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Abstract   

The root system architecture (RSA) in solanaceous vegetables has become an 

exciting area of research, uncovering complex networks essential for plant 

development, nutrient absorption and resistance. This review delves into the 

comprehensive scope of research surrounding roots, shedding light on their 

dynamic nature and implications for agricultural practices. The Solanaceae 

family comprises various vegetables, including tomatoes, potatoes, peppers 

and eggplants, each with distinct root systems. Innovative methodologies have 

uncovered the complex and adaptive nature of these root systems. Roots of 

solanaceous vegetables have plasticity, reflecting their capacity to adjust to soil 

conditions, nutrient availability and stressors. From the taproot structures in 

potatoes to the fibrous nature of tomato roots, this review synthesizes findings 

to elucidate the mechanisms behind root development and responses to 

environmental stimuli. Furthermore, the symbiotic associations between 

solanaceous crop roots and soil microorganisms have attracted significant 

interest. Understanding the intricate interactions between root exudates, 

microbial communities and nutrient cycling opens avenues for sustainable 

agriculture, emphasizing the role of root architecture in fostering beneficial soil 

ecosystems. The implications of many research studies on RSA extend beyond 

academic interest and play a role in improving crop productivity. 

Understanding root system architecture enables breeders and agronomists to 

create cultivars with superior root characteristics, hence enhancing crop 

output, water-use efficiency and resilience to abiotic challenges. Nonetheless, 

certain gaps persist, requiring additional investigation. A deeper investigation 

into the molecular mechanisms governing root development in solanaceous 

vegetables, particularly under changing climate scenarios is important for 

future research. 
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Introduction   

Roots play crucial roles in supporting plant growth and overall vitality. They 

facilitate the uptake of vital nutrients and water necessary for plant 

development, act as storage reservoirs for essential compounds, provide 

stability by anchoring plants in the soil and serve as interfaces for interactions 

with both harmful and beneficial organisms in the rhizosphere. Moreover, 

root growth and development adaptability in response to varying soil 
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moisture and nutrient levels offer promising avenues for 

leveraging natural diversity to identify advantageous root 

traits that can significantly bolster plant productivity in 

agricultural settings (1-4). The comprehensive arrangement 

of all root components within a specific growth 

environment is collectively termed root system architecture 

(RSA). This RSA framework is highly dynamic and is 

profoundly influenced by external factors like soil moisture, 

temperature, nutrient availability and soil pH. Additionally, 

the diverse microbial communities surrounding roots 

profoundly influence how plants perceive and react to their 

surroundings (5, 6). Various root attributes equip plants with 

the capacity to respond dynamically, acclimate and flourish 

in diverse environmental conditions. 

 The grafting of vegetables has gained importance 

among horticultural scientists due to its robustness in plant 

growth, yield and tolerance against the incidence of 

pathogens, salinity and moisture stress. In solanaceous 

vegetables, a decrease in infection by the disease-causing 

organisms is reported due to grafting on various rootstocks 

(7-11). The ecological vulnerabilities of vegetables 

necessitate grafting with closely related species exhibiting 

relative tolerance. The RSA is altered due to environmental 

factors (12, 13). While grafting, the response behavior to salt 

tolerance in grafted plants is related to RSA. Root length, 

density, root hairs and root surface area determine salt 

tolerance. This is attributable to its function in ion and 

water absorption, which are the primary traits contributing 

to salt tolerance in grafted plants. However, in contrast to 

the substantial research on above-ground and physiological 

aspects, the relationship between RSA and abiotic stress 

tolerance requires further investigation (14). A stronger root 

system can support a long-season crop which is a priority. 

Hence, one important criterion is rootstock breeding for 

Solanaceous crops (8). The roots of tomato seedlings 

showed plasticity to salt stress (15). There is a higher level of 

correlation between root characteristics and the shoot 

parameters which shows the possible role of root 

architecture on salt stress tolerance. The suitable 

rootstocks for solanaceous vegetables are Solanum torvum 

Sw, S. xanthocarpum Sw, S. mamosum L, S. integrifolium 

Poir, S. sisymbrifolium Lam., S. toxicarium Rich., and S. 

mammosum L. (16-18).  

 Research on RSA in Solanaceous vegetables has 

gained considerable attention due to its significant 

implications for crop productivity, nutrient uptake, water 

efficiency and resilience to environmental stressors. 

Solanaceous vegetables, including tomatoes, potatoes, 

peppers and eggplants, exhibit diverse root structures that 

influence their adaptation to various soil conditions. This 

review gives an overview and review of studies focusing on 

RSA in these vegetables. Salient characteristics of 

Solanaceous vegetables, along with the details about RSA, are 

described in the following section: 

Tomatoes (Solanum lycopersicum L.) 

Root Morphology and Characteristics : Tomatoes have a 

fibrous root system characterized by both primary and 

adventitious roots. Many studies have been undertaken to 

assess the influence of root traits like root length, density, 

branching patterns, and depth on nutrient acquisition, 

particularly in phosphorus- and water-limited environments 

(15). Investigations into the genetic basis of root 

architecture have identified key genes and molecular 

pathways controlling root development. This knowledge 

has enabled the development of tomato varieties with 

improved root traits, enhancing their resilience and 

productivity under challenging conditions. 

Potatoes (Solanum tuberosum L.) 

Tuber Development : Root architecture studies in potatoes 

often focus on the relationship between root system 

development and tuber formation. Understanding the 

balance between root growth and tuber initiation is critical 

for optimizing yield (4). Research has explored potato root 

responses to biotic and abiotic stresses, including drought, 

pathogens and soil-borne diseases. Enhanced understanding 

of root traits related to stress tolerance aids in breeding 

efforts to develop resilient potato varieties.  

Peppers (Capsicum spp.) 

Root Efficiency : Investigations emphasize root traits 

associated with water and nutrient uptake efficiency. 

Studies often aim to identify genotypes with superior root 

systems capable of adapting to limited water availability 

and various soil types (13). Research also focuses on 

understanding the interactions between pepper roots and 

soil microbiota, elucidating how these interactions impact 

plant health and productivity. 

Eggplants (Solanum melongena L.) 

Root Structure and Soil Adaptation : Studies explore root 

traits governing eggplant adaptation to different soil 

conditions, such as saline soils or soils with varying moisture 

levels. Understanding root plasticity aids in developing 

varieties resilient to soil-related stressors. Investigations delve 

into the rhizosphere dynamics around eggplant roots, studying 

the influence of root exudates on soil microbial communities 

and nutrient availability (18). 

 In conclusion, studies on RSA in solanaceous vegetables 
cover a wide range of topics, from identifying genetic pathways 

controlling root development to comprehending physical 

features. These studies hold immense promise in developing 

crops with improved root systems, contributing to sustainable 

agriculture by enhancing productivity and resilience in diverse 

environmental conditions. However, ongoing research efforts 

remain crucial to further exploit the potential of root 

architecture studies for Solanaceous vegetable improvement.  

Review of the earlier works 

In recent years, there have been works related to RSA and 

their response to various rhizosphere environments (Fig. 1). 

There is variation among the species and genotypes in the 

root system characteristics and their response to soil features 

(19). Investigating root morphology and plasticity when faced 

with environmental changes helps to select genotypes that 

can manage abiotic stresses (20). Modification in root 

systems to their immediate environment for resource tapping 

and avoiding pathogen infestations can be exploited to a 

greater extent (21). Rootstocks hold considerable importance 

in adapting to soil-related factors, including water deficiency, 
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high salinity, alkaline soils and disease susceptibility (19). 

There is a difference in the RSA of soybeans grown in the field 

and hydroponically. Soil characteristics have a strong 

influence on RSA. Root growth, growth period and 

rhizosphere size are restricted under controlled conditions 

than in field experiments. The RSA is influenced by plant 

genetics, soil environment characteristics and rhizosphere 

size (22). 

 The methods of high throughput root architectural 

phenotyping for beans and cowpeas were developed (23). 

The author mentioned that qualitative evaluation of the 

architecture of root grown up plants is tedious under field 

conditions. This type of work helps in selecting the useful 

root architectural phenotypes. Harvesting of roots is done 

at flowering time as the assessment at flowering reduces 

the differences in the phenology of root development (24).  

The root phenotypes are important as promising breeding 

targets for improving nutrient uptake and suggest the root 

system ideotypes for the efficient utilization of major and 

secondary nutrients (25). Root phenomic link with nutrient 

acquisition and utilization in amaranths has been studied 

(26). There is a positive correlation between the root traits 

and nutrient uptake. Even then, the traits are root length, 

root diameter and root volume. The topology and other 

structural characteristics and their interactions were not 

taken into account. The key function of the unseen partner, 

the root system of the rootstock, is still not understood. 

Through grafting, both scion and rootstock can influence 

the salt tolerance of grafted plants (27). There is flexibility in 

root growth and its traits in response to salinity (28).  

 Hydrogel-based transparent soil was used to mimic 
soil experiments while studying the root traits (29). The 3D 
imaging techniques are also being used for root phenotyping. 

There is software’s where complete RSA viz. Smart root, Root 
Nav, Winrhizo, DIRT, etc. are used in root phenotyping. 
Though there are challenges in evaluating plant root systems, 

it is very important to elucidate RSA to understand plant's 
response to changing environments (30). Various methods for 
root phenotyping have been used by several works, both 

destructive and non-destructive (31). It is necessary to decide 
the experimental conditions before selecting a method. Soil 

core sampling is a classical root phenotyping method though 
it furnishes limited root system data (32). Shovelomics is 

being used for high throughput root phenotyping, especially 
in maize. It is digging out the root system washing and 
measuring numerous root traits for the larger population.   

 It is difficult to mimic the soil conditions artificially, 
and hence, the most common practice for root phenotyping 

is soil-filled tubes, flat cartridges and cultivation in regular 
soil (33). The author had given the docket of the software 
packages available for the root phenotyping experiments.  It 

was reported that grafted tomatoes on rootstocks respond 
better to variations in soil salinity conditions (34). However, 
the authors have concentrated on shoot phenomics. The role 

of rootstocks is yet to be studied. The selection of grafting 
combinations with deep and vigorous root systems is 
emphasized (35). However, the use of roots as selection 

criteria is seldom followed. Rhizosphere is often simplified as 
the soil area surrounding the roots. However, it is an 
integration at the root system level and it is completed due to 

the geometry, temporal dynamics and heterogeneous 
aspects of roots. The root system complexity is due to its 
geometry, physiology and anatomy, influenced by various 

heterogeneous, environmental and soil factors.  

 The change in the RSA of wheat germplasm has been 
studied (36). The results revolved significant correlation of the 
root traits such as primary root length, total root length, total 
root surface area and root average diameter in the limited 

and non-limited phosphorous availability situation. They also 
report that in India, there is limited information on the RSA of 
what germplasm is being used in the breeding program. The 

rooting pattern of Vetiveria species viz. V. nigritana, V. 
nirmondis. V. zizanioides was studied and variation was found 
(37). The roots of V. zizanioides are much longer and thicker 

with less secondary branching and lesser lateral fibrous roots. 
The focus of that study is the analysis of root ideotypes for 
essential oil extraction or for environmental concerns.  

 The availability of potassium influences root 
architecture under moisture stress (38). The root projected 

area, maximum width and width-to-depth ratio reduced 
under water stress and K availability influenced the root depth 
under water stress. It was also found that the root gradient 

towards depth is inclined in reaction to water than to 
potassium. The implication of moisture stress on the RSA of 
cotton is well explained (39). They also reported the methods 

for studying cotton root systems under lab, field and 
greenhouse conditions.  

Methods for Phenotyping Root Traits 

Phenotyping root traits in the field poses significant 

challenges, limiting the comprehensive assessment of RSA 

features and their utility in breeding selection. The 

conventional field-based techniques are both labor-intensive 

and necessitate plot destruction for sample collection. 

Furthermore, soil heterogeneity across different field sites 

can substantially influence the RSA of field-grown plants, 

confounding genetic and environmental interactions. To 

overcome these limitations, alternative approaches involve 

assessing roots in plants cultivated under controlled 

conditions. Methods employed to evaluate plant root 

architecture must accurately depict root growth, mitigate the 

Fig. 1. Aims of root system architecture study by various workers. 
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impact of environmental factors altering root development, 

possess sufficient throughput for phenotyping numerous 

genotypes routinely screened in breeding programs and 

facilitate the translation of root phenotypes from controlled 

environments to field conditions. Several software tools, such 

as RootScan, DART, GiARoots, RootNav, Rhizo, Root Reader, 

Root System Analyzer, Root Reader 3D and RooTrak, have 

been developed to capture root images and extract 

quantitative data (40-48). 

 Analysis of root images is pivotal for root phenotyping 

strategies; the choice of plant cultivation method significantly 

influences the effectiveness of image analysis tools. The 

selection of the plant cultivation system decides whether the 

objective is to answer fundamental root developmental 

queries or to conduct high-throughput root trait selection for 

breeding purposes. For studying root development, methods 

often involve gel-based media, soil-filled containers and 

rhizotrons offering controlled conditions to analyze RSA 

features and genetic-environmental interactions. Conversely, 

high-throughput root selection methods range from 

assessing seedlings on germination paper to excavation of 

field-grown plants. Each method possesses distinct 

advantages and disadvantages. For instance, gel-based 

systems permit non-destructive real-time imaging but might 

lack physiological relevance. Soil-filled containers allow more 

realistic root imaging but have limitations in throughput and 

resolution. Laboratory and greenhouse-based methods such 

as GLO-Roots, X-Ray Computed Tomography and clear pots 

offer controlled environments but lack the interspecific 

competition seen in field conditions (Table 1). Meanwhile, 

methods like shovelomics, soil coring and rhizolysimeters 

maintain physiological relevance but involve destructive 

assays. Ultimately, the choice of plant culturing method for 

root imaging depends on various factors, including the 

specific root trait of interest, sampling timescales, 

infrastructure capabilities and associated costs. 

Prospects  

Reports of previous works showed that grafting is essential for 

overcoming salinity stress tolerance in Solanaceous 

vegetables. Understanding the role of the root system of the 

rootstocks morphologically, anatomically and physiologically 

under salinity is essential for further rootstock breeding. The 

studies in root systems are mostly physiological and 

anatomical and hence, the morphological changes, i.e., root 

phenomics, have to be studied. Studies on the root 

characteristics are done mostly in cereals and staple crops and 

not in horticultural crops (Fig. 2). Grafting has been done to 

enhance the efficiency of the plant response for nutrient use 

efficiency, biotic and abiotic stress, crop productivity and crop 

duration. Abundant studies have been carried out on the shoot 

systems traits such as plant height, branching, leaf 

characteristics, flowering phenology and fruit characteristics, 

i.e. both morphologically and physiologically. However, root 

system characteristics such as root length, root spread, root 

volume, topology and growth dynamics have not been focused 

on enough. Hence, it is very essential to study the root phenes 

of the solanaceous vegetables in comparison to the rootstocks, 

which is the basis for further rootstock breeding programmes. 

 Workers have reported that the solanaceous rootstocks 

used for grafting showed relative tolerance to salinity 

compared to crops on their roots (49-52). But it is expressed in 

terms of growth, yield and physiological parameters of the 

shoot and rarely that of roots. It is expected that this increased 

tolerance is due to the rootstocks and their role needs to be 

investigated. Research indicates that the wild solanaceous 

rootstock population has heritable differences in root phenes 

to mitigate salinity stress. (53). The data on the root geometry, 

viz., position of root segments in rhizosphere, root system 

depth, width and volume root length, number of different 

types of roots and the root dynamics of the wild Solanum 

rootstocks shall be obtained. This will help assess the 

robustness/plasticity of the rootstocks used for the grafting of 

solanaceous vegetables.  

Technology Software used Crops Reference 

Mini rhizotron 
GiA Roots                                                                
EZ-Rhizo 

Potato                                                    
Tomato 

(56)                                          
(58) 

Rhizotubes 
DART                                                                   

Scanner & physical measurement 
Chillies & Solanum sp.                          

Brinjal 
(59)                                              
(60) 

Root columns Win RHIZO Tomato (61) 

Aeroponics Win RHIZO Potato (62) 

Field-level root excavation Physical measurement Solanum carolinense L. (63) 

Field study X-ray micro-computed technology Tomato (64) 

Table 1. Technology & software used for Root system architecture study 

Fig. 2. Research gaps in grating studies of Solanaceous vegetables. 
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 This will be helpful in the identification of the root 

phenotypes of wild Solanum species with improved stress 

tolerance which will intensify the scope of grafting in 

Solanaceous vegetables. By identifying root phenes involving 

various morphological, geometrical and topological 

characteristics of the root system and its dynamics, we will 

have a clear idea of the plasticity or robustness of the root 

system. This will be helpful in the identification of 

characteristics improving the tolerance or resistance of the 

particular genotype in response to any disease incidence, best 

infestation, salinity, drought, etc. Correlation studies in 

response to stress will help in developing ‘Root ideotypes’, 

which can be a criterion for the selection of comparatively 

more efficient rootstocks in the seedling stage itself reducing 

the time taken for the breeding programme. This will be the 

primary step in the roots of the breeding program and also 

lead to the development of root ideotypes which will be the 

next milestone in the production of solanaceous vegetables 

(Fig. 3). 

 Commercially important solanaceous vegetables, such 

as potatoes, tomatoes, eggplants and chillies, are subject to a 

variety of biotic and abiotic stressors that hinder their 

successful production (54). Untiring works were done in 

overcoming the limiting factors and one of the major and 

viable technologies being commercially exploited is grafting. 

The rootstocks are proven to be successful in overcoming 

problems such as root nematode, soil-borne diseases, drought 

and salinity. Salinity is a major limiting factor for the 

glycophytes will perform better under lesser salt 

concentrations (55). Most of the studies concentrate on the 

above-ground traits, such as shoot growth and yield 

parameters, in searching for sources of salinity tolerance. 

Recent works focus on the nutrient uptake efficiency of roots 

based on their dynamics (56). Knowledge about the dynamics 

and architecture of the root system is very important for 

improving water efficiency with future limited water resources 

as it is based on the root traits (57). 

 Understanding the biology of the root system is 

essential for the efficient utilization of resources, as it is the key 

player in sustaining crop productivity, which is within the limits 

of various biotic and abiotic factors. In recent decades, 

extensive work has been done in exploring the RSA of crops 

and being used in the breeding programme. But the work on 

the RSA of the horticulture crops is comparatively meagre, 

especially in India. It becomes crucial to study the root 

characteristics to exploit them to the maximum extent in 

breeding programs aiming at resource acquisition and the 

efficient trade-off between the rootstock and scion.  

 The scope of vegetable grafting will be extended by the 

chances of crop improvement through rootstock breeding. 

Correlation studies in response to salinity will help in 

developing ‘Root ideotypes’, which can be a criterion for the 

selection of comparatively more efficient rootstocks in the 

seedling stage itself, reducing the time taken for the breeding 

program.  

 

Conclusion   

This article on the RSA of solanaceous vegetables revealed 

that roots are essential for increasing crop yield and for 

comprehending the intricate interactions between 

environmental and genetic variables that shape root 

characteristics. This exploration of RSA holds immense 

significance, particularly in the context of plant breeding and 

agricultural practices. The challenges associated with 

phenotyping root traits in the field have led to the 

development of alternative approaches involving controlled 

cultivation conditions and advanced imaging techniques. 

These methods, facilitated by innovative software tools and 

standardized data formats, offer avenues for comprehensive 

root trait analysis, aiding in the selection of desirable traits for 

breeding programs. The choice of plant cultivation methods, 

whether in controlled environments or field conditions, 

significantly impacts the accuracy and relevance of root 

imaging and subsequent analysis. Each method presents 

unique advantages and limitations, emphasizing the 

importance of selecting an approach aligned with the specific 

goals of the study, whether it is useful for understanding 

fundamental root developmental processes or conducting 

high-throughput trait selection for breeding purposes. As 

Solanaceous vegetables play a crucial role in global 

agriculture and food security, understanding and optimizing 

their root systems is fundamental for improving crop 

productivity, resilience to environmental stresses and 

resource utilization efficiency. The collective efforts in 

exploring and deciphering the complexities of RSA in these 

plants pave the way for enhanced crop management 

practices and the development of resilient varieties tailored 

to meet the challenges of a changing environment. 

Continued research, collaboration and innovation in the 

realm of root system studies will be pivotal in unlocking the 

full potential of Solanaceous vegetables, ensuring 

sustainable agricultural practices and addressing the 

evolving demands of a growing global population. 
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