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Abstract  

Rice (Oryza sativa) is a staple food crucial for food security and economic 
stability, especially in developing countries. However, rice cultivation faces 

significant challenges, with rice blast disease, caused by the fungal pathogen 
Magnaporthe oryzae, being one of the most severe threats, potentially leading 
to yield losses of up to 30 %. This study aims to develop and apply regression 

models, including stepwise regression, multiple linear regression (MLR) and 
ARIMA (Autoregressive Integrated Moving Average), to predict the severity of 
rice blast disease based on weather parameters. Weekly data over 7 years 
(2017-2023) were collected from the Paddy Breeding Station at Tamil Nadu 
Agricultural University, Coimbatore, encompassing various weather factors 
such as temperature, relative humidity, rainfall and solar radiation. Data pre-

processing included handling missing values, detecting outliers and creating 
time-lagged variables. The study revealed distinct seasonal patterns in rice 
blast incidence, with peak occurrences observed from mid-November to late 

January. Among the regression models, the ARIMA model incorporating 
weather variables as external regressors demonstrated superior performance 
with an R-squared value of 0.92, compared to 0.55 for stepwise regression and 

0.57 for MLR. Accurate predictions of rice blast outbreaks could enable 
farmers and agricultural managers to implement timely and targeted disease 
management strategies, reducing dependence on broad-spectrum fungicides 

and minimizing crop losses. This study contributes to data-driven agriculture 
and disease management, potentially leading to more effective, economically 
viable and environmentally sustainable rice cultivation practices. 

Keywords   

Rice blast; Magnaporthe oryzae; Prediction; Stepwise regression; Multiple 
Linear Regression; ARIMA  

Introduction  

Rice (Oryza sativa) is a fundamental staple food for millions, playing a critical 

role in global food security by providing sustenance to over half of the world's 
population and serving as a primary calorie source for billions (1). Its 
cultivation is crucial not only for food security but also for the economic 

stability of many developing countries (2). Despite its importance, rice 
cultivation faces significant challenges, with diseases being a major threat. 
Among these, rice blast, caused by the fungal pathogen Magnaporthe oryzae, 
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is particularly, devastating; potentially resulting in yield 
losses of up to 30 % in susceptible varieties under optimal 

conditions (3). The severity and spread of rice blast are 
significantly influenced by environmental factors, 
particularly weather conditions such as temperature, 

humidity, rainfall and sunlight exposure (4). 

In India, the application of fungicides after disease 

onset is common but leads to economic losses and poor 
disease control. Efficient, economical and environmentally 

friendly management of rice blast can be achieved through 
prior knowledge of the infection process in relation to 
weather factors. To address these challenges, 

meteorological-based modeling for early forewarning of the 
disease, provides tools for predicting disease status, guiding 
farmers to take timely protection measures, which results in 

better disease management, resource savings and reduced 
fungicide use (5). Given the disease's seasonal nature and 
its strong correlation with weather patterns, utilizing 

meteorological data for predictive modeling of disease 
outbreaks holds considerable potential. Conventional 
disease management strategies, such as fungicides and 

resistant varieties, are often reactive and resource-
intensive. Recently, statistical and machine learning 
techniques have gained prominence in agricultural 

challenges, offering novel approaches for disease 
management and crop protection (6). 

Among these methodologies, regression analysis 
emerges as a powerful tool for understanding and 

forecasting complex biological phenomena based on 
multiple variables. This study focuses on developing and 
applying regression models, specifically stepwise 

regression, multiple linear regression (MLR) and ARIMA 
(Autoregressive Integrated Moving Average), to predict the 
severity of rice blast disease. Stepwise regression was 

selected for its ability to automatically identify the most 
significant weather variables affecting disease severity, 
simplifying the model while maintaining key predictors. 

MLR was chosen for its capacity to simultaneously assess 
the impact of multiple weather parameters on disease 
severity, providing a comprehensive view of the 

relationships between the independent variables. ARIMA 
was incorporated due to its strength in handling time series 
data, making it ideal for forecasting the disease based on 

historical patterns while incorporating weather variables as 
external regressors. By incorporating key weather 
parameters-such as minimum and maximum temperatures, 

relative humidity (morning and evening), rainfall, sunshine 
hours, wind speed, evaporation, solar radiation and leaf 
wetness-as independent variables, this research aims to 

construct a robust predictive model with disease severity as 
the dependent variable. The study utilizes weekly data from 
a single location, acknowledging the disease's seasonal 

occurrence. This approach aligns with previous studies that 
have successfully predicted plant diseases based on 
environmental factors (7, 8). 

The implications of this research are substantial. 

Accurate predictions of rice blast outbreaks could enable 
farmers and agricultural managers to implement timely and 
targeted disease management strategies, reducing 

dependence on broad-spectrum fungicides and minimizing 
crop losses. Additionally, in the context of climate change 

and increasing weather variability, such predictive tools are 
crucial for ensuring food security and agricultural 
sustainability (9). By integrating statistical rigor with 

practical application, this study aims to contribute to the 
expanding body of knowledge on data-driven agriculture 
and disease management, potentially leading to more 

effective, economically viable and environmentally 
sustainable rice cultivation practices, ultimately benefiting 
millions of farmers and consumers globally.  

Materials and Methods 

Study Area and Data Collection 

The study was conducted at Paddy Breeding Station (PBS), 
Tamil Nadu Agricultural University, Coimbatore, a region 

known for rice cultivation and periodic outbreaks of rice 
blast disease. Data were collected weekly over a period of 7 
years (from the year of 2017 to 2023), encompassing all 

three growing seasons and the weekly data comprised of 
per cent (%) disease incidence (PDI) due to blast attack. 

Weather Data Collection 

Weather parameters were recorded daily using an 
automated weather station (Yuktix Technologies, 

Bangalore, Karnataka) located within the study site.  The 
data collected, included the following weather variables - 
Maximum temperature (X1), Minimum temperature (X2), 

Relative Humidity (morning) (X3), Relative Humidity 
(evening) (X4), Wind Speed (X5), Evaporation (X6), Sunshine 
(X7), Solar radiation (X8), Rainfall (X9) and Leaf wetness (X10). 

Data were aggregated into weekly averages for analysis to 
align, with the disease assessment schedule. 

Assignment of score 

The standard scoring system provided by the International 
Rice Research Institute (IRRI), Philippines (Anonymous 

2002), was used to assess rice blast incidence. The scores 
range from 0 to 9 (Table 1, Fig. 1). The disease severity was 
calculated using % Disease Index (10). 

PDI =  Sum of all individual rating/Total number of leaf 

observed x maximum rating x 100 

Data Pre-processing 

Raw data were pre-processed using R software (version 

4.1.0, R Core Team, 2021) to handle missing values, detect 
outliers and create time-lagged variables. Missing values (<5 

% of the dataset) were imputed using the Miss Forest 
algorithm due to its ability to handle both continuous and 
categorical data while preserving complex relationships 

between variables (11). This non-parametric method is 
robust and has been shown to perform well in scenarios 
with small amounts of missing data. Outliers were identified 
using the Interquartile Range (IQR) method and were either 
corrected or removed based on field notes and expert 
consultation. Time-lagged variables were created for each 

weather parameter, considering lags of 1 to 4 weeks to 
account for the incubation period of rice blast disease. 
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Severity incidence and seasonal distribution pattern of 
rice blast 

Rice blast severity over the years was represented using a 
radial plot in R (version 4.3.1) packages: ggplot2, dplyr, 
scales, ggthemes. The severity grade was sorted into severe, 
high, moderate, less and no incidence categories. The 
ggplot2 package was used to create the radial bar plot, the 

data was mapped to aesthetic components using the aes 
function. Bars were created using geom_bar function and the 
plot was converted to a polar coordinate system using the 

coord_polar function. 

The seasonal plot was constructed to visualize the 

seasonal pattern of rice blast using function Matplotlib, 
Seaborn and Stat models in Google colab for analysis and 

visualization. The time series plot was constructed with R 
software using ggplot2 and dplyr in R. The data, comprising 
weekly rice blast incidence, were pre-processed to calculate 

weekly means and visualize seasonal trends using line plots. 
A LOESS regression line was added for smoothing and the 
overall mean incidence was highlighted with a horizontal 

line.  

Model Development 

Three types of regression models were developed and 

compared: 

Stepwise Regression 

Stepwise regression was performed using the 'step' function 
in R, with both forward and backward selection. The Akaike 

Information Criterion (AIC) was used to determine the 
optimal model (12). Stepwise regression is an automated 
method that adds or removes predictor variables based on 

their statistical significance in explaining the dependent 
variable (13). The significance of each predictor in the final 

model was assessed using p-values. The model fit was 
evaluated using R-squared and adjusted R-squared values. 

Finally, regression coefficients (βi's) were interpreted to 

understand the impact of each weather parameter on rice 
blast incidence. 

Multiple Linear Regression (MLR) 

MLR models were developed using the 'lm' function in R. 

The initial model included all weather variables and their 
time-lagged versions. Model assumptions (linearity, 
homoscedasticity, normality of residuals and absence of 

multicollinearity) were checked and addressed as necessary 
(14). 

  Y = β₀ + β₁X₁ + β₂X₂ + ... + βnX2 + ε 

Where: Y = Disease severity (dependent variable), X₁, X₂, ..., 

Xn = Weather parameters (independent variables), β₀, β₁, β₂, 

..., βn = Regression coefficients, ε = Error term  

ARIMA Model 

ARIMA models were developed using the 'auto.arima' 

function from the 'forecast' package in R (15). The function 
automatically selects the optimal ARIMA parameters (p, d, 

q) based on the AIC (16). Weather variables were 
incorporated as external regressors.  

ARIMA(p,d,q): Φ(B)(1-B)ᵈYt = θ(B)εt 

Where: B = Backshift operator, Φ(B) = Autoregressive 

operator of order p, (1-B)ᵈ = Differencing operator of order d, 

θ(B) = Moving average operator of order q, Yt = Observed 

value at time t, εt = Error term at time t. 

Model Validation and Comparison 

Models were validated using a k-fold cross-validation 
approach (k=5). The dataset was split into training (80 %) 

and testing (20 %) sets. Model performance was evaluated 
using the following metrics: Root Mean Square Error (RMSE), 
which measures the average magnitude of error and gives 

higher weight to larger errors; Mean Absolute Error (MAE), 
which calculates the average absolute differences between 
predicted and actual values, treating all errors equally; R-

squared (R²), which indicates the proportion of variance 
explained by the model and the Akaike Information 
Criterion (AIC), which assesses the model’s fit while 

penalizing for complexity to avoid overfitting. Additionally, 
residual diagnostics were performed to ensure model 
assumptions were met. 

Sensitivity Analysis 

Sensitivity analysis was conducted to assess the relative 

importance of each weather parameter in predicting 
disease severity. This was done using the Sobol method 
with the 'sensitivity' package in R (17), employing both local 

and global sensitivity analysis methods. 

Statistical Analysis 

All statistical analyses were performed using R software 

(version 4.1.0). Significance levels were set at α=0.05 for all 

tests. Graphical representations of results were created 

using the 'ggplot2' package (18). The flow chart was made 

Scale Infected leaf area 

0 There were no lesions seen 

1 Pinpoint sized small brown spots 

2 little roundish to slightly elongated 1-2 mm in diameter 

3 Similar to scale 2, but on upper leaves as well 

4 under 4 % 

5 4-10 % 

6 11-25 % 

7 26-50 % 

8 51-75 % 

9 above 75 % 

Table 1. Rice blast disease scale: 0-9. 

Fig. 1. Disease scale 0-9 for rice blast. 

0= There were no lesions seen; 1= Pin point sized small brown spots; 2= little 
roundish to slightly elongated 1 -2 mm in diameter; 3= similar to scale 2; but 

on upper leaves as well; 4= under 4 %; 5=4-10 %; 6=11-25 %; 7=26- 50 %; 8=51
-75 %; 9= above 75 % 
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to represent the stepwise process taken during the data 
analysis (Fig. 2). 

Results 

Blast severity occurrence over years 

The radial bar plot was generated to visualize the weekly 

occurrences of blast. Data was collected, processed and 
visualized using R and the ggplot2 package. The resulting 
plot clearly indicates the frequency of blasts per week, with 

colour coding representing different levels of occurrences-

darker shades indicated severe incidences, while lighter 
shades represent mild incidences. This method provides an 
effective way to identify patterns and trends in the data. The 

radial plot with weekly incidence of rice blast from 2017 to 
2021 revealed a distinct seasonal pattern. Peak incidence 
was observed during mid-November to late-January (SMW 

46 to 3), with severe levels of the disease. This period 
corresponds to the cooler months, when lower 
temperatures combined with higher relative humidity 

create favourable conditions for the fungal pathogen to 

Fig. 2. The flow chart representing the step in data analysis. 
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thrive. High incidence periods were noted in late-January to 
mid-February (SMW 4 to 8) and late-September to mid-

November (SMW 38 to 45), likely due to similar weather 
patterns with optimal moisture levels for disease 
development. Moderate incidence occurred during late-

June to mid-September (SMW 26 to 38) and late-February to 
early-March (SMW 8 to 9), when fluctuating weather 
conditions likely moderated disease spread. Very low 

incidence was recorded from mid-April to mid-June (SMW 
15 to 25) and there was no incidence from early-March to 
early-April (SMW 10 to 14), periods typically characterized by 

higher temperatures and lower humidity, which are less 
conducive to the growth of the pathogen. These findings 

suggest a strong seasonal influence on the occurrence of 
rice blast in Coimbatore (Fig. 3). 

Seasonal occurrence of rice blast over years 

A seasonal and time series plot created using data from 
January 2017 to December 2023 showed an overall 

increasing trend in weekly rice blast incidence. Seasonal 
fluctuations were evident, with peaks typically increasing at 
the beginning and end of each year (Fig. 4A) and a typical 

peak occurrence was found at end of each year as shown in 

High Incidence 

Moderate Incidence 

Severe Incidence 

Less incidence 

No incidence 

Fig. 3. Weekly occurrence of rice blast over years (2017-2021). 

Fig. 4. Seasonal pattern and time series plot of rice blast incidence.  
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time series plot (Fig. 4B). A LOESS regression smoothing line 
highlighted this positive trend in both plots, aiding in the 

interpretation of seasonal patterns (Fig. 4).  

Descriptive statistics 

The descriptive statistics of the dependent variable (rice 

blast incidence) and exogenous variable (weather 
parameters) were calculated and presented in Table 2 were 

self-explanatory. The data under consideration were highly 
heterogeneous in nature, with rice blast incidence varying 
from 0.3 to 31.3, leading to a high coefficient of variation 

(CV) and abnormality in data distribution as indicated by 
skewness and kurtosis values out of the normal range. 

Model Development and Performance 

Three regression models-Stepwise Regression, Multiple 
Linear Regression (MLR) and ARIMA-were developed to 

predict the severity of rice blast disease using the weather 
parameters as predictors. 

Stepwise Regression 

The stepwise regression model selected the following 
significant predictors: Minimum Temperature (X2), Relative 

Humidity (morning) (X3), Evaporation (X7) and Leaf Wetness 
(X10) given in Table 3. The model achieved an R-squared 
value of 0.55 and an adjusted R-squared value of 0.54 (Table 

6, Fig. 5). 

Multiple Linear Regression (MLR) 

The MLR model included all weather variables and their 

time-lagged versions. The highly significant and influencing 

predictors were Minimum Temperature (X2), Relative 
Humidity (morning) (X3), Evaporation (X7) and Leaf Wetness 

(X10) given in Table 4. The model assumptions were 
checked and addressed. The MLR model achieved an R-
squared value of 0.56 (Table 6, Fig. 6). 

ARIMA Model 

The ARIMA model with parameters (p=3, d=0, q=0) was 

selected based on the AIC. The model incorporated weather 
variables as external regressors. The performance metrics 
for the ARIMA model were given in Table 5, Fig. 7. 

Model Validation and Comparison 

The models were validated using a k-fold cross-validation 

approach (k=5). The performance metrics for each model 
were summarized below: 

Sensitivity Analysis of Weather Parameters on Rice Blast 
Severity 

Sensitivity analysis was conducted using the Sobol method 

to determine the relative importance of various weather 
parameters in predicting rice blast disease severity. The 
analysis considered ten weather parameters: maximum 

temperature (Max), minimum temperature (Min), relative 
humidity 1 (RH1), relative humidity 2 (RH2), rainfall (RF), 
wind speed (Wind), evaporation (EVP), sunshine hours (SS), 

solar radiation (SR) and leaf wetness (LW). Table 7 presents 
the first-order (S) and total (T) sensitivity indices for each 
parameter. The first-order indices represent the direct effect 

of each parameter on rice blast severity, while the total 
indices account for both direct effects and interactions with 
other parameters. Solar radiation (SR) emerged as the most 

Mean Std. Error Co-var Skewness Kurtosis Min Max 

Rice blast 7.343 0.437 0.779 1.773 3.993 0.3 31.3 

Max 30.691 0.159 0.068 -0.547 4.305 19.429 35.6 

Min 21.946 0.171 0.102 -0.632 -0.143 15.329 25.957 

RH1 86.211 0.305 0.046 -0.586 0.412 72.714 95.143 

RH2 64.631 0.589 0.119 0.371 0.071 50 89.714 

RF 2.438 0.341 1.831 2.962 10.069 0 26.714 

Wind 6.004 0.191 0.417 2.097 5.434 2.357 17.686 

EVP 4.593 0.099 0.281 0.171 -0.634 2.015 7.486 

SS 5.412 0.168 0.406 0.23 -0.999 2.043 10.171 

SR 333.306 4.729 0.186 0.598 -0.361 250.029 543.314 

LW 5.989 0.259 0.565 0.235 -1.303 0.728 11.942 

Table 2. Summary statistics of weather parameters on rice blast.  

Predictor 
Coefficient 

(β) 
Std. Error t-value p-value 

Intercept -17.36127 10.39884 -1.670 0.09690 

Min -0.56361 0.17882 -3.152 0.00193 

RH1 0.45830 0.09581 4.784 3.78e-06 

EVP -0.99361 0.25072 -3.963 0.00011 

LW 0.35504 0.12141 2.924 0.00394 

Table 3. Stepwise regression for weather parameters influencing rice 

blast severity. 

Predictor 
Coefficient 

(β) 
Standard 

Error t-value p-value 

Intercept -38.619330 14.818506 -2.606 0.01002 

Max 0.049216 0.189357 0.260 0.79527 

Min -0.516402 0.194661 -2.653 0.00879** 

RH1 0.608490 0.121703 5.000 1.49e-06*** 

RH2 0.047074 0.042518 1.107 0.26989 

RF -0.036754 0.072839 -0.505 0.61454 

Wind 0.223811 0.170880 1.310 0.19216 

EVP -1.245951 0.319323 -3.902 0.00014*** 

SS 0.084454 0.190065 0.444 0.65739 

SR 0.006209 0.007081 0.877 0.38191 

LW 0.371669 0.126661 2.934 0.00383** 

Table 4. Multiple linear regression (MLR) for weather parameters influ-

encing rice blast severity. 
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Table 5. ARIMA model for weather parameters influencing rice blast severity.  

Model Parameters Estimation S.E. Z Value Probability Model fitting Box-Pierce Non-
correlation Test 

ARIMA 

(3,0,0) 

ar1 0.380489 0.090492 4.2047 <0.01 

Log 
likelihood 

-164.26 Original Residual 

ar2 -0.019755 0.096427 -0.2049 0.837 

ar3 0.299391 0.084551 3.5410 <0.01 

Intercept 7.094515 0.204825 34.6369 <0.01 

Max 1.966487 0.077294 25.4418 <0.01 

Min -0.565207 0.085101 -6.6416 <0.01 

AIC 358.52 
X2=118.17 
(p<0.01) 

X2= 0.015372 
(p=0.9013) 

RH1 0.886704 0.084097 10.5438 <0.01 

RH2 -0.233276 0.089903 -2.5947 0.009 

RF -0.262035 0.119394 -2.1947 0.02 

Wind 1.036248 0.125351 8.2668 <0.01 

EVP -3.004875 0.163512 -18.3770 <0.01 

SS -0.628195 0.136667 -4.5965 <0.01 

SR -1.307819 0.152168 -8.5946 <0.01 

LW -1.169051 0.149401 -7.8249 <0.01 

Table 6. Model validation.  

Model Equation RMSE MAE R2 AIC 

SMLR Y=-17.4-0.5X2+0.5X3-0.9X7+0.3X10 3.81 2.47 0.55 954.71 

MLR Y=-38.6 + 0.04X1 - 0.5X2 + 0.6X3 + 0.04X4 - 0.03X9 + 0.2X5 -1.2X6 + 0.08X7 + 0.01X8 + 0.37X10 3.75 2.45 0.57 961.66 

ARIMA Yt =7.09+0.38Yt-1-0.01 Yt-2+0.29 Yt-3+β1X1+β2X2+..+β10X10+ϵt 2.39 1.74 0.92 364.12 

Fig. 5. Scatter plot showing weekly incidence of rice blast through correlation with the significant predictors obtained from stepwis e regression. 
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Fig. 6. Scatter plot showing weekly incidence of rice blast through correlation with the significant predictors obtained from multipl e linear regression.  

Fig. 7. ARIMA Forecast (1,1,1) of rice blast over years. The black line indicates the training set and blue line indicated the future  forecast. 
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influential parameter, with a first-order index of 0.7803 and 
a total index of 1.0168, indicating that it accounts for 
approximately 78 % of the variance in rice blast severity 

directly and over 100 % when including interactions with 
other parameters. The second most important factor was 
relative humidity (RH2), with a first-order index of 0.1024 

and a total index of 0.0312. Other parameters, including 
rainfall, wind speed and temperature, showed relatively 
small effects. Evaporation, sunshine hours and leaf wetness 

demonstrated minimal influence on rice blast severity 
prediction in this model. Interestingly, some parameters 
(RF, Wind) showed higher importance in their total indices 

compared to their first-order indices, suggesting that these 
factors might play a role through interactions with other 
parameters rather than direct effects. These results suggest 

that monitoring and managing solar radiation and relative 
humidity could be key factors in predicting and controlling 
rice blast disease. However, it's important to note that these 

findings are based on the specific predictive model used in 
this study and further research may be needed to validate 
these results across different environmental conditions and 

rice varieties. 

Discussion 

This study investigated the relationship between weather 

parameters and Rice Blast disease severity in Coimbatore, 
India, over a 7 years period (2017-2023). The findings reveal 
significant seasonal patterns and highlight the complex 

interactions between climatic factors and disease 
incidence. 

Radial plot analysis showed a peak incidence of rice 
blast from mid-November to late January (SMW 46 to 3), 

consistent with the findings of other studies (8). Their study 
utilized an artificial intelligence-based model to predict rice 
blast disease in South Korea, incorporating climatic data 

such as air temperature, relative humidity and sunshine 
hours, known to influence plant disease seasonal patterns. 
This period corresponds to the winter months in South 

Korea, suggesting that climatic conditions during this time 
may be conducive to the proliferation of the rice blast 
fungus. Specifically, Magnaporthe oryzae thrives in 

moderate temperatures, typically between 20 °C and 28 °C, 
combined with high humidity levels, which are 
characteristic of this season. The cooler temperatures can 

slow the plant's metabolic processes, weakening its natural 

defences against pathogens, while high relative humidity 
provides the moisture necessary for spore germination and 

subsequent infection. Furthermore, leaf wetness, caused by 
dew formation during these months, facilitates fungal 
colonization, as it allows the spores to adhere to the leaf 

surface more easily. Reduced solar radiation during the 
winter months decreases the drying effect on plant 
surfaces, maintaining moisture levels that promote fungal 

growth. These environmental conditions create an optimal 
environment for the pathogen's development, leading to 
increased infection rates. Seasonal and time series plots 

indicate an overall increasing trend in weekly rice blast 
incidence over the study period, emphasizing the 
importance of considering seasonal variations in disease 

management strategies. Similarly, other studies highlight 
the complexity of seasonal patterns and their varying 
impacts on different agricultural diseases, underscoring the 

need for targeted interventions during peak risk periods 
(19). 

Regression models and sensitivity analysis identified 
several key weather parameters influencing rice blast 

severity. Solar radiation plays a critical role in influencing 
fungal growth and disease progression due to its direct 
effect on the biological and environmental conditions 

necessary for fungal survival. Solar radiation, particularly 
ultraviolet (UV) light, damages fungal cells by causing DNA 
mutations, impairing spore viability and hindering growth. 

These radiations also impact humidity and temperature, 
the two key factors that create an unfavourable 
environment for fungal pathogens. By reducing the relative 
humidity and increasing temperatures, solar radiation limits 
the moist conditions fungi need to thrive, thus significantly 
lowering disease severity. This aligns with the finding that 

solar radiation explains about 78 % of the variance in 
disease severity, as it directly disrupts fungal development. 
Solar radiation emerged as the most influential factor, 

accounting for approximately 78 % of the variance in 
disease severity (20). Other weather features such as 
average visibility, rainfall, sunshine hours, maximum wind 

speed and days of rain were identified as effective 
predictors for rice blast disease forecasting (21). Relative 
humidity, particularly evening relative humidity (RH2), was 

also identified as a significant predictor, supporting 
contemporary research on the importance of moisture in 
blast disease progression. Interestingly, the study found 

that minimum temperature had a negative relationship 
with disease severity in both stepwise and multiple linear 
regression models, indicating that lower temperatures 

generally favour blast disease development. This is 
consistent with the biological behaviour of Magnaporthe 
oryzae, the rice blast fungus, which thrives in cooler 

temperatures, typically between       20 °C and 28 °C. At lower 
temperatures, the plant's physiological processes slow 
down, reducing its natural defence mechanisms, such as 

the production of reactive oxygen species (ROS) and the 
activation of defence-related genes. Furthermore, cooler 
temperatures extend the leaf wetness duration, which is 

crucial for spore germination and successful fungal 
infection. Under these conditions, the fungus was able to 
proliferate more efficiently, producing more spores and 

Table 7. Sobol sensitivity indices for weather parameters influencing 

rice blast severity. 

Parameter First-order Index (S) Total Index (T) 

SR 0.7803 1.0168 

 RH2 0.0312 0.0312 

RH1 0.0534 -0.0092 

Min 0.0074 -0.0046 

Max 0.0055 0.0009 

LW 0.0030 -0.0017 

EVP 0.0015 -0.0009 

SS 0.0008 -0.0000 

RF -0.0032 0.0070 

Wind -0.0009 0.0025 
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infecting new plant tissue. Higher temperatures, by 
contrast, can inhibit fungal growth by accelerating 

evaporation, drying plant surfaces and reducing the 
humidity levels required for the pathogen to thrive. This 
temperature-dependent behaviour of the rice blast fungus 

has been widely observed in other studies, underscoring the 
importance of cooler, moist conditions in promoting the 
development of rice blast disease (22). Similarly, it was 

found that temperature and humidity significantly affect 
rice blast disease severity, with high severity associated 
with low temperature and high humidity (23). The scientist 

Ali developed a predictive model for lentil wilt severity 
based on meteorological variables, finding significant 
correlations between these variables and disease severity 

(24). Maximum temperature showed a negative correlation, 
while minimum temperature, rainfall and relative humidity 
exhibited positive correlations with lentil wilt severity. 

The ARIMA model outperformed the other models in 

capturing the relationship between weather parameters 
and disease severity due to its ability to account for both the 
temporal trends and seasonality in the data. By modelling 

these time-dependent patterns, ARIMA captured the 
complex dynamics between weather variables and disease 
progression more effectively, resulting in the highest R-

squared value (0.92) and lowest RMSE (2.39). This indicates 
that ARIMA was better at explaining variance and 
minimizing prediction errors compared to the other models. 

This suggests that time series approaches incorporating 
weather parameters as external regressors may be 
particularly effective for predicting rice blast severity. The 
strong performance of the ARIMA model indicates its 
potential utility in developing early warning systems for rice 
blast outbreaks, aligning with recent trends in agricultural 

forecasting. The forecasted Botrytis cinerea spores in 
Galicia and Northern Portugal using ARIMA models, 
combining meteorological and aerobiological parameters 

to provide useful tools for forecasting spore concentrations 
and reducing infection risks, forming the basis for a modern 
integrated grapevine pest-management strategy (25). 

The sensitivity analysis provided valuable insights 

into the relative importance of different weather 
parameters. The high influence of solar radiation and 
relative humidity suggests that these factors should be 

prioritized in monitoring and predictive efforts. However, 
the complex interactions between parameters, as indicated 
by the differences between first-order and total sensitivity 

indices for some variables (e.g., rainfall and wind speed), 
underscore the need for comprehensive models that 
account for these interactions, as emphasized in recent 

literature. 

While this study provides valuable insights, it has 

some limitations. The data were collected from a single 
location, which may limit the generalizability of the findings 
to other rice-growing regions. Future research should 
consider multi-location studies to validate these results 
across different agro-climatic zones. Additionally, the study 

focused on weather parameters, but other factors such as 
rice variety susceptibility, soil conditions and management 
practices also influence blast disease development (20, 26, 

27). Incorporating these factors into future models could 
further improve predictive accuracy and provide more 

comprehensive disease management recommendations.  

Conclusion 

This study demonstrates the significant influence of weather 
parameters, particularly solar radiation and relative 

humidity, in driving rice blast disease severity in Coimbatore. 
The ARIMA model’s superior performance in predicting 
disease outbreaks provides a valuable tool for timely and 

targeted disease management strategies, which could help 
minimize crop losses and improve resource efficiency. Future 
research should aim to incorporate additional factors like soil 

conditions and rice variety susceptibility and extend to multi-
location studies. Integrating machine learning techniques 
could further enhance predictive accuracy and bolster early 

warning systems for broader agricultural application. 
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