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Abstract   

The cultivation of groundnut, which is crucial for its protein-rich kernels and 

edible oil, is highly sensitive to variations in soil moisture, particularly under 

rainfed conditions. The objective of the present study is to improve the 

accuracy of soil moisture monitoring by using principal component analysis 

(PCA) and clustering to analyze data from sensor and satellite sources. In 

addition to the use of satellite images from SMAP, ERA5 and Sentinel 1A in 

addition to in situ sensor data, this study was carried out at the Oil Seed 

Research Station in Tindivanam. Important factors, such as soil moisture, 

potential evaporation (PET) and volumetric water content (VWC) were 

examined at various crop stages. According to PCA, VWC at different depths 

and soil moisture data clustered closely during the Kharif season, indicating 

substantial relationships. A significant loading on the first component (PC1) 

explained 51.26 % of the variance. The significance of soil moisture and PET 

was highlighted by cluster analysis, which revealed four major clusters with 

strong intracluster relationships. On the other hand, PCA for the Rabi season 

revealed that ERA5-SM, WS and ST were crucial, with PC1 accounting for 

67.53 % of the variation. Three clusters were found in the cluster analysis for 

Rabi, highlighting the significance of ST and WS in crop development. A 

study of the seasons revealed that during Kharif, soil moisture and 

evaporation were crucial, whereas during Rabi, soil temperature and wind 

speed had greater impacts. This emphasizes how vital it is to apply season-

appropriate agronomic techniques to maximize crop productivity and 

resource efficiency. 
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Introduction   

Groundnut (Arachis hypogaea L.) is a vital crop worldwide, serving both as a 

pulse and an oilseed, primarily cultivated for its edible oil, protein and fatty 

acids. The groundnut kernel is rich in protein (22-30 %) and contains a 

significant amount of edible oil (44-56 %), with oleic acid, linoleic acid and 

palmitic acid accounting for 90 % of its total fatty acid composition. High-

oleic-acid groundnuts are particularly valued for their longer shelf life and 

superior flavor. In India, approximately 70 % of groundnut cultivation 

occurs under rainfed conditions, where intermittent soil moisture stress can 

significantly reduce both yield and quality. Improving the nutritional quality 
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of groundnuts under these conditions requires studying 

the impact of soil moisture stress on crop performance (1). 

 Water scarcity significantly impacts crop 

performance in rainfed regions. The analysis of crop yield 

projections is crucial for understanding the influence of 

soil moisture and associated meteorological factors on 

crop growth. Effective planning and monitoring strategies 

help ensure sustainable farming practices despite 

changing environmental conditions (2). Climate plays a 

critical role in agricultural production, significantly 

influencing output. In addition to moisture, factors such as 

temperature, relative humidity, solar radiation, wind 

speed, pest and disease incidence and soil microbiology 

can affect production (3). 

 The principal components analysis (PCA) is highly 

useful in determining which environmental factors, such 

as soil moisture, temperature, potential 

evapotranspiration (PET) and wind speed, contribute most 

to groundnut yield. These key factors should be 

emphasized in crop management strategies. To analyze 

the variation among different environmental conditions, 

cluster analysis is employed. This method classifies 

locations or variables based on the similarity of their 

characteristics, aiming to minimize within-group variance 

and maximize between-group variance. It is also useful for 

selecting ideal environmental conditions for crop 

modeling and improving cultivation practices. Therefore, 

the present study was conducted to evaluate the 

variability in environmental factors influencing groundnut 

pod and dry fodder yield to identify the optimal conditions 

for future crop management strategies (4). Research on 

climate change is crucial for adapting agricultural crop 

management, particularly for crops sensitive to climatic 

variations such as groundnuts. Among the climate 

parameters, soil moisture, maximum and minimum 

temperatures, average temperature and solar radiation 

presented the highest R2 values and the lowest RMSE 

values, indicating their strong influence (5). In contrast, 

wind speed and relative humidity had lower correlations 

and greater errors. The grid size of the NASA platform, 

which is kilometric in scale, can lead to low model 

adjustments due to the potential overlap of areas, which 

may particularly benefit growers lacking nearby surface 

weather stations (6).  

The key objective of this research was as follows: 

An in-depth comparative analysis of soil moisture data 

obtained from both satellite and sensor sources. 

Offering insights that could improve the accuracy of soil 

moisture monitoring and prediction, with a focus on 

agricultural practices, particularly for groundnut crops.  

 

Materials and Methods 

The study was carried out at the Oil Seed Research Station 
in Tindivanam at 12°213886′N latitude and 79°672351′E 

longitude. Groundnut is a soil moisture-sensitive crop that 

is sown in both predominant seasons of Tamil Nadu- 

Kharif and Rabi (7). The crop variety TMV 14 was chosen for 

this study. The soil moisture and weather parameters were 

monitored and observations were taken at critical crop 

stages, such as the seedling (15 days after sowing), 

vegetative (30 DAS), flowering (45 DAS), pegging (60 DAS), 

pod filling (75 DAS) and harvesting (105 DAS) stages. The 

soil moisture sensor tower installed at the site is shown in 

Fig. 1. 

 In situ soil moisture sensor (Cr 300) data are used to 

validate seasonal observations of satellite data (8). At 

regular intervals, the logger data are collected from the 

flux sensor. Satellite datasets such as the SMAP (Soil 

Moisture Active Passive) is combined sensor satellite to 

monitor soil moisture, ERA5 (European Reanalysis Version 

5) is a dataset providing high-resolution climate and 

weather information from the European Centre for 

Fig. 1. Experimental site with in-situ sensor. 
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Medium-Range Weather Forecasts and Sentinel 1A (S1A) is 

synthetic aperture radar helps to capture the soil and 

environmental status were used for the comparative 

analysis. Satellite data were processed and downloaded 

from the Google Earth Engine (GEE). The parameters 

utilized are detailed below in Table 1. 

  The statistical analysis of clustering and 
principal component analysis (PCA) was performed to 

study the relationship between each parameter and the 

sources of satellite data used. PCA relies heavily on 

eigenvalues and loadings to help with data structure 

identification. Greater values of eigenvalues indicate a 

greater amount of variance explained by each principal 

component. Since they can account for more variance 

than a single original variable, eigenvalues larger than one 

are typically regarded as noteworthy. A stronger 

relationship is indicated by higher values (close to 1 or -1) 

for loadings, which show how much each variable 

contributes to a principal component. An indication of a 

significant impact of the variable on the component would 

be a loading of 0.7 or higher. Complex datasets can be 

made easier to access and understand by analyzing these 

values, which help identify which variables are most 

crucial in explaining data patterns. The parameters 

concerning the stages of crop phenology were weighed. 

The sense of reinforcement and balancing leads to the 

establishment of a favorable environment at the regional 

level/field itself. The analysis was performed via SAS JMP 

Pro 17 software (9). 

Results  

Soil and environmental factors during the Kharif 
season 

Biplot and PCA Analysis 

The biplot of the Kharif season (Fig. 2) illustrates the 
relationships among the variables through PCA. The first 
principal component (PC1) accounts for a substantial 
proportion of the variability in the data, allowing us to 

observe which variables contribute most significantly to 
the overall variance. Key variables, such as VWC at 
different depths (30 cm and 45 cm), ERA5-SM, PET and 

SMAP-SM, cluster closely together, indicating a strong 
positive correlation. This graphical representation helps 
identify clusters of variables that behave similarly, 

providing insight into the underlying data structure. By the 
analysis, the first principal component, with an eigenvalue 
of 9.739, accounted for 51.26 % of the total data variability, 

while the second, third and fourth components, with 
eigenvalues of 5.722, 2.392, and 1.145, explained 30.12 %, 
12.59 % and 6.03 % of the variance respectively. Soil 

moisture variables were most influential in the first 
component; SMAP-RZSM (loading of 0.316) had the 
strongest influence, followed closely by SMAP-SM (0.315) 

and various VWC depths (ranging from 0.253 to 0.308). 
ERA5-SM also contributed with a loading of 0.207. In the 
second component, which explained 30.12 % of the 

variance, key variables included WDV (0.405), S1A-VH 
(0.397), rainfall (0.362) and albedo (-0.321). These results 
show that while soil moisture variables dominate the first 

component, weather and remote sensing indicators exert 
a greater influence on the second. This distinction 
underscores the importance of considering both 

meteorological and soil variables to better understand the 
factors driving variability in groundnut cultivation. 

Cluster analysis and squared cosines of variables 

Table 2 provides a detailed summary of the clustering 
analysis for the Kharif season. Clusters are formed on the 
basis of the R2 values of the variables within each cluster, 
the R2 values with the next closest cluster and various 

cluster coefficients. The analysis identified 4 distinct 
clusters, which were summarized with their contributing 
factors. Cluster I (proportion: 0.895) includes VWC at 45 cm 

and 30 cm, ERA5-SM, PET and SMAP-SM. The high R2 values 
within this cluster (ranging from 0.781-0.962) indicate a 
strong intracluster correlation. For example, the VWC at 45 

cm has an R2 value of 0.962, demonstrating its strong 
relationship with the other variables in this cluster. The 
low 1-R2 ratios and cluster coefficients further confirm the 

robustness of this cluster. In Cluster II (proportion: 0.794), 
the variables in this cluster are WDV, S1A-VH, NR, Rain, S1A
-VV and albedo. With R2 values ranging from 0.547 to 0.956, 

this cluster shows moderate to high intracluster 
correlations. For example, WDV has an R2 value of 0.956, 
indicating a strong relationship within the cluster. Cluster 

III (proportion: 0.883) contains WS, ST at 10 cm and 45 cm, 
SMAP-RZSM, VWC at 10 cm and RH. High R2 values (e.g., WS 
at 0.972) signify strong intracluster correlations, 

demonstrating the tight grouping of these variables. 
Cluster IV (proportion: 0.932) compared with ST at 30 cm 

Source Parameters and units 

Soil moisture tower 
(Cr 300) 

Volumetric water content at 10 cm, 30 cm 
and 45 cm (VWC; %) 

Soil temperature at 10 cm, 30 cm and 45 
cm (ST; °C) 

Horizontal wind speed (WS; m/s) 

Horizontal wind direction degree (WDV; °) 

Rain (mm) 

Relative humidity (RH; %) 

Net radiation (NR; Watts/m2) 

SMAP (Soil Moisture 
Active Passive) (27) 

Soil Moisture (SM; %) 

Root Zone Soil Moisture (RZSM; %) 

Sentinel 1A (28) 
Backscatter Vertical-Vertical (VV; σ⁰) 

Backscatter Vertical-Horizontal (VH; σ⁰) 

ERA5 (29) 

Soil Moisture (SM; %) 

Forecast Albedo (Albedo; No unit) 

Surface Net Solar Radiation (SNSR; J/m2) 

Potential Evaporation (PET; m) 

Table 1. Details of the sources and meteorological parameters. 
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Fig. 2. Biplot of covariates in groundnut crop under the Kharif season. 

Clusters 
(Proportion) Variables 

R2 of own 
cluster 

R2 of the 
next 

closest 

1-R2 
ratio 

Cluster 
coefficient 

I 

Cluster 
coefficient II 

Cluster 
coefficient 

III 

Cluster 
coefficient 

IV 

I 

(0.895) 

VWC 45 cm 0.962 0.365 0.06 0.463 0 0 0 

VWC 30 cm 0.928 0.519 0.15 0.455 0 0 0 

ERA5-SM 0.781 0.256 0.295 0.417 0 0 0 

PET 0.898 0.659 0.298 0.448 0 0 0 

SMAP- SM 0.906 0.809 0.494 0.449 0 0 0 

II 

(0.794) 

WDV 0.956 0.109 0.049 0 0.447 0 0 

S1A-VH 0.933 0.253 0.089 0 0.442 0 0 

NR 0.873 0.369 0.201 0 -0.428 0 0 

Rain 0.78 0.141 0.256 0 0.404 0 0 

S1A-VV 0.547 0.227 0.586 0 -0.338 0 0 

Albedo 0.676 0.533 0.693 0 -0.376 0 0 

III 

(0.883) 

WS 0.972 0.493 0.055 0 0 -0.428 0 

ST 10 cm 0.951 0.581 0.118 0 0 0.423 0 

ST 45 cm 0.929 0.58 0.168 0 0 -0.418 0 

SMAP-RZSM 0.929 0.749 0.283 0 0 0.418 0 

VWC 10 cm 0.873 0.72 0.454 0 0 0.406 0 

RH 0.641 0.287 0.503 0 0 -0.347 0 

IV 

(0.932) 

ST 30 cm 0.932 0.211 0.087 0 0 0 0.707 

SNSR 0.932 0.494 0.135 0 0 0 0.707 

Table 2. Clustering summary of the Kharif season 
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and SNSR, this cluster has very high R2 values (both 0.932), 
indicating excellent intracluster correlation and a clear 

grouping distinct from those of the other clusters. 

 Fig. 3 shows the squared cosines of the variables for 
the Kharif season. Squared cosines measure the quality of 

representation of each variable in the factor space defined 

by the principal components. Higher squared cosine 

values indicate better representation. For example, 

variables such as VWC at various depths, ERA5-SM, PET 

and SMAP-SM have higher squared cosine values, 

indicating that they are well represented in the principal 

component space. This helps in assessing the importance 

and influence of each variable within the dataset. 

Soil and environmental factors during the Rabi season 

Biplot and PCA Analysis 

The biplot for the Rabi season (Fig. 4) provides a visual 
representation of the relationships between variables via 

PCA. The PC1 captures a significant portion of the 

variance, highlighting the contribution of each variable. 

Variables such as ST at 45 cm, WS, ERA5-SM and VWC at 30 

cm form distinct clusters, reflecting their strong 

correlations. This visualization aids in understanding how 

different variables group together and contribute to the 

overall variability in the data. The analysis revealed that 

the first principal component, with an eigenvalue of 

12.831, explained 67.53 % of the total data variability, 

while the second, third, fourth and fifth components, with 

eigenvalues of 3.107, 1.747, 0.920 and 0.393, accounted for 

16.36 %, 9.20 %, 4.84 % and 2.07 % of the variance 

respectively. During the Rabi season, soil moisture 

variables played a dominant role in the first component, 

with ERA5-SM being the most significant (loading of 0.272), 

followed by VWC at 30 cm (0.269), VWC at 45 cm (0.262), 

S1A-VH (0.242), SMAP-RZSM (0.215) and VWC at 10 cm 

(0.214). In the second component, which contributed 16.36 

% to the variance, major influencing factors were WDV 

(0.382), rainfall (0.258), albedo (0.251) and S1A-VV (-0.416). 

These findings suggest a transition from soil moisture as 

the key factor in the first component to a stronger 

influence of weather and remote sensing indicators in the 

second. This shift highlights the need to consider both 

meteorological and soil-related factors to better 

understand the dynamics impacting groundnut cultivation 

throughout the seasons. 

Cluster analysis and squared cosines of variables 

Table 3 details the cluster analysis for the Rabi season, 
categorizing variables into clusters on the basis of their R2 

values and cluster coefficients. Three clusters were 

identified. Cluster I (proportion: 0.879) includes ST at 45 

Fig. 3. Plot of squared cosines of variables in groundnut crop under the 
Kharif season. 

Fig. 4. Biplot of covariates in groundnut crop under the Rabi season. 
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cm, WS, ERA5-SM, VWC at 30 cm, SMAP-SM, S1A-VH, ST at 

30 cm and VWC at 10 cm. The high R2 values (e.g., ST at 45 

cm with an R2 of 0.966) indicate strong intracluster 

correlations, demonstrating a robust grouping of these 

variables. Cluster II (proportion: 0.738) comprises RH, NR, 

S1A-VV, WDV, Rain and SMAP-RZSM; this cluster shows a 

range of R2 values with moderate to high intracluster 

correlations. For example, RH has an R2 of 0.954, indicating 

a strong relationship within the cluster. Cluster III 

(proportion: 0.927) contains ST at 10 cm, SNSR, PET, VWC 

at 45 cm and albedo. High R2 values (e.g., ST at 10 cm with 

an R2 of 0.991) demonstrate strong intracluster 

correlations, indicating a tight grouping of these variables. 

 Fig. 5 illustrates the squared cosines of the variables 

for the Rabi season, providing insights into the quality of 

their representation in the principal component space. 

Higher squared cosine values indicate that variables such 

as ST at 45 cm, WS, ERA5-SM and VWC at 30 cm are well 

represented, emphasizing their importance in the dataset. 

 

Discussion 

This study explores the intricate interrelationships 

between soil and environmental variables during the 

Kharif and Rabi seasons. This probing employs PCA and 

cluster analysis to reveal significant patterns in the 

interactions of these variables. The biplot analysis 

effectively revealed crucial insights for comprehending 

crop performance and environmental dynamics. 

Kharif season 

During the Kharif season, the PC1 accounted for 51.26 % of 

the total variance. This underscores the importance of 

variables such as the volumetric water content (VWC) at 

different depths, ERA5-SM, PET and SMAP-SM which are 

closely clustered and strongly positively correlated. This 

correlation signified that soil moisture at various depths 

plays a crucial role in determining crop yield during the 

monsoon season, especially for rice and maize (10). 

Furthermore, the substantial loadings of VWC at 45 cm 

(0.253) and SMAP-SM (0.315) in PC1 underscore their vital 

role in soil moisture retention, directly impacting Kharif 

crops such as rice and maize, as supported previous study 

(11). This correlation emphasized the role of deep soil 

moisture in sustaining crop growth during periods of water 

scarcity (12). The results of the cluster analysis confirmed 

the findings by grouping similar variables. Cluster I 

consisted of VWC at 45 cm and 30 cm, ERA5-SM, PET, and 

SMAP-SM, which showed strong correlations within the 

cluster, with R² values ranging from 0.781-0.962. This 

indicates a strong interrelationship between these 

variables, collectively influencing soil moisture dynamics 

and crop growth during the Kharif season. These results 

Clusters 
(Proportion) Variables 

R2 of own 
cluster 

R2 of the next 
closest 1-R2 ratio 

Cluster 
coefficient I 

Cluster 
coefficient II 

Cluster 
coefficient III 

I 

(0.879) 

ST 45 cm 0.966 0.758 0.142  -0.370613 0 0 

WS 0.934 0.652 0.19  -0.364435 0 0 

ERA5-SM 0.955 0.828 0.265 0.3684542 0 0 

VWC 30 cm 0.916 0.706 0.285 0.3610237 0 0 

SMAP- SM 0.831 0.414 0.288 0.3438175 0 0 

S1A-VH 0.825 0.475 0.333 0.3425581 0 0 

ST 30 cm 0.883 0.721 0.42  -0.354345 0 0 

VWC 10 cm 0.722 0.478 0.533 0.3203433 0 0 

II 

(0.738) 

RH 0.954 0.502 0.091 0  -0.464186 0 

NR 0.955 0.581 0.107 0 0.4643568 0 

S1A-VV 0.739 0.16 0.311 0 0.4083417 0 

WDV 0.573 0.147 0.501 0  -0.359529 0 

Rain 0.551 0.161 0.535 0  -0.352698 0 

SMAP-RZSM 0.658 0.656 0.993 0 0.3853625 0 

III 

(0.927) 

ST 10 cm 0.991 0.63 0.024 0 0 0.4623148 

SNSR 0.957 0.483 0.083 0 0  -0.45434 

PET 0.93 0.784 0.325 0 0 0.4478376 

VWC 45 cm 0.931 0.798 0.34 0 0 0.4482202 

Albedo 0.827 0.493 0.341 0 0 0.4223507 

Table 3. Clustering summary of the Rabi season. 

Fig. 5. Plot of squared cosines of variables in groundnut crop under the Rabi 
season. 
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highlighting the critical role of soil moisture and 

evaporation in determining the yield of water-intensive 

crops such as rice (13). The influence of PET on crop water 

demand, particularly in Kharif, has been assured its role in 

irrigation planning for sustainable agriculture (14). 

Additionally, the significance of soil moisture and its 

impact on root development and nutrient uptake in 

monsoon-fed crops was emphasized by (15). 

Rabi Season 

In the Rabi season, PCA identified a specific set of 

influential variables. The PC1 represented 67.53 % of the 

variance, with significant contributions from soil 

temperature (ST) at 45 cm, wind speed (WS), ERA5-SM and 

VWC at 30 cm. These variables formed distinct clusters, 

reflecting their strong correlations and collective impact 

on soil and crop dynamics during the winter season. The 

significance of ST and WS during the Rabi season is 

demonstrated that these variables significantly affect the 

growth of wheat and mustard, which are crops that are 

sensitive to temperature and wind conditions (16). This 

finding reported that soil temperature significantly 

influences nutrient availability and root development in 

wheat (17). Cluster analysis for the Rabi season revealed 

three main clusters, with Cluster I (proportion: 0.879) 

including ST at 45 cm, WS, ERA5-SM, VWC at 30 cm, SMAP-

SM and S1A-VH. High R² values, such as 0.966 for ST at 45 

cm, indicate strong intracluster correlations, suggesting 

that these variables are closely linked in influencing crop 

growth during the Rabi season. This observation showed 

that the soil temperature at deeper layers plays a critical 

role in maintaining soil health and crop yield, particularly 

for wheat (18). Furthermore, the role of wind speed in 

modulating microclimatic conditions and its impact on 

crop transpiration rates during the Rabi season has been 

emphasized by earlier worker (19). 

Comparison of the seasonal variations 

The comparison between the Kharif and Rabi seasons 
reveals the varying significance of soil and environmental 

variables during different cropping periods. During the 

Kharif season, soil moisture and evaporation were more 

influential, while soil temperature and wind speed were 

critical during the Rabi season. These seasonal variations 

in variable influence align with findings that suggest the 

pivotal role of soil moisture and temperature dynamics in 

determining crop yield and quality, especially in semiarid 

regions (20). The influence of soil moisture in the Kharif 

season and soil temperature in the Rabi season has also 

been demonstrated, with both variables significantly 

impacting the physiological processes of crops and overall 

productivity (21). The importance of wind speed during the 

Rabi season, particularly its effect on evaporation rates 

and microclimatic conditions essential for crops like wheat 

and mustard, has been highlighted (22). 

 Additionally, studies have shown that seasonal 

changes directly impact nutrient availability and soil 

microbial activity, both of which are crucial for crop 

growth (23). Variations in temperature and moisture 

across seasons have been found to significantly influence 

nutrient cycling in soils. The effects of soil temperature 

and moisture on root development and crop yield across 

seasons further support the seasonal dynamics observed 

in this study (24). These insights are essential for 

optimizing agronomic practices, such as irrigation 

scheduling, fertilization and crop selection, which must be 

tailored to the specific needs of crops during different 

seasons (25). Understanding the key variables influencing 

crop growth across seasons can help farmers optimize 

irrigation, fertilization, and other practices to enhance 

crop yield and sustainability. Moreover, this understanding 

is valuable for developing predictive models of crop 

performance, contributing to better resource 

management and decision-making in agriculture. The 

importance of incorporating environmental variables into 

crop management practices has been emphasized as such 

integration has been shown to significantly improve crop 

productivity and resource use efficiency (26).  

 

Conclusion   

This study identifies key environmental and soil variables 

affecting groundnut cultivation across seasons. During the 

Kharif season, soil moisture and potential evaporation 

(PET) are crucial for managing water stress, with strong 

correlations between measures like SMAP-SM and VWC 

highlighting their importance. Accurate soil moisture 

monitoring and informed irrigation plans are essential to 

mitigate water shortages and enhance productivity. In the 

Rabi season, soil temperature and wind speed become 

more significant. PCA results show that ERA5-SM, VWC, 

wind speed and soil temperature at deeper levels are 

critical for crop growth. These findings underscore the 

need for season-specific agronomic strategies to improve 

fertilization and irrigation, ultimately supporting better 

crop management and yield. The study advocates for the 

development of prediction models to refine agricultural 

practices and adapt to changing environmental 

conditions, promoting both productivity and 

sustainability. 
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