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Abstract   

Orthotospoviruses (OV) have emerged as a significant agricultural threat in 

India, posing a severe risk to critical crops, including tomato, chilli, 

watermelon and groundnut. This review explores the rising incidence of OV, 

including Groundnut Bud Necrosis Orthotospovirus (GBNV), Watermelon Bud 

Necrosis Orthotospovirus (WBNV), Capsicum Chlorosis Orthotospovirus (CaCV), 

Peanut Yellow Spot Orthotospovirus (PYSV), Iris yellow spot Orthotospovirus 

(IYSV) and Tomato Spotted Wilt Orthotospovirus (TSWV), along with the 

challenges in their management. These viruses have led to severe yield losses, 

sometimes causing complete crop failure due to their wide host range and the 

polyphagous nature of thrips. This further complicates control efforts by 

facilitating rapid spread across diverse crops and regions. The review 

highlights the multifaceted challenges in managing OV and thrips, including 

the lack of durable host resistance, limited diagnostic capabilities, and 

difficulties in controlling thrips populations. Current management strategies, 

including cultural practices, chemical control, biological control and resistant 

genotype development, have shown limited efficacy in providing long-term 

solutions. Recent advancements in biotechnological approaches, such as RNA 

interference, are discussed as promising pathways for improved virus 

management. The review underscores the need for genome editing 

techniques, such as CRISPR/Cas9, which offer the capacity to develop virus-

resistant plants by targeting essential viral or vector genes to disrupt 

transmission cycles. Additionally, using nanoparticles for targeted delivery of 

antiviral compounds and novel detection tools presents another innovative 

solution to effectively mitigate the impact of OV on Indian agriculture. 
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Introduction   

OV belongs to the genus Orthotospovirus, the family Tospoviridae, 

order Bunyavirales. The Genome consists of a linear negative sense ssRNA 

(17.2 kb) made up of three RNA segments viz., Large (L), Medium (M) and 

Small (S) RNA with five ORFs (1). OV is not seed-borne; instead, it is primarily 
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transmitted through thrips from other crops or weeds and 

is secondarily transmitted by infected fields (2). Over 20 

different OVs have been reported globally (3). In India, six 

OV have been identified, including Watermelon Bud 

Necrosis Orthotospovirus (WBNV), Capsicum Chlorosis 

Orthotospovirus (CaCV), Iris yellow spot Orthotospovirus 

(IYSV), Peanut Yellow Spot Orthotospovirus (PYSV), 

Groundnut Bud Necrosis Orthotospovirus (GBNV), and 

Tomato Spotted Wilt Orthotospovirus (TSWV). OV can 

potentially cause yield losses of up to 100% depending on 

the crop's developmental stage and the time of year (4). 

The incidence of the disease in host plants largely depends 

on thrips acquiring the virus from other infected crops or 

weed hosts, following a primarily monocyclic pattern (5). 

The emergence of tospoviruses as critical pathogens has 

posed significant challenges to cultivating field and 

horticultural crops. They are increasingly recognized as a 

major constraint on crop production in India (6). In the 

Indian subcontinent, these viruses have a significant 

economic impact and most of the research has been 

concentrated on them. They also pose a severe threat in 

neighbouring countries such as Bangladesh, Pakistan, and 

Sri Lanka (7). In India, tomato and chilli are the two most 

crucial vegetable crops severely impacted by tospoviruses. 

These viral infections can lead to complete crop failure, 

causing significant economic losses and social distress. 

While GBNV and WBNV are well-known threats, the 

emergence of CaCV presents a new challenge to the 

country's vegetable production (8). 

Historical context and significance 

The history of tospoviruses began in 1919 with the first 

documentation of tomato spotted wilt disease in Australia. 

By 1927, it was reported that thrips were responsible for 

transmitting the disease and in 1930, the causal agent was 

identified as TSWV (9). In India, from the 1960s onwards, 

symptoms resembling those caused by tospoviruses have 

been documented on various crops, including black gram, 

brinjal, chilli, cowpea, groundnut or peanut, mungbean, 

pea, potato, soybean and tomato (10-12). Before 1990, 

Tospovirus was considered a monotypic genus, with TSWV 

as its only species. Consequently, early reports of tospovirus

-like diseases in India were assumed to be caused by TSWV. 

However, in 1992, serological studies suggested that the 

bud necrosis disease in groundnuts was caused by a 

different tospovirus, which was subsequently named GBNV 

(13). This virus was later confirmed as a distinct species 

through nucleocapsid protein (N) gene sequencing (14). 

Another unique tospovirus, PYSV, was identified, causing 

yellow spots on groundnuts (15).  

 During 1991 and 1992, a new and unusual disease on 

watermelon, characterized by leaf mottling and shoot 

dieback, was observed in parts of southern India. This 

disease was linked to a tospovirus, WBNV (16,17). Recently 

emerging OVs in India are IYSV has been reported on onion 

and garlic (18,19); CaCV has been identified in tomato and 

chilli (20, 21), GBNV infecting periwinkle (10), TSWV has been 

reported in Chrysanthemum, snapdragon, marigold, tomato 

(22-24). This widespread occurrence across various plant 

families underscores the potential significance of OV in 

Indian agriculture. These findings highlight OV's ongoing 

evolution and spread within the country, emphasizing the 

need for continued vigilance and research. 

Taxonomic Classification and Evolution 

The 2019 taxonomy report by the International Committee 
on Taxonomy of Viruses (ICTV) reclassified these viruses 

under the family Tospoviridae and the genus 

Orthotospovirus. Within the Tospoviridae family are five 

genera, with Orthotospovirus being the sole genus 

containing plant-infecting viruses. The genus 

Orthotospovirus is characterized by TSWV, which has a 

global distribution and a vast host range encompassing 

over 900 plant species across 90 families, including crop 

and ornamental plants (25). ICTV has reported and 

accepted approximately 30 different OVs as distinct 

species. They are divided into seven to nine serogroups 

based on serology (26).  

Orthotospoviruses: A Growing Threat to Global Agriculture  

OVs have emerged as significant threats to producing 
essential vegetables, legumes, and ornamental crops 

worldwide, causing substantial yield losses and 

diminishing crop quality (27). Several criteria are 

employed to distinguish between different species within 

the genus Orthotospovirus, including the amino acid 

identity of the N protein sequence, vector specificity and 

plant host range (28). 

Major Orthotospovirus and Their Impact 

Orthotospoviral diseases in India mainly involve diseases 

of vegetables, fruits, legumes and ornamental plants, 

including crops of Solanaceae, Cucurbitaceae, Asteraceae, 

and Fabaceae. PBNV have been reported on Leguminous 

and Solanaceous crops, while WBNV is predominant in 

cucurbitaceous crops, and CaCV is reported mainly on 

solanaceous crops (29). The host range of OV has 

expanded from crops and including weeds such as 

Ageratum conyzoides, which can serve as a reservoir for 

these viruses (30) and woody plants like mulberry and kiwi 

have also been reported as hosts in regions across Asia. 

However, this is more prominent in China (14).  

 The type species TSWV has an extensive host range, 

infecting over 1000 plant species from about 80 families of 

monocotyledons and dicotyledons, and it is ranked among 

the top 10 economically essential plant viruses globally 

(31). The significant economic yield losses are caused by 

TSWV, which infects groundnuts, pepper, and tomatoes 

globally and GBNV, which affects tomatoes and peanuts in 

Southeast Asia (32). It also exhibits a broad host range, 

affecting economically significant plants such as tomato, 

potato, tobacco, peanut, pepper, lettuce, papaya and 

ornamentals like Chrysanthemum, begonia, ageratum and 

impatiens (33).  

Genomic Structure and Function 

OV contains 5% nucleic acid, 5% carbohydrate, 20% lipid 

and 70% protein. It has a unique quasi-spherical particle of 

80-120 nm diameter (34). The Genome consists of a linear 

negative sense ssRNA (17.2 kb) made up of three RNA 

segments viz., Large (L), Medium (M) and Small (S) RNA 
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with five ORFs. The S and M segments are ambisense, 

whereas the L is a negative sense RNA. This tripartite 

structure plays a crucial role in the replication and 

movement of viruses within host plants (35).  

 The L RNA (~8.9kb) segment encodes the RNA-

dependent RNA polymerase (RdRp) (331k) in the viral 

complementary (vc) RNA strand (36). The M RNA (~4.8kb) 

segment encodes two proteins, viz., movement protein 

(NSm) on the viral (v) RNA strand and glycoproteins (Gn and 

Gc) on the vcRNA strand, respectively. The movement 

protein (NSm), which was essential for the movement of 

the virus from cell to cell and the glycoproteins (Gn and Gc) 

present as spikes on the surface of the envelope membrane 

required for virus acquisition and transmission by thrips 

vectors (37). The S RNA (~2.9kb) segment encodes two 

proteins, viz., nonstructural protein (NSs) on the vRNA 

strand and nucleocapsid protein (N) on the vcRNA strand, 

respectively. The nonstructural protein (NSs) functions as 

an RNA silencing suppressor and nucleocapsid protein (N) 

essential for the formation of ribonucleoprotein complexes 

(RNPs), which facilitate the replication and transcription of 

viral Genome (38). Coding regions of M and S segments were 

separated by an intergenic region (IR), which was rich in 

adenine and uracil and it was involved in the formation of 

a stable secondary stem-loop/ hairpin-like structure (39) 

(Fig. 1).   

Epidemiology 

The presence of thrips vector, virus inoculum, and host 

plants influences tospoviruses epidemiology. The ability of 

thrips vectors to multiply on weed hosts is essential, as 

infected weeds can serve as a "green bridge" for virus 

survival. Disease spread in annual crops typically occurs 

through primary transmission from external sources, with 

limited secondary spread within the crop. Weeds are crucial 

as infection reservoirs, with species varying across climatic 

zones (40). The study on temporal and spatial patterns of OV 

spread in lettuce and pepper plantings suggests 

predominantly monocyclic spread with limited polycyclic 

spread, which indicates factors such as wind direction, 

barriers, and proximity to virus sources influence the 

spread. In some areas of the southeastern United States, 

studies have explored the potential role of pine pollen in 

affecting the ovipositional behaviour of  Frankliniella 

occidentalis and its subsequent impact on vector population 

growth and TSWV transmission (37). In Kenya, 29 weed 

species were identified as hosts of tospoviruses. They also 

reported Amaranthus hybridus, Solanum nigrum, Tagetes 

minuta, and Datura stramonium were highly susceptible to 

tospoviruses and supported the reproduction of  

Frankliniella spp. (41). 

Tospoviruses and thrips vectors 

Thrips exclusively transmit tospoviruses in a persistent 

circulative and propagative manner. A unique characteristic 

of the thrips-tospovirus interaction is that only adult thrips, 

which acquire the virus during their first larval stage, can 

transmit the virus (Fig. 2). The virus replicates in the insect's 

salivary glands, midgut epithelium and muscle cells 

allowing the thrips to transmit the virus throughout its 

lifespan (42). 

 Among the thrips diversity in the world, India 

recorded 12%. Out of 16 thrips species identified as vectors 

of tospoviruses globally, only six have been reported as 

vectors of tospoviruses in India, viz., Ceratothripoides 

claratris, Frankliniella schultzei, F. occidentalis, Scirtothrips 

dorsalis, Thrips palm and Thrips tabaci (Table 1). Due to its 

polyphagous nature, thrips is one of the most destructive 

pests in groundnut, tomato, chilli, onion, cucumber, 

watermelon, Chrysanthemum, brinjal, cotton and tobacco, 

causing considerable yield losses of 90% (11). This 

comprehensive understanding of thrips vectors and their 

relationships with tospoviruses is essential for developing 

effective management strategies in Indian agriculture.  

Reassortment in Orthotospoviruses: Challenges in 

Detection and Identification 

OV shows high genetic variability and frequent 

reassortment, exchanging genomic RNAs between isolates 

or species. This process can alter viral properties, including 

host range and vector transmissibility. The polyphagous 

nature of thrips vectors and continued virus proliferation 

suggest an increasing probability of mixed infections and 

reassortments. Accurate identification of reassortants is 

crucial for effective disease management, regulation and 

monitoring of Tospovirus spread (38, 43). The emergence of 

reassortant viruses like GRSV in Florida demonstrates the 

real-world impact of this phenomenon (44).  

Fig. 1. Genome of Orthotospovirus  Fig. 2. Transmission cycle of Tospoviruses by Thrips  
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 Detection methods relying solely on the N protein, 

located on S RNA, failed to identify reassortants, 

potentially leading to misdiagnosis and management 

issues (28). Genomic analysis of 67 sequences from 22 

Orthotospovirus species revealed that reassortment and 

recombination events can significantly involve in genetic 

exchanges in S, M and L segments and may lead to 

improved virus movement, evasion of plant defences, and 

enhanced replication, posing challenges for accurate 

detection and identification (45). 

Major Orthotospovirus Diseases Challenging Indian 

Agriculture 

Capsicum chlorosis Orthotospovirus (CaCV) 

CaCV was first reported on tomatoes in northern India and 

chilli in southern India (46). It is transmitted by several 

thrips species, including C. claratris, F. schultzei, 

Microcephalothrips abdominalis and T. palmi (47). The virus 

has been reported to infect various crops across different 

countries, including pepper, tomato, peanut, orchid, calla 

lily and wax flower (48). CaCV had expanded its host range, 

including amaranthus and peanut, producing symptoms 

similar to GBNV, making field differentiation challenging 

(49). CaCV significantly impacts crop production in India 

and affects chilli, tomato, groundnut and ornamentals 

with an incidence of 60% respectively (50).  

 CaCV causes various symptoms in chilli, such as leaf 

chlorosis, deformation and fruit distortion. In tomato viz., 

leaf spots, ringspots and fruit discolouration. In groundnut 

viz., leaf spots, stunting and necrosis (51). Advanced 

detection methods have been developed, such as duplex 

and multiplex RT-PCR assays for identifying CaCV in mixed 

infections and label-free immunosensors more sensitive 

than DAC-ELISA (46, 52). 

Watermelon bud necrosis Orthotospovirus (WBNV) 

WBNV belongs to serogroup-IV and was first observed 

causing bud necrosis disease on watermelon in India 

during 1991-1992. It has been characterized by necrosis of 

buds, petioles, leaves, necrotic streaks on vines, 

concentric rings on fruits and dieback. They caused 

significant yield losses of up to 100%, forcing farmers to 

withdraw watermelon cultivation in some parts of 

Southern India (53). T. palmi has been identified as a 

suspected vector for WBNV. Initially affecting watermelon 

and cucurbits, WBNV has spread to other crops across 

northern, southern and western states of India due to 

climate changes, diverse cropping patterns and thrips. 

  Recent studies have also identified WBNV in chilli, 

Chrysanthemum, tomato, bitter gourd, cucumber, 

pumpkin, ridge gourd and several weed species (45).  

Peanut yellow spot Orthotospovirus (PYSV) 

PYSV is a significant tospovirus in India, which causes 
yellow spots followed by necrosis on groundnut leaves. 

PYSV differs from other tospoviruses based on its 

transmission, host range, and serology. Its incidence 

exceeds 90% in southern India. Sequence analysis of PYSV 

confirms it as a unique species within the Tospovirus 

genus based on S RNA. Among the thrips species, S. 

dorsalis has been identified as a vector for PYSV (54). 

Groundnut bud necrosis Orthotospovirus (GBNV) 

Bud necrosis disease was first identified in India in 1964 

and was initially attributed to TSWV but later reclassified 

as GBNV in 1992 based on serology and host range (3). 

Orthotospovirus infections are prevalent in Tamil Nadu, 

Karnataka, Maharashtra and Andhra Pradesh. GBNV affects 

various vegetables in India, including tomato, potato, 

chilli, groundnut and watermelon. It is efficiently 

transmitted by several thrips species, including F. 

schultzei, S. dorsalis, T. palmi, T. tabaci and F. occidentalis, 

which serve as vectors (55). GBNV poses a severe threat to 

tomato production, potentially causing up to 100% yield 

loss, with the plant being most susceptible during 

flowering and fruit production (56).  

 GBNV typically causes symptoms such as necrotic 

rings, chlorosis, mottling, bud drying, ringspot on fruits, 

stem necrosis and stunted growth across various hosts 

(10). In a recent study, researchers developed a novel 

spectral sensor-based device for real-time detection and 

severity estimation of GBNV in tomato plants. Their 

approach combined spectral analysis with machine 

learning, resulting in a handheld device capable of 

accurately predicting disease severity at various growth 

stages, even before visible symptoms appear (57). 

Iris yellow spot Orthotospovirus (IYSV) 

In India, IYSV was first reported on onion in Maharashtra, 

Madhya Pradesh, Uttar Pradesh, Karnataka and Gujarat (3). 

In 2018, Luminex xMAP-based microsphere immunoassays 

for specific detection of IYSV were developed due to their 

severity (58). Recent studies revealed that IYSV has been 

transmitted by T. tabaci and emerged as a significant threat 

to onion cultivation in Tamil Nadu. Surveys conducted from 

2021 to 2023 revealed disease incidence of 53-73% across 

major onion-growing areas. Among the cultivars used in 

Table 1. Thrips species transmitting Orthotospoviruses in India 

Thrips Species Distribution Transmission Economic impact Reference 

T. palmi Northern and Southern regions 
GBNV, WBNV, 

CaCV, PYSV 
90% yield loss in groundnut, 

watermelon (2, 79-82) 

S. dorsalis Northern, central and southern regions GBNV, PYSV 
92% yield loss in chilli, 

tomato, gerbera (79, 82-84) 

T. tabaci Southern regions IYSV, GBNV 60% yield loss in onion (83, 85) 

F. schultzei Widespread across all states of India GBNV, TSWV 
Severe yield loss in tomato, 

groundnut, chilli, 
chrysanthemum 

  

(79, 82, 83, 86) 

F. occidentalis Southern regions TSWV 
70% yield loss in 
chrysanthemum (11, 87, 88) 

C. claratris Delhi, Maharashtra, Orissa, Tamil Nadu CaCV Crop losses not estimated (3, 11) 
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Tamil Nadu, onion (cv. Co 5) is most susceptible to IYSV, 

with bulb yield losses reaching up to 60% due to thrip 

infestations. IYSV is characterized by symptoms viz., straw 

yellow-coloured diamond-shaped chlorotic lesions on 

leaves and scapes, necrosis, spindle-shaped chlorotic 

concentric rings, yellow stripes and reduced bulb size. Apart 

from onions, IYSV affects Chrysanthemum and other allium 

crops, including garlic, chives, leeks and ornamental 

species. They can also persist in weed hosts like 

chenopodium, wild lettuce and amaranthus (49). 

Tomato Spotted Wilt Orthotospovirus (TSWV) 

In India, TSWV has emerged as a serious threat to various 

crops, it was first detected in Chrysanthemum, followed by 

snapdragon, marigold and tomato. Tomato crops had 

recorded the highest disease incidence (45%) of TSWV in 

Tamil Nadu (47). In India, TSWV caused economic yield loss 

of up to 90% in Chrysanthemum, tomato and other 

vegetable crops (59). TSWV transmitted particularly by F. 

occidentalis caused a yield loss of 90-100% in susceptible 

tomato cultivars when outbreaks occurred during critical 

growth stages (24). TSWV caused symptoms viz., circular 

necrotic ring spots with green centre on leaf lamina, 

necrosis on stem and flower buds, chlorotic ringspot on 

fruits, necrosis and die back of terminal shoot (60). TSWV 

has a wide host range it infects thousands of plant species 

across 85 families, contributing to its devastating impact 

and widespread distribution. Due to their broad host range 

and the polyphagous nature of thrips present significant 

challenges for the management of TSWV (39).   

 Recently, a rapid detection method combining RT-

RPA assay with lateral flow strips has been developed, 

offering quick and accurate diagnosis comparable to RT-

PCR (61). Various serological detection techniques are used 

to diagnose TSWV prevalence, viz., DAS-ELISA and Dot-

ELISA, which are widely used due to their efficiency and 

sensitivity (62).  

Management of Orthotospoviruses and thrips 

In India, management of OV includes understanding OV 

epidemiology and control strategies, which are essential in 

restraining the spread and impact of this virus (Fig. 2). 

However, controlling OV presents significant challenges due 

to several factors: wide host range, resistance to thrips and 

pesticides and scarcity of durable resistance in cultivated 

crops (7). 

Integrated cultural management 

Agricultural practices significantly impact thrips 

populations and tospovirus infections. Timely sowing of 

crops to avoid thrips activity effectively reduces virus 

incidence in various crops. In southern India, groundnut 

sown early with the onset of rains typically reduced GBNV 

infection. In northern India, maximum GBNV infection was 

observed in groundnut crops sown during May (63). In 

India, closer spacing in groundnut crops has been 

ineffective under field conditions. Higher plant density 

compensated for yield losses due to bud necrosis disease. 

Removing infected plants earlier than the spread of the 

virus has been shown to reduce virus incidence and crop 

loss. Intercropping also significantly reduced GBNV 

incidence in groundnuts by planting maize, pearl millet, 

pigeon pea, sorghum and mungbean. In watermelon 

cultivation, border cropping with maize significantly 

reduced WBNV incidence and delayed initial infection by 

10 to 15 days (64). 

  Thrips are attracted to host plants through various 

cues, attraction can be disrupted using UV-reflective 

mulch. Additionally, combining reflective mulch with 

chemical treatments like Actigard has shown effectiveness 

in managing TSWV in tomato and pepper crops. 

Monitoring thrips populations often involves blue sticky 

traps, particularly effective for species like F. occidentalis. 

Using semiochemicals in conjunction with sticky traps 

effectively eradicates the thrips (65, 66). Recent studies 

have explored how black plastic mulch effectively reduced 

GBNV, TSWV incidence and the thrips population of 

tomatoes and peppers. In cucurbits, aluminum-surfaced 

plastic mulch is more effective in lowering WBNV incidence 

than black plastic mulch (67). 

Biological control  

Numerous studies have explored using natural enemies, 
predators, and entomopathogens to manage thrips 

populations transmitting tospoviruses. Parasitoids such as 

Ceranisus sp. and Thripobius sp., along with predatory 

bugs like Orius tantillus, showed varying efficacy against 

thrips. Orius tantillus consumed 166 thrips in its lifetime 

and was highly effective under field conditions against S. 

dorsalis (68). Entomopathogens, including nematodes and 

fungi, were also investigated as biocontrol agents. 

Nematode species from Steinernema, Heterorhabditis and 

Thripinema targeted soil-dwelling pupae. At the same 

time, fungal pathogens like Beauveria bassiana, 

Metarhizium anisopliae and Lecanicillium lecanii 

significantly reduced thrips populations, though their 

efficacy varied with environmental factors. Constraints in 

mass production and formulation limited their widespread 

use, but granular formulations of B. bassiana effectively 

controlled F. occidentalis in greenhouse conditions (69). 

 In managing tospoviruses using biological products, 

talc-based formulations of Pseudomonas fluorescens, 

combined with 3% neem oil, effectively managed TSWV by 

reducing thrips populations and viral incidence in tomato 

plants. Utilizing induced systemic resistance (ISR) and a 

natural biopesticide, this approach resulted in lower virus 

concentrations and better crop yields, offering a 

sustainable solution for managing the virus and its insect 

vector (70). Several studies showed the antiviral potential 

of plant extracts against plant viruses, extracts from 

Mirabilis jalapa, Prosopis chilensis, Azadirachta indica, and 

Vitex negundo significantly reduced TSWV, with M. jalapa 

achieving an 87.61% reduction (71). Additionally, M. jalapa 

exhibited the highest inhibitory activity against GBNV in 

cowpeas (72). In recent years, a study demonstrated that 

the culture filtrate of Ganoderma lucidum effectively 

managed GBNV in tomatoes and cowpeas by reducing 

virus multiplication and systemic movement, with 

squalene identified as a critical bioactive compound. 

However, further research was needed to understand its 

role in plant defence mechanisms (73). 
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Chemical control  

Management of thrips traditionally relied on various 

insecticides, including broad-spectrum insecticides viz., 

pyrethroids, organophosphates, carbamates and 

neonicotinoids, which disrupted thrips control by harming 

native species and natural enemies. In managing T. palmi 

populations in mungbean, imidacloprid provided the most 

satisfactory control of both the vector and GBNV incidence 

(74).  

 Spinosad, a reduced-risk insecticide, was 
compatible with natural enemies and effectively 

controlled thrips populations, while newer narrow-

spectrum insecticides such as pyridalyl and lufenuron 

were also used. However, the frequent use of these 

insecticides prompted the need for resistance 

management in thrips, requiring resistance monitoring 

and rotations among different chemical classes to address 

the issue effectively and combining insecticide rotation 

with other control methods, such as entomopathogenic 

organisms, successfully controlled thrips under 

greenhouse conditions. Acephate or Fipronil with neem oil 

at 10-day intervals from crop emergence to fruit formation 

effectively reduced thrips populations and WBNV-related 

losses (68, 75) (Fig. 4). 

Host-Resistant Genotypes  

Host resistance is a crucial strategy for managing viral 

diseases in agricultural systems, offering an 

environmentally friendly and economically viable 

alternative to chemical control. This approach reduces the 

need for insecticides and helps maintain ecological 

balance. In India, significant approaches have been made 

to identify and develop resistant genotypes against GBNV, 

CaCV, WBNV and TSWV. Particular emphasis has been 

placed on developing GBNV-resistant groundnut 

genotypes (76). However, further work is required to 

develop resistant genotypes for OV in various 

economically essential crops (3).  

 Recent research has employed conventional and 

molecular breeding techniques to create resistant varieties 

with reduced GBNV incidence and improved adaptation to 

Indian agro-climatic conditions. Screening of tomato, chilli 

and watermelon accessions has identified promising 

resistant genotypes. Some examples of resistant 

genotypes developed in India are presented (Table 2). 

RNA interference (RNAi) 

RNA interference (RNAi) offers a promising strategy for 

managing OV and their thrips vectors through gene 

silencing. However, overcoming the limitations of 

transgenic plants requires novel approaches, such as 

topical or exogenous application of RNAi triggers. Recent 

studies have demonstrated its potential for controlling 

various thrips species and tospoviruses through different 

delivery approaches (77, 78).  

 Developing these innovative approaches could 

enhance ortho-tospovirus management while promoting 

sustainable agriculture in India. The recent study on RNAi 

for managing orthotospovirus and thrips is presented 

(Table 3).  

 

Fig. 3. Orthotospovirus control strategies in India 

Fig. 4. Effect of Insecticide Spraying on Thrips Population Reduction  

Crop species Orthotospovirus Resistant/ tolerant genotypes References 

Groundnut GBNV ICGV 86699, ICGV 00351, TG -26 (89, 90) 

Tomato GBNV 
IIHR-2988,  IIHR-1940, IIHR-2901, PKM-1, PKM-2, PKM-3, VRG-17, VRG-95, 

IVRC-1 (91, 92) 

Chilli GBNV 
EC631810, IIHR4360, IIHR4577, IIHR4578, IIHR4582, IIHR4585, IIHR4587, 

IIHR4588 (93) 

Watermelon WBNV PI482334,  PI219691, DWM 210, BIL-53 and IIHR-19 (4, 94, 95) 

Table 2. Host-resistant genotypes developed against Orthotospoviruses 
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Conclusion and Future Perspectives 

In conclusion, addressing the increasing incidence of OV in 

India demands a multidisciplinary approach. Key 

strategies include the development of virus-resistant 

crops, enhanced understanding of virus-vector-host 

interactions and the integration of advanced molecular 

tools for diagnostics and surveillance. A combination of 

improved cultural practices, judicious chemical use and 

biotechnological innovations such as gene editing and 

RNA interference holds promise. Collaboration between 

researchers and farmers is crucial for transforming these 

scientific advancements into effective field practices, 

ensuring sustainable agricultural productivity in light of 

this emerging threat.  

 The increasing prevalence of OV in India presents 

significant agricultural challenges. However, emerging 

technologies offer promising avenues for better control 

and management strategies. Future efforts should focus 

on high-throughput techniques such as RNA-Seq and 

advanced mass spectrometry to identify differentially 

expressed genes, proteins and metabolites in response to 

Orthotospovirus infection in host plants and thrips 

vectors.  

 Combining transcriptomics, proteomics and 

metabolomics can provide critical insights into 

Orthotospovirus-thrips interactions tailored to India's 

diverse crop varieties and thrips populations.  

 Future research should prioritize identifying 

Orthotospovirus-responsive genes in thrips, potentially 

facilitating the development of vector-resistant crop 

varieties adapted to Indian agriculture. Additionally, with 

climate variability in India, studying environmental 

impacts on Orthotospovirus epidemiology is crucial, 

allowing for adaptive management strategies across 

different regions. Investigating native Indian predators and 

parasitoids of thrips can promote biological control, 

reducing dependency on chemical pesticides. The scope of 

Nanoparticles for targeted delivery of antiviral compounds 

or as novel detection tools presents another innovative 

solution. 

  Moreover, the absence of CRISPR/Cas9 research for 

Orthotospovirus management in India highlights an 

opportunity. Genome editing techniques, such as CRISPR/

Cas9, offer the potential for developing virus-resistant 

plants by targeting essential viral or vector genes to 

disrupt transmission cycles. These technologies can 

accelerate the development of virus-resistant crops suited 

to India's varied agro-climatic conditions. Integrating 

modern techniques with traditional agricultural practices 

can achieve sustainable long-term solutions to 

Orthotospovirus impacts. 
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Table 3. RNAi approaches used in managing ortho tospoviruses and thrips 

RNAi method Targeted region Target species Impact References 

hpRNA NSs 
CaCV 
GBNV Resistance against multiple viruses (96) 

Direct foliar application of NSs GBNV reductions in viral RNA levels and disease (97) 

hpRNA  RdRP GBNV Reduced virus accumulation (98) 

syn-tasiRNAs NSm and RdRP TSWV Highly effective and durable antiviral resistance (99) 

syn-tasiRNAs RdRP TSWV Silenced the target gene (100) 

  

Microinjection method 
Vacuolar ATPase - B 

synthesis F. occidentalis 
Reduction of target gene increases mortality, 

decreases fertility (101) 

Symbiont-mediated Alpha-tubulin F. occidentalis Higher mortality in the first instar stage (102) 

Oral delivery SNF7 and AQP T. tabaci High mortality of adults (103) 

Oral delivery 
Vacuolar ATPase - B 

synthesis T. palmi 
Reduction of target gene increases mortality, 

decreases fertility (104) 

Plasmid-mediated RNA 
interference (PM-RNAi). 

ACT, TUB, VATPase-B 
gene and SNF7 F. occidentalis 

Suppressed the target gene and high mortality 
rate (105) 
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