strategies in order to guide optimization in rice-growing 

practices (13) explored the ability of DSSAT to compute the 

impact of climate change on rice production, with a view 

toward production processes and challenges that may be 

encountered in the near future, in Anambra state, Nigeria, 

using a set of historical climatic data (14).  

 This study emphasizes the need for DSSAT crop 

model simulations to predict rice yield under vastly 

different agroclimatic conditions and management 

practices. This study builds on these validations in order to 

employ DSSAT's capabilities for sustainable rice 

production. By incorporating detailed weather data and 

site-specific management practices, DSSAT is capable of 

providing accurate predictions that are extremely 

important for enhancing productivity and ensuring food 

security and as well as formulating appropriate 

agricultural policies in the times of a changing climate.  

 

Materials and Methods 

Study Area and Experimental Design 

The study was conducted in Thensangampalayam village, 

situated at approximately 10.7650° N latitude and 77.7362° 

E longitude in Aliyar, Coimbatore, Tamil Nadu (Fig. 1). The 

climate remains mostly hot and humid throughout much 

of the year, with distinct wet and dry seasons. Monsoonal 

rains typically occur from July to September with an 

average rainfall of 700-800 mm, contributing significantly 

to the local agricultural cycles. The soil types in the area 

include sandy and clay loam predominantly, which 

support the cultivation of a variety of crops, such as rice, 

pulses and cotton. The study was conducted over 2 Zaid 

seasons, from January to May in both 2022 and 2023.  
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Plant Material and Sowing Date 

The CO 55 rice variety was sourced from Tamil Nadu 
Agricultural University, known for its short duration of 110-

115 days, was chosen for this study as this variety is well-

suited to the Zaid season (December-January). The 

conventional method of crop was sown on 08-01-2022, 10-

01-2023 and Alternate Wetting and Drying method was 

sown on 11-01-2022 and 14-01-2023 in an area of 150 ha. 

The cultivar was line sown in the field at a distance of 20 

cm between rows for the conventional method and 25 cm 

for the AWD method. 

Cultivation Methods 

Two cultivation methods were compared: the 

conventional method and the AWD. The conventional 

method involves continuous submergence of rice fields 

with water maintained at 5 cm above the soil surface. 

Whereas, the AWD method uses intermittent wetting and 

drying of rice fields which helps in the aeration of soil and 

water use efficiency.  

Fertilization and Nutrient Management 

Nitrogen was applied using (IFFCO) neem-coated urea at 

recommended rates of 150-50-50 kg/ha NPK in split doses, 

while 0.4 % (IFFCO) nano urea sprayed via drone at 2 

critical growth stages: active tillering and panicle 

initiation. This combined approach is designed to enhance 

nutrient uptake efficiency and minimize environmental 

impact (Fig. 2).  

 

Fig. 1. Digital latitude and longitude map of Thensangampalayam village.  

Fig. 2. Drone spray of nano urea in the experimental field. 
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Soil Data and Meteorological Parameters 

The soil samples of the experimental field were collected 

and analysed for texture, pH, organic matter, nitrogen, 

phosphorus and potassium content. The soil data is 

presented in Table 1. Daily weather data, including 

temperature, rainfall, solar radiation and humidity were 

obtained from the nearest meteorological station to 

provide accurate input for the DSSAT model. The 

meteorological data for 2022 and 2023 are presented in a 

visual graph representing various meteorological 

parameters (Fig. 3).  

 The Table 1 dataset provides soil properties for 

different depths in a soil profile. Each row represents a 

specific soil depth range and the columns provide various 

measurements for those depths. The soil file for the study 

region is created using the soil information of the selected 

district. It involves soil texture, soil classification, the soil 

family CSC scheme, soil depth (cm), albedo (Fraction), 

evaporation limit (cm), flow rate (fractions per day), run-off 

curve number, mineralization factor (0 to 1), 

photosynthesis factor (0 to 1), buffer determination 

process pH, nitrogen, phosphorus and potassium 

determination process. The model also requires horizon-

specific data, including the amount of horizon andits 

thickness (cm), field potential, crop point, air-dry level, 

reduced drained limit (cm3 cm-3), organic carbon content 

(%), its root development factor (kg-1), water and buffer pH 

and cation exchange capacity (0.0 to 1.0) (15). 

DSSAT v4.7.5 CERES-Rice Model Validation and 
Calibration 

DSSAT v4.7.5 CERES-Rice modelling system is an advanced 

physiologically based rice growth simulation model used 

to predict rice growth, development and response to 

various climatic conditions (16). The model was calibrated 

using the 2022 experimental data adjusting genetic 

coefficients to match observed growth stages and yield. 

Validation was performed using the 2023 experimental 

data to ensure the model’s accuracy in predicting grain 

and straw yields. Calibration techniques for DSSAT models 

have been thoroughly discussed in many research studies 

(17,18 ). 

 The detailed flowchart of the process of model 

calibration and validation is represented in Fig. 4 below. 

 

DEPTH 
(cm) 

LOWER 
LIMIT 
(cm³/
cm³) 

UPPER 
LIMIT 

(cm³/cm³) 

Saturation 
Point of 

Soil water 
content 

(cm³/cm³) 

ExtractableSo
il water 
content        

(cm³/cm³) 

Initial Soil 
water 

content
(cm³/cm³) 

Root 
Distribution 

Factor 

BULK 
DENSITY 
(g/cm³) 

Soil 

pH 

Organic 
Carbon 

(%) 

0-5 0.098 0.147 0.198 0.049 0.147 1 1.45 8.5 0.96 

5-15 0.098 0.147 0.198 0.049 0.147 1 1.45 8.5 0.96 

15-22 0.098 0.147 0.198 0.049 0.147 1 1.45 8.5 0.96 

22-34 0.105 0.158 0.21 0.053 0.158 0.45 1.45 8.5 0.93 

34-45 0.105 0.158 0.21 0.053 0.158 0.45 1.45 8.5 0.93 

45-57 0.105 0.158 0.21 0.053 0.158 0.45 1.45 8.5 0.93 

57-67 0.116 0.171 0.221 0.055 0.171 0.26 1.48 8.4 0.57 

67-77 0.116 0.171 0.221 0.055 0.171 0.26 1.48 8.4 0.57 

77-94 0.125 0.178 0.222 0.053 0.178 0.15 1.48 8.4 0.6 

94-111 0.125 0.178 0.222 0.053 0.178 0.15 1.48 8.4 0.6 

Table 1. Physical and chemical properties of experimental soil used for DSSAT validation.  

Fig. 3. Meteorological data of the cropping season of years 2022 and 2023.  
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Crop Coefficient Measurement 

The model calibration was done to estimate the genotype 
coefficients to confirm the accuracy between model 

predictions and observed values based on the model 

approach (19). The CERES-Rice model was calibrated with 

the data obtained from the 2022 and 2023 field 

experiments with the treatment receiving 360 kg N ha-1. 

The Detailed description of 8 coefficients has been 

provided in Table 2. The genetic coefficient of the cultivar 

CO-55 was calibrated by considering the varietal 

coefficients which are determined by thermal time from 

emergence to the end of the juvenile stage (P1), critical 

photoperiod (P20), rate of photo induction (P2R), optimum 

photoperiod (P2), thermal time for grain filling (P5), 

conversion efficiency from sunlight to assimilates (G1), 

grain size (G2), tillering coefficient (G3) and temperature 

tolerance coefficient (G4) (20). The genetic coefficients of 

the cultivar used in the experiment are provided in in 

Table 3.  

Statistical Analysis 

Calibration is a fundamental aspect of model verification 

(21). It ensures the simulated values closely match 

observed data. After inputting weather, soil, genotype and 

crop management data, the CERES-Rice model was run 

and simulated results were compared to observed data. 

Coefficients were adjusted to align the model’s predictions 

of phenological events with actual data. Genetic 

coefficients affecting developmental stages were derived 

by calibrating phenology, growth and grain development 

parameters. Validation involved comparing observed and 

simulated data to ensure consistent predictions of growth 

and yield. The model is considered valid if the simulated 

data falls within the expected confidence intervals, as 

determined by statistical analysis.  

 Model performance evaluation was statistically 

presented by the absolute Root Mean Square Error (RMSE), 

normalized root mean square error (RMSEn), coefficient of 

residual mass (CRM) and Modelling efficiency (ME). The 

RMSE and RMSEn elucidate the magnitude of the average 

error but do not provide information about the relative 

size of the average difference between the observed and 

predicted. But, CRM indicates the direction of the error 

magnitude. The root mean square error (RMSE) was 

calculated using the following equation (22).  

 

 

 

 

The simulation is considered excellent with a RMSEn less 

than 10 %, good if it is greater than 10 % and less than 20 

%, fair if it is greater than 20 % and less than 30 % and 

poor if it is greater than 30 %. The following equation was 

used to calculate RMSEn (23).  

 

Fig. 4. Flow chart depicting the methodology of the semi-physical 
approach-based rice yield estimation. 

Name Description 

Juvenile phase coefficient (P1) 
The period in Growing Degree Days (GDD) °C over a base temperature of 9 °C from seedling 

emergence, during which the rice plant is not responsive to changes in photoperiod. This phase is 
also known as the basic vegetative phase of the plant. 

Critical photoperiod (P2O) 
The longest day length (in hours) at which development occurs at a maximum rate. Development 

slows down for day lengths longer than P2O. 

Photoperiodism coefficient (P2R) 
The extent to which phasic development leading to panicle initiation is delayed (expressed as 

GDD in °C) for each hour increase in photoperiod above P2O. 

Grain filling duration coefficient (P5) 
The period in GDD (°C) from the start of grain filling to physiological maturity with a base 

temperature of 9 °C. 

Spikelet number coefficient (G1) 
Determined by the number of spikelets per gram of main culm dry weight (excluding leaf blades 

and sheaths) at anthesis. 

Single grain weight (G2) The weight of a single grain (in grams) under ideal growing conditions. 

Tillering coefficient (G3) 
Tillering coefficient relative to a reference variety (e.g., IR 64), indicating the tillering capacity of 

the rice variety. 

Temperature tolerance coefficient (G4) 
Typically, a coefficient representing temperature tolerance under normal growing conditions for 

the variety. 

Table 2. Detailed description of 8 coefficients.  

Genetic Coefficients Cultivar (CO55) 

P1 (Thermal Time) 850 

P2R (Photoperiod Sensitivity) 200 

P5 (Thermal Time to Flowering) 640 

P2O (Critical Photoperiod) 11.4 

G1 (Spikelet Number Coefficient) 65.8 

G2 (Single Grain Weight) 0.028 

G3 (Tillering Coefficient or Maximum Tillers) 1 

THOT (Base Temperature for Growth) 83 

TCLDP (Critical Temperature for Leaf 
Development) 1 

TCLDF (Critical Temperature for Flowering) 0 

Table 3. Genotypic Coefficients of Cultivar used in the experiment.  

 
     Pi  Oi  

i 1 n 
Root Mean Square Error (RMSE) 

(Eqn.01) 
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The Coefficient of Residual Mass (CRM) was also used to 

measure the tendency of the model to overestimate or 

underestimate the measured values. A negative CRM 

indicates overestimation and positive CRM indicates 

underestimation (24). The CRM was calculated using the 

following equation: 

 

 

 

Modelling efficiency varies between negative infinity to 

1.0. A negative modelling efficiency (ME) shows that the 

mean value of the experimental data is a higher predictor 

than the model value whereas a ME of 1.0 signifies a 

perfect model agreement with observations (25).  

 

 

Where Pi and Oi are the predicted and observed values, n 

is the number of observations and O is the mean of the 

observed values.  

 

Results  

1. Environmental Factors 

Environmental factors play a crucial role in determining 

crop growth and grain yield. In this study, several key 

factors were analysed to understand their influence on 

rice yield productivity under conventional and AWD 

methods. The environmental factors and WUE along with 

growth stages are presented in a graphical representation 

of environmental factors with yield in Fig. 5.  

2. Analysis of Environmental Factors 

Temperature: 

Maximum Temperature (0C): in both years, shown only a 

slight variation in maximum temperature with average of 

33.6 °C for conventional and 34.2 °C for AWD in Zaid 2022 

and averaging 33.3 °C for conventional and 34 °C for AWD in 

Zaid 2023 respectively. 

In general, higher temperatures indicate crop stress and 

an increase in the rate of evapotranspiration. 

Minimum Temperature (°C): Minimum temperature ranged 
from 20.5 °C to 24.6 °C across both methods in 2 years, this 

shows the optimal influence on crop development and 

metabolic processes differently between conventional and 

AWD methods. 

Average Temperature (°C): Average temperature remained 

overall at a stable ground at 27.1 °C to 29.5 °C, further this 

indicates a consistent thermal environment for rice growth 

with a minor effect on crop physiological activities.  

Solar Radiation (MJ/m2): 

Solar radiation levels ranged from 13 MJ/m2 to 17 MJ/m2 

across the research study period. Consistent levels of solar 

radiation ensure optimal photosynthetic activity and also 

help in better grain yield with AWD consistently receives 

more solar energy than the conventional method because 

of the alternate wetting and drying which aerates the soil 

and helps for better growth of biomass of plants. 

Rainfall (mm): 

Rainfall patterns, however, showed strong variation: from 

288.33 mm to 286.11 mm under conventional methods 

and from 219.04 mm to 228.17 mm under the AWD 

method. The irrigation cycles were controlled in the AWD 

method and hence, applied less water at the early growth 

stages and used the water more efficiently at peak 

demand periods.  

Evapotranspiration (mm): 

Evapotranspiration rates for grain yield ranged from 26.0 

to 143.1 mm, whereas for straw yield, they ranged from 

26.3 to 30.5 mm. The AWD method consistently exhibited 

lower evapotranspiration rates, which led to reduced 

water loss and improved WUE compared to conventional 

irrigation practices. 

Water Use Efficiency, WUE (kg/m³): 

On the WUE measures, AWD recorded relatively increased 
values of 2.3 kg/m³ against the conventional with 1.8 kg/

m³. This difference underpinned AWD's ability to enhance 

water resources and bring about better crop productivity 

under varying environmental conditions. 

3. Impact of Environmental Factors on Yield 

Yield was notably influenced by environmental and 

management factors, with AWD showing clear advantages 

over conventional methods. Although temperature 

fluctuations and solar radiation had minimal variation, 

they were positively correlated with grain and straw yields, 

with AWD performing better. Higher rainfall improved 

yields for both methods, but AWD demonstrated superior 

water use efficiency and crop response. AWD also achieved 

higher yields with less evapotranspiration, indicating more 

efficient water use. Overall, AWD had significantly higher 

WUE compared to conventional methods, leading to 

enhanced yield and straw production. 

4. Yield Comparison: 

Table 4 provides the grain yield for both conventional and 

AWD methods for 2 Zaid seasons with observed and 

simulated yield. The observed yield of rice for the 

conventional method was 5836 kg/ha and 5790 kg/ha 

respectively, in 2022 and 2023. For the AWD method, the 

yield was 6012 kg/ha in 2022 and 6005 kg/ha in 2023. The 

yield remained relatively consistent across both years and 

methods, with a slight increase observed in AWD-2023. The 

prediction accuracy for the conventional treatment is high, 

especially in 2023 (98.96 %). For the AWD treatment, the 

prediction accuracy is also very high, with both years 

above 99.78 %. 

 

Normalized Root Mean Square Error (RMSEn) = 

[ RSME 

Mean of observed values ] X 100 (Eqn.02) 

Coefficient of Residual Mass (CRM) = 

(Eqn.03) 

(Eqn.04) 

Modelling efficiency (ME) =    
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Fig. 5. Graphical representation of correlation and regression of environmental factors vs yield with RSME values.  
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5. Straw Yield 

Table 5 provides the straw yield for both conventional and 
AWD for 2 Zaid seasons with observed and simulated straw 

yield. The observed total dry biomass was highest for the 

conventional method in 2022 (12623 kg/ha) and lowest for 

the AWD method in 2022 (13638 kg/ha). The harvest index 

varied between 0.895 and 0.919, indicating a stable 

proportion of biomass being converted into grain yield. 

The prediction accuracy for the conventional treatment is 

lower than AWD, with 89.52 % in 2022 and 89.84 % in 2023 

with the simulated ones. For the AWD treatment, the 

accuracy is better than Conventional with 91.89 % in 2022 

and 91.60 % in 2023. This suggests that the usage of DSSAT 

model is best for crop yield validation. 

6. Nitrogen Uptake: 

Nitrogen uptake ranged from 161 kg/ha to 189 kg/ha, 
showing consistent nutrient uptake across different 

treatments 

 

Discussion 

1.Environmental Factors on Grain Yield 

Temperature (Maximum, Minimum, Average) 

Temperature is one of the important factors which affect 
crop development and yield. In this research, the results 

on average temperature and grain yield established a 

moderate relationship in both the conventional and AWD 

methods. This in accordance with past studies that 

changes in temperature significantly affect rice growth 

and yield. In particular, high temperatures at the time of 

grain filling cause reduced yield due to heat stress (26).  

Solar Radiation 

Solar radiation plays a key role in photosynthesis, crop 

growth and yield. Accordingly, the regression analysis 

revealed a positive correlation between solar radiation 

and grain yield, indicating that with an increased amount 

of radiation, there would be a corresponding increase in 

yield. This agrees with the idea put across by (27) 

concerning the role of solar radiation in maximizing rice 

yield potential.  

Rainfall and Evapotranspiration 

Rainfall and ET both have a great influence on the water 
availability for the crops. The variable correctness of the 

relationship between rainfall and grain yield indicated the 

influence of excess and inadequate rainfall might be 

negative on yield. Proper water management, like that 

with AWD, could ensure that WUE is maximized while 

maintaining yield, which had been supported by another 

study (28).  

2. Alternate Wetting and Drying Irrigation 

AWD is an irrigation technique extensively used in many 

rice producing nations that has yielded optimal results 

because it floods and subsequently dries the rice field 

which may conserve water without yield loss but improve 

WUE and also improve aeration of soil and also helps in 

stopping the conversion of nitrogen into ammonia unlike 

from the conventional method. Several studies have 

shown that AWD could significantly save water without 

reducing rice yield or even improving rice productivity 

(29,30). Results of this study were in agreement with 

published reports as AWD had a better WUE and similar 

grain yield compared to conventional methods. Recent 

research also confirms the benefits of AWD irrigation. For 

example, demonstrated better soil water balance and crop 

performance with AWD in Italy (32). It was found that 

improved nitrogen use efficiency is one of the underlying 

mechanisms by which AWD works when it is combined 

with controlled release fertilizers (33). A more moderate 

AWD, when combined with rice straw incorporation as 

suggested by will further optimize water use and yield 

while reducing GHG emissions (31).  

3. Water Use Efficiency, WUE 

This study clearly showed that, in all sets of experiments, 

AWD methods had higher WUE of 2.3 compared with 

conventional irrigation. This is in accordance with studies 

of which proved that AWD can reduce water use by up to 

30 %, without losing yield. Optimal use of water in the 

irrigation can significantly enhance the yield performance 

of the crop (32). 

 

Year Treatment Simulated Yield Measured Yield 
Difference 

(Simulated - 
Measured) 

Accuracy (%) 

Zaid 2022 Conventional 5890 5836 54 99.07 % 

Zaid 2023 Conventional 5850 5790 60 98.96 % 

Zaid 2022 AWD 6022 6012 10 99.83 % 

Zaid 2023 AWD 6018 6005 13 99.78 % 

Table 4. Grain yield (kg/ha) for conventional and AWD methods in 2022 and 2023.  

Crop Year Treatment Simulated Straw Yield Measured Straw Yield 
Difference

(Simulated -
Measured) 

Accuracy (%) 

Zaid 2022 Conventional 14097 12623 1474 89.52 % 

Zaid 2023 Conventional 13504 12136 1368 89.84 % 

Zaid 2022 AWD 14840 13638 1202 91.89 % 

Zaid 2023 AWD 14442 13232 1210 91.60 % 

Table 5. Straw yield at maturity (kg/ha). 
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4. Nitrogen Uptake: 

The consistency of nitrogen uptake under various 

treatments signifies that the fertilization management was 

efficient and also use of drone spray of nano urea at 

critical growth stages also observed a positive correlation 

with grain yield. This shows efficient nutrient utilization; 

this is indeed crucial for maintaining the soil health level 

and crop fertility. The application of nano urea enhanced 

the nutrient uptake which showed the increase in grain 

and straw yield because nano urea has larger surface area 

and this gives the higher rate of penetration into the soil 

(33). These studies are in accordance with the results of 

(34). 

5. Grain Yield and Straw Yield  

In the experiment, grain yield and straw yield for 
conventional and alternate wetting and drying methods 

was simulated using DSSAT CERS Rice crop model and are 

compared with observed results. 

 From the above study, grain yield and straw yield 
were significantly higher in the alternative wetting and 

drying when compared to conventional method and also 

matched with simulated results with a high accuracy of 98 

% over both years. AWD outperformed the conventional 

method in water use efficiency and in grain yield and 

Straw yield. This accentuates the importance of AWD 

method and its use in present research studies (35). There 

were several trends noted across different phases from 

emergence to harvest. First, AWD always deviates in terms 

of radiation and rainfall as compared with conventional, 

these are key variables that may affect crop growth and 

water management options. At the same time, both 

methods also show very different responses to minimum 

and maximum temperatures, whereby AWD normally has 

lower temperatures during the most critical phases of 

growth, hence influencing crop development and stress 

responses. While there is generally higher WUE observed in 

AWD during specific phases, AWD demonstrates 

asymptotic variability in its optimization of water use 

under changing environmental conditions. Several recent 

studies-for instance, a study have therefore underlined the 

need for such comparative analyses toward the 

understanding of how water management strategies drive 

crop productivity and resource use efficiency, advocating 

individually tailored approaches toward resilience and 

sustainability in agriculture (39).  

6. Environmental and Practical Implications 

Water use efficiency: Higher yield of grains and Straw 

yield in AWD are associated with increased water use 

efficiency; hence, it is a more resourceful and resource-

efficient technique compared to conventional irrigation 

methods (36). The experimental results align with another 

study (37). 

Environmental Benefits: With the reduction in methane 

emissions by about 40 % and saving water, AWD 

contributes more towards sustainable methods of rice 

production (38). 

Challenges in Adoption 

Despite the apparent benefits, proper management and 
monitoring of the adoption by AWD will be required to 

maintain optimum water levels in order to avoid losses 

because of inappropriate irrigation scheduling. 

 From the above Table 6, LAI trends show distinctive 
results in the conventional method than in the AWD 

method, this indicates the optimal development of the 

canopy in the conventional method than the AWD method. 

The maximum LAI was observed at the ending stage in 

conventional method (6.99 (2023) compared to 6.46 (2023) 

in AWD.  

 This difference shows that the continuous 

availability of water in traditional method is one of the 

reasons for consistent vegetative growth, but AWD cannot 

be accounted back it has 6.46 in heading stage which does 

not vary much difference but AWD is efficient in water 

consumption management in rice (39). 

 LAI and solar radiation play a correlated role in the 

grain yield and biomass yield of rice that should be taken 

into account with paramount importance. The more the 

LAI, the more the photosynthetic mechanism and more 

yield (40). 

 Table 7 depicts the resource productivity metrics 
for conventional and AWD methods of rice cultivation from 

2022 to 2023. The serious observation can be that the 

length of the growing seasons has slight variations; hence, 

would likely create primary impacts on crop development 

and resource efficiency. In general, conventional methods 

preferably have higher water-use efficiency due to 

precipitation and AWD methods show comparable ET 

efficiency regarding the use of dry matter for yield 

productivity. In this study, the nitrogen application rates 

Crop Growth Stage Conventional-2022 Conventional-2023 AWD 2022 AWD 2023 

Start Sim 0 0 0 0 

Transplant 0.11 0.11 0.05 0.05 

End Juvenile 1.73 2.52 1.35 1.86 

Panicle Initiation 5.66 6.27 5.13 5.59 

Heading 6.45 6.99 5.98 6.46 

Beginning Grain Fill 5.71 6.18 5.35 5.77 

End Main Fill 2.2 2.19 2.09 2.12 

End Tillering Fill 2.01 2.09 1.88 1.86 

Maturity 2.01 2.09 1.88 1.86 

Harvest 2.01 2.09 1.88 1.86 

Table 6. Leaf Area Index (LAI) comparison across crop growth stages for conventional and AWD methods.  
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were similar across methodologies and years, but the 

uptakes under AWD were variable, which may signify the 

differences in available nitrogen and variances in 

management practice. 

Calibration Process 

Calibration is the tuning of model parameters so that it 

simulates the measured field data. The input parameters 

with regard to crop growth stages, temperature response, 

water uptake and formation of yield are taken into 

consideration. 

Grain Yield Calibration: Correct calibration for grain yield 
will ensure the model simulates yield properly under 

varying conditions. As such, one is normally expected to 

adjust factors like harvest index, duration of grain filling 

and temperature sensitivity etc. On the other hand, DSSAT 

uses rice varieties, dates of planting and management 

practice data to further fine-tune these parameters to 

predict grain yields more accurately. 

Straw Yield Calibration: Straw yield calibration is 

achieved by modifying parameters that regulate biomass 

accumulation and partitioning. The factors include the leaf 

area index, photosynthesis rates and biomass partitioning 

coefficients. Accurate top yield calibration is important to 

understand the growth and health of rice plants in 

general, which affects grain yield. 

Yield Validation  

Validation is the process of comparing model predictions 

with independent datasets to assess the accuracy of the 

model. 

Grain Yield Validation: 

Validation means to have reliable predictions of grain yield 
concerning different environments and various 

management practices. Substantively, validation of DSSAT 

involves the evaluation of model accuracy based on 

independent field data. If validation is done successfully, 

then the model can be used in predictions of the impact of 

various irrigation practices like AWD, yields. This thus gives 

way to water-use optimization and yield predictions (41). 

Validation of straw yield involves a comparison of 

simulated biomass with measured data. This step is very 

important to ensure that the model truly replicates the 

crop's growth dynamics. To accurate predictions of straw 

yield are of value to understand plant health and stress 

responses that are significant in rice crop management 

under a wide range of environmental conditions.  

Importance of DSSAT in Rice Yield Studies 

1. Predictive Accuracy: 

The DSSAT calibration and validation for both grain and 

straw yield yields display detailed dynamics, hence 

ensuring a basis of high predictive accuracy. This reliability 

is very essential to be used in planning and decision-

making processes in rice production (42). Simulation of 

various irrigation techniques, such as AWD, enables 

researchers and farmers to optimize different practices 

targeted at developing yield with sustainability (43). 

2. Scenario Analysis: 

DSSAT enables scenario studies on the potential impact of 

climate change, alternative management practices and 

genetic improvements. Clearly, one of the critical tools in 

the development of resilient rice production systems is 

DSSAT. Comparative simulations run for conventional and 

AWD practices in DSSAT will identify those most 

productive and resource efficient to bring about high yield. 

Optimization of Resources 

In particular, DSSAT optimizes water, nutrients and other 

inputs by providing accurate yield predictions under 

diversified management scenarios. This assumes great 

significance in water-scarce regions of the world. The 

ability of this model to predict yield outcomes under AWD 

practices supports a sustainable water management 

strategy that has higher WUE with lesser environmental 

concern.  

Resource Productivity Metrics Conventional 2022 Conventional 2023 AWD 2022 AWD 2023 

Growing season length (days) 131 128 126 122 

Precipitation (mm) 211.4 60.4 204.3 55.9 

Dry Matter Productivity         

Precipitation (kg [DM]/ha per mm [rain]) 6.83 22.36 7.26 25.22 

Evapotranspiration (kg [DM]/ha per mm 2.89 2.96 2.68 2.75 

Transpiration (kg [DM]/ha per mm 4.32 4.53 4.23 4.45 

Irrigation (kg [DM]/ha per mm 0.4 0.37 0.76 0.72 

Yield Productivity         

Precipitation (kg [yield]/ha per mm [rain]) 28.6 9.94 2.93 10.78 

Evapotranspiration (kg [yield]/ha per mm [ET]) 1.24 1.19 1.19 1.15 

Transpiration (kg [yield]/ha per mm 1.81 2.01 1.7 1.9 

Irrigation (kg [yield]/ha per mm 1.7 0.17 0.31 0.31 

Nitrogen Application (kg [N applied]/ha) 360 360 360 360 

N Uptake (kg [N uptake]/ha) 172 161 176 172 

Nitrogen Use Efficiency         

N applied efficiency (kg [DM]/kg [N applied]) 40.1 37.5 41.2 39.2 

N uptake efficiency (kg [DM]/kg [N uptake]) 84 83.9 80.1 84 

Table 7. Resource productivity metrics of rice for conventional and AWD in 2022 and 2023.  
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Limitations of DSSAT model 

a. DSSAT requires a vast amount of input data on soil 

properties, weather conditions and crop management 

practices, etc. obtaining the accurate and upto date 

data can be challenging.   

b. It operates only on field or plot scales, which may not 

be feasible for large scale research assessments. 

c. Like every other crop model, DSSAT requires 

calibration and validation of data against different 

conditions, which is a labour- intensive process and 

often cannot yield accurate results. 

d. Adaptability of DSSAT to present day climatic change 

scenarios is crucial to make it as a widely adaptable 

solution for research. 

e. DSSAT requires a lot of training and expertise to make 

its effective use which may further limit its reach and 

accessibility in certain research contexts (44). 

Overcoming these deficiencies will require further 

research and development in order to advance model 

accuracy, ease of use and applicability across diverse 

agricultural landscapes and for a range of future climate 

scenarios. 

 

Conclusion   

The DSSAT crop model accurately simulates rice yields 

under diverse conditions, showing promise for regional 

use. Refining it could improve agricultural decision-

making. Drone-sprayed nano urea and AWD irrigation 

enhance fertilizer precision, reduce pollution and improve 

water management, boosting crop resilience and yields. 

Ongoing refinement supports sustainable agriculture. 

Future Research Directions and Suggestions Refinement 
of Model Parameters: Further research studies should 

consider inclusion of more precision parameters like 

remote sensing data can further enhance the accuracy in 

the prediction of yield using various climatic conditions 

(45,46). From the analysis of DSSAT model data for rice 

find out the agricultural practice that gives maximum yield 

with a minimum input of resources.  

1. Environmental Impact: Consider the environmental 

implications of such recommended practices on water use 

efficiency and nutrient management in rice production. 

2. Risk Management: Through proactive management 

strategies, we can minimize the potential risks identified 

by the model, for example, from pest outbreaks or nutrient 

deficiencies or weather-related incidents. 

3. Future Research Directions: This could include further 

research in refining the model to improve the accuracy of 

yield responses to different climate conditions or 

incorporating other relevant pest and disease dynamics. 
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