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Abstract   

Rice (Oryza sativa) is a staple food crucial for food security and economic 

stability, especially in developing countries. However, rice cultivation faces 

significant challenges, with rice blast disease, caused by the fungal pathogen 

Magnaporthe oryzae, being one of the most severe threats, potentially leading 

to yield losses of up to 30 %. This study aims to develop and apply regression 

models, including stepwise regression, multiple linear regression (MLR) and 

ARIMA (Autoregressive Integrated Moving Average), to predict the severity of 

rice blast disease based on weather parameters. Weekly data over 7 years 

(2017-2023) were collected from the Paddy Breeding Station at Tamil Nadu 

Agricultural University, Coimbatore, encompassing various weather factors 

such as temperature, relative humidity, rainfall and solar radiation. Data pre-

processing included handling missing values, detecting outliers and creating 

time-lagged variables. The study revealed distinct seasonal patterns in rice 

blast incidence, with peak occurrences observed from mid-November to late 

January. Among the regression models, the ARIMA model incorporating 

weather variables as external regressors demonstrated superior performance 

with an R-squared value of 0.92, compared to 0.55 for stepwise regression and 

0.57 for MLR. Accurate predictions of rice blast outbreaks could enable 

farmers and agricultural managers to implement timely and targeted disease 

management strategies, reducing dependence on broad-spectrum fungicides 

and minimizing crop losses. This study contributes to data-driven agriculture 

and disease management, potentially leading to more effective, economically 

viable and environmentally sustainable rice cultivation practices. 
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Rice blast; Magnaporthe oryzae; Prediction; Stepwise regression; Multiple 

Linear Regression; ARIMA  

 

Introduction   

Rice (Oryza sativa) is a fundamental staple food for millions, playing a critical 

role in global food security by providing sustenance to over half of the world's 

population and serving as a primary calorie source for billions (1). Its 

cultivation is crucial not only for food security but also for the economic 

stability of many developing countries (2). Despite its importance, rice 

cultivation faces significant challenges, with diseases being a major threat. 

Among these, rice blast, caused by the fungal pathogen Magnaporthe oryzae, 
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is particularly, devastating; potentially resulting in yield 

losses of up to 30 % in susceptible varieties under optimal 

conditions (3). The severity and spread of rice blast are 

significantly influenced by environmental factors, 

particularly weather conditions such as temperature, 

humidity, rainfall and sunlight exposure (4). 

 In India, the application of fungicides after disease 
onset is common but leads to economic losses and poor 

disease control. Efficient, economical and environmentally 

friendly management of rice blast can be achieved through 

prior knowledge of the infection process in relation to 

weather factors. To address these challenges, 

meteorological-based modeling for early forewarning of the 

disease, provides tools for predicting disease status, guiding 

farmers to take timely protection measures, which results in 

better disease management, resource savings and reduced 

fungicide use (5). Given the disease's seasonal nature and its 

strong correlation with weather patterns, utilizing 

meteorological data for predictive modeling of disease 

outbreaks holds considerable potential. Conventional 

disease management strategies, such as fungicides and 

resistant varieties, are often reactive and resource-intensive. 

Recently, statistical and machine learning techniques have 

gained prominence in agricultural challenges, offering novel 

approaches for disease management and crop protection 

(6). 

 Among these methodologies, regression analysis 

emerges as a powerful tool for understanding and 

forecasting complex biological phenomena based on 

multiple variables. This study focuses on developing and 

applying regression models, specifically stepwise 

regression, multiple linear regression (MLR) and ARIMA 

(Autoregressive Integrated Moving Average), to predict the 

severity of rice blast disease. Stepwise regression was 

selected for its ability to automatically identify the most 

significant weather variables affecting disease severity, 

simplifying the model while maintaining key predictors. 

MLR was chosen for its capacity to simultaneously assess 

the impact of multiple weather parameters on disease 

severity, providing a comprehensive view of the 

relationships between the independent variables. ARIMA 

was incorporated due to its strength in handling time series 

data, making it ideal for forecasting the disease based on 

historical patterns while incorporating weather variables as 

external regressors. By incorporating key weather 

parameters-such as minimum and maximum temperatures, 

relative humidity (morning and evening), rainfall, sunshine 

hours, wind speed, evaporation, solar radiation and leaf 

wetness-as independent variables, this research aims to 

construct a robust predictive model with disease severity as 

the dependent variable. The study utilizes weekly data from 

a single location, acknowledging the disease's seasonal 

occurrence. This approach aligns with previous studies that 

have successfully predicted plant diseases based on 

environmental factors (7, 8). 

 The implications of this research are substantial. 

Accurate predictions of rice blast outbreaks could enable 

farmers and agricultural managers to implement timely and 

targeted disease management strategies, reducing 

dependence on broad-spectrum fungicides and minimizing 

crop losses. Additionally, in the context of climate change 

and increasing weather variability, such predictive tools are 

crucial for ensuring food security and agricultural 

sustainability (9). By integrating statistical rigor with 

practical application, this study aims to contribute to the 

expanding body of knowledge on data-driven agriculture 

and disease management, potentially leading to more 

effective, economically viable and environmentally 

sustainable rice cultivation practices, ultimately benefiting 

millions of farmers and consumers globally.  

 

Materials and Methods 

Study Area and Data Collection 

The study was conducted at Paddy Breeding Station (PBS), 

Tamil Nadu Agricultural University, Coimbatore, a region 

known for rice cultivation and periodic outbreaks of rice 

blast disease. Data were collected weekly over a period of 7 

years (from the year of 2017 to 2023), encompassing all 

three growing seasons and the weekly data comprised of 

per cent (%) disease incidence (PDI) due to blast attack. 

Weather Data Collection 

Weather parameters were recorded daily using an 

automated weather station (Yuktix Technologies, 

Bangalore, Karnataka) located within the study site.  The 

data collected, included the following weather variables - 

Maximum temperature (X1), Minimum temperature (X2), 

Relative Humidity (morning) (X3), Relative Humidity 

(evening) (X4), Wind Speed (X5), Evaporation (X6), Sunshine 

(X7), Solar radiation (X8), Rainfall (X9) and Leaf wetness (X10). 

Data were aggregated into weekly averages for analysis to 

align, with the disease assessment schedule. 

Assignment of score 

The standard scoring system provided by the International 

Rice Research Institute (IRRI), Philippines (Anonymous 

2002), was used to assess rice blast incidence. The scores 

range from 0 to 9 (Table 1, Fig. 1). The disease severity was 

calculated using % Disease Index (10). 

PDI =  Sum of all individual rating/Total number of leaf 

observed x maximum rating x 100 

Data Pre-processing 

Raw data were pre-processed using R software (version 

4.1.0, R Core Team, 2021) to handle missing values, detect 

outliers and create time-lagged variables. Missing values (<5 

% of the dataset) were imputed using the Miss Forest 

algorithm due to its ability to handle both continuous and 

categorical data while preserving complex relationships 

between variables (11). This non-parametric method is 

robust and has been shown to perform well in scenarios 

with small amounts of missing data. Outliers were identified 

using the Interquartile Range (IQR) method and were either 

corrected or removed based on field notes and expert 

consultation. Time-lagged variables were created for each 

weather parameter, considering lags of 1 to 4 weeks to 

account for the incubation period of rice blast disease. 
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Severity incidence and seasonal distribution pattern of 

rice blast 

Rice blast severity over the years was represented using a 

radial plot in R (version 4.3.1) packages: ggplot2, dplyr, scales, 

ggthemes. The severity grade was sorted into severe, high, 

moderate, less and no incidence categories. The ggplot2 

package was used to create the radial bar plot, the data was 

mapped to aesthetic components using the aes function. 

Bars were created using geom_bar function and the plot was 

converted to a polar coordinate system using the 

coord_polar function. 

 The seasonal plot was constructed to visualize the 

seasonal pattern of rice blast using function Matplotlib, 

Seaborn and Stat models in Google colab for analysis and 

visualization. The time series plot was constructed with R 

software using ggplot2 and dplyr in R. The data, comprising 

weekly rice blast incidence, were pre-processed to calculate 

weekly means and visualize seasonal trends using line plots. 

A LOESS regression line was added for smoothing and the 

overall mean incidence was highlighted with a horizontal line.  

Model Development 

Three types of regression models were developed and 

compared: 

Stepwise Regression 

Stepwise regression was performed using the 'step' function 
in R, with both forward and backward selection. The Akaike 

Information Criterion (AIC) was used to determine the 

optimal model (12). Stepwise regression is an automated 

method that adds or removes predictor variables based on 

their statistical significance in explaining the dependent 

variable (13). The significance of each predictor in the final 

model was assessed using p-values. The model fit was 

evaluated using R-squared and adjusted R-squared values. 

Finally, regression coefficients (βi's) were interpreted to 

understand the impact of each weather parameter on rice 

blast incidence. 

Multiple Linear Regression (MLR) 

MLR models were developed using the 'lm' function in R. 

The initial model included all weather variables and their 

time-lagged versions. Model assumptions (linearity, 

homoscedasticity, normality of residuals and absence of 

multicollinearity) were checked and addressed as necessary 

(14). 

   Y = β₀ + β₁X₁ + β₂X₂ + ... + βnX2 + ε  

Where: Y = Disease severity (dependent variable), X₁, X₂, ..., 

Xn = Weather parameters (independent variables), β₀, β₁, β₂, 

..., βn = Regression coefficients, ε = Error term  

ARIMA Model 

ARIMA models were developed using the 'auto.arima' 

function from the 'forecast' package in R (15). The function 

automatically selects the optimal ARIMA parameters (p, d, 

q) based on the AIC (16). Weather variables were 

incorporated as external regressors.  

                           ARIMA(p,d,q): Φ(B)(1-B)ᵈYt = θ(B)εt  

 Where: B = Backshift operator, Φ(B) = Autoregressive 

operator of order p, (1-B)ᵈ = Differencing operator of order d, 

θ(B) = Moving average operator of order q, Yt = Observed 

value at time t, εt = Error term at time t. 

Model Validation and Comparison 

Models were validated using a k-fold cross-validation 

approach (k=5). The dataset was split into training (80 %) 

and testing (20 %) sets. Model performance was evaluated 

using the following metrics: Root Mean Square Error (RMSE), 

which measures the average magnitude of error and gives 

higher weight to larger errors; Mean Absolute Error (MAE), 

which calculates the average absolute differences between 

predicted and actual values, treating all errors equally; R-

squared (R²), which indicates the proportion of variance 

explained by the model and the Akaike Information 

Criterion (AIC), which assesses the model’s fit while 

penalizing for complexity to avoid overfitting. Additionally, 

residual diagnostics were performed to ensure model 

assumptions were met. 

Sensitivity Analysis 

Sensitivity analysis was conducted to assess the relative 

importance of each weather parameter in predicting 

disease severity. This was done using the Sobol method 

with the 'sensitivity' package in R (17), employing both local 

and global sensitivity analysis methods. 

Statistical Analysis 

All statistical analyses were performed using R software 

(version 4.1.0). Significance levels were set at α=0.05 for all 

tests. Graphical representations of results were created 

using the 'ggplot2' package (18). The flow chart was made 

to represent the stepwise process taken during the data 

analysis (Fig. 2). 

Scale Infected leaf area 

0 There were no lesions seen 

1 Pinpoint sized small brown spots 

2 little roundish to slightly elongated 1-2 mm in diameter 

3 Similar to scale 2, but on upper leaves as well 

4 under 4 % 

5 4-10 % 

6 11-25 % 

7 26-50 % 

8 51-75 % 

9 above 75 % 

Table 1. Rice blast disease scale: 0-9. 

Fig. 1. Disease scale 0-9 for rice blast. 

0= There were no lesions seen; 1= Pin point sized small brown spots; 2= little 
roundish to slightly elongated 1 -2 mm in diameter; 3= similar to scale 2; but 
on upper leaves as well; 4= under 4 %; 5=4-10 %; 6=11-25 %; 7=26- 50 %; 8=51
-75 %; 9= above 75 % 
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Results  

Blast severity occurrence over years 

The radial bar plot was generated to visualize the weekly 

occurrences of blast. Data was collected, processed and 

visualized using R and the ggplot2 package. The resulting 

plot clearly indicates the frequency of blasts per week, with 

colour coding representing different levels of occurrences-

darker shades indicated severe incidences, while lighter 

shades represent mild incidences. This method provides an 

effective way to identify patterns and trends in the data. The 

radial plot with weekly incidence of rice blast from 2017 to 

2021 revealed a distinct seasonal pattern. Peak incidence 

was observed during mid-November to late-January (SMW 

46 to 3), with severe levels of the disease. This period 

corresponds to the cooler months, when lower 

temperatures combined with higher relative humidity 

create favourable conditions for the fungal pathogen to 

thrive. High incidence periods were noted in late-January to 

mid-February (SMW 4 to 8) and late-September to mid-

November (SMW 38 to 45), likely due to similar weather 

patterns with optimal moisture levels for disease 

Fig. 2. The flow chart representing the step in data analysis.  
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development. Moderate incidence occurred during late-

June to mid-September (SMW 26 to 38) and late-February to 

early-March (SMW 8 to 9), when fluctuating weather 

conditions likely moderated disease spread. Very low 

incidence was recorded from mid-April to mid-June (SMW 

15 to 25) and there was no incidence from early-March to 

early-April (SMW 10 to 14), periods typically characterized by 

higher temperatures and lower humidity, which are less 

conducive to the growth of the pathogen. These findings 

suggest a strong seasonal influence on the occurrence of 

rice blast in Coimbatore (Fig. 3). 

Seasonal occurrence of rice blast over years 

A seasonal and time series plot created using data from 

January 2017 to December 2023 showed an overall 

increasing trend in weekly rice blast incidence. Seasonal 

fluctuations were evident, with peaks typically increasing at 

the beginning and end of each year (Fig. 4A) and a typical 

peak occurrence was found at end of each year as shown in 

time series plot (Fig. 4B). A LOESS regression smoothing line 

highlighted this positive trend in both plots, aiding in the 

interpretation of seasonal patterns (Fig. 4).  

 

 

High Incidence 

Moderate Incidence 

Severe Incidence 

Less incidence 

No incidence 

Fig. 3. Weekly occurrence of rice blast over years (2017-2021). 

 

Fig. 4. Seasonal pattern and time series plot of rice blast incidence. 
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Descriptive statistics 

The descriptive statistics of the dependent variable (rice 

blast incidence) and exogenous variable (weather 

parameters) were calculated and presented in Table 2 were 

self-explanatory. The data under consideration were highly 

heterogeneous in nature, with rice blast incidence varying 

from 0.3 to 31.3, leading to a high coefficient of variation 

(CV) and abnormality in data distribution as indicated by 

skewness and kurtosis values out of the normal range. 

Model Development and Performance 

Three regression models-Stepwise Regression, Multiple 

Linear Regression (MLR) and ARIMA-were developed to 

predict the severity of rice blast disease using the weather 

parameters as predictors. 

Stepwise Regression 

The stepwise regression model selected the following 

significant predictors: Minimum Temperature (X2), Relative 

Humidity (morning) (X3), Evaporation (X7) and Leaf Wetness 

(X10) given in Table 3. The model achieved an R-squared 

value of 0.55 and an adjusted R-squared value of 0.54 (Table 

6, Fig. 5). 

Multiple Linear Regression (MLR) 

The MLR model included all weather variables and their 

time-lagged versions. The highly significant and influencing 

predictors were Minimum Temperature (X2), Relative 

Humidity (morning) (X3), Evaporation (X7) and Leaf Wetness 

(X10) given in Table 4. The model assumptions were 

checked and addressed. The MLR model achieved an R-

squared value of 0.56 (Table 6, Fig. 6). 

ARIMA Model 

The ARIMA model with parameters (p=3, d=0, q=0) was 

selected based on the AIC. The model incorporated weather 

variables as external regressors. The performance metrics 

for the ARIMA model were given in Table 5, Fig. 7. 

Model Validation and Comparison 

The models were validated using a k-fold cross-validation 

approach (k=5). The performance metrics for each model 

were summarized below: 

Sensitivity Analysis of Weather Parameters on Rice Blast 

Severity 

Sensitivity analysis was conducted using the Sobol method 

to determine the relative importance of various weather 

parameters in predicting rice blast disease severity. The 

analysis considered ten weather parameters: maximum 

temperature (Max), minimum temperature (Min), relative 

humidity 1 (RH1), relative humidity 2 (RH2), rainfall (RF), 

wind speed (Wind), evaporation (EVP), sunshine hours (SS), 

solar radiation (SR) and leaf wetness (LW). Table 7 presents 

the first-order (S) and total (T) sensitivity indices for each 

parameter. The first-order indices represent the direct effect 

of each parameter on rice blast severity, while the total 

indices account for both direct effects and interactions with 

other parameters. Solar radiation (SR) emerged as the most 

influential parameter, with a first-order index of 0.7803 and 

a total index of 1.0168, indicating that it accounts for 

approximately 78 % of the variance in rice blast severity 

directly and over 100 % when including interactions with 

other parameters. The second most important factor was 

 Mean Std. Error Co-var Skewness Kurtosis Min Max 

Rice blast 7.343 0.437 0.779 1.773 3.993 0.3 31.3 

Max 30.691 0.159 0.068 -0.547 4.305 19.429 35.6 

Min 21.946 0.171 0.102 -0.632 -0.143 15.329 25.957 

RH1 86.211 0.305 0.046 -0.586 0.412 72.714 95.143 

RH2 64.631 0.589 0.119 0.371 0.071 50 89.714 

RF 2.438 0.341 1.831 2.962 10.069 0 26.714 

Wind 6.004 0.191 0.417 2.097 5.434 2.357 17.686 

EVP 4.593 0.099 0.281 0.171 -0.634 2.015 7.486 

SS 5.412 0.168 0.406 0.23 -0.999 2.043 10.171 

SR 333.306 4.729 0.186 0.598 -0.361 250.029 543.314 

LW 5.989 0.259 0.565 0.235 -1.303 0.728 11.942 

Table 2. Summary statistics of weather parameters on rice blast.  

Predictor 
Coefficient 

(β) 
Std. Error t-value p-value 

Intercept -17.36127 10.39884 -1.670 0.09690 

Min -0.56361 0.17882 -3.152 0.00193 

RH1 0.45830 0.09581 4.784 3.78e-06 

EVP -0.99361 0.25072 -3.963 0.00011 

LW 0.35504 0.12141 2.924 0.00394 

Table 3. Stepwise regression for weather parameters influencing rice blast 
severity. 

Predictor 
Coefficient 

(β) 
Standard 

Error t-value p-value 

Intercept -38.619330 14.818506 -2.606 0.01002 

Max 0.049216 0.189357 0.260 0.79527 

Min -0.516402 0.194661 -2.653 0.00879** 

RH1 0.608490 0.121703 5.000 1.49e-06*** 

RH2 0.047074 0.042518 1.107 0.26989 

RF -0.036754 0.072839 -0.505 0.61454 

Wind 0.223811 0.170880 1.310 0.19216 

EVP -1.245951 0.319323 -3.902 0.00014*** 

SS 0.084454 0.190065 0.444 0.65739 

SR 0.006209 0.007081 0.877 0.38191 

LW 0.371669 0.126661 2.934 0.00383** 

Table 4. Multiple linear regression (MLR) for weather parameters influencing 
rice blast severity. 
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Table 5. ARIMA model for weather parameters influencing rice blast severity. 

Model Parameters Estimation S.E. Z Value Probability Model fitting 
Box-Pierce Non-
correlation Test 

ARIMA 

(3,0,0) 

ar1 0.380489 0.090492 4.2047 <0.01 

Log 
likelihood -164.26 Original Residual 

ar2 -0.019755 0.096427 -0.2049 0.837 

ar3 0.299391 0.084551 3.5410 <0.01 

Intercept 7.094515 0.204825 34.6369 <0.01 

Max 1.966487 0.077294 25.4418 <0.01 

Min -0.565207 0.085101 -6.6416 <0.01 

AIC 358.52 
X2=118.17 
(p<0.01) 

X2= 0.015372 
(p=0.9013) 

RH1 0.886704 0.084097 10.5438 <0.01 

RH2 -0.233276 0.089903 -2.5947 0.009 

RF -0.262035 0.119394 -2.1947 0.02 

Wind 1.036248 0.125351 8.2668 <0.01 

EVP -3.004875 0.163512 -18.3770 <0.01 

SS -0.628195 0.136667 -4.5965 <0.01 

SR -1.307819 0.152168 -8.5946 <0.01 

LW -1.169051 0.149401 -7.8249 <0.01 

Table 6. Model validation. 

Model Equation RMSE MAE R2 AIC 

SMLR Y=-17.4-0.5X2+0.5X3-0.9X7+0.3X10 3.81 2.47 0.55 954.71 

MLR Y=-38.6 + 0.04X1 - 0.5X2 + 0.6X3 + 0.04X4 - 0.03X9 + 0.2X5 -1.2X6 + 0.08X7 + 0.01X8 + 0.37X10 3.75 2.45 0.57 961.66 

ARIMA Yt =7.09+0.38Yt-1-0.01 Yt-2+0.29 Yt-3+β1X1+β2X2+..+β10X10+ϵt 2.39 1.74 0.92 364.12 

Fig. 5. Scatter plot showing weekly incidence of rice blast through correlation with the significant predictors obtained from stepwise regression. 
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Fig. 6. Scatter plot showing weekly incidence of rice blast through correlation with the significant predictors obtained from multiple linear regression. 

Fig. 7. ARIMA Forecast (1,1,1) of rice blast over years. The black line indicates the training set and blue line indicated the future forecast. 
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relative humidity (RH2), with a first-order index of 0.1024 

and a total index of 0.0312. Other parameters, including 

rainfall, wind speed and temperature, showed relatively 

small effects. Evaporation, sunshine hours and leaf wetness 

demonstrated minimal influence on rice blast severity 

prediction in this model. Interestingly, some parameters 

(RF, Wind) showed higher importance in their total indices 

compared to their first-order indices, suggesting that these 

factors might play a role through interactions with other 

parameters rather than direct effects. These results suggest 

that monitoring and managing solar radiation and relative 

humidity could be key factors in predicting and controlling 

rice blast disease. However, it's important to note that these 

findings are based on the specific predictive model used in 

this study and further research may be needed to validate 

these results across different environmental conditions and 

rice varieties. 

 

Discussion 

This study investigated the relationship between weather 

parameters and Rice Blast disease severity in Coimbatore, 

India, over a 7 years period (2017-2023). The findings reveal 

significant seasonal patterns and highlight the complex 

interactions between climatic factors and disease incidence. 

 Radial plot analysis showed a peak incidence of rice 

blast from mid-November to late January (SMW 46 to 3), 

consistent with the findings of other studies (8). Their study 

utilized an artificial intelligence-based model to predict rice 

blast disease in South Korea, incorporating climatic data 

such as air temperature, relative humidity and sunshine 

hours, known to influence plant disease seasonal patterns. 

This period corresponds to the winter months in South 

Korea, suggesting that climatic conditions during this time 

may be conducive to the proliferation of the rice blast 

fungus. Specifically, Magnaporthe oryzae thrives in 

moderate temperatures, typically between 20 °C and 28 °C, 

combined with high humidity levels, which are 

characteristic of this season. The cooler temperatures can 

slow the plant's metabolic processes, weakening its natural 

defences against pathogens, while high relative humidity 

provides the moisture necessary for spore germination and 

subsequent infection. Furthermore, leaf wetness, caused by 

dew formation during these months, facilitates fungal 

colonization, as it allows the spores to adhere to the leaf 

surface more easily. Reduced solar radiation during the 

winter months decreases the drying effect on plant surfaces, 

maintaining moisture levels that promote fungal growth. 

These environmental conditions create an optimal 

environment for the pathogen's development, leading to 

increased infection rates. Seasonal and time series plots 

indicate an overall increasing trend in weekly rice blast 

incidence over the study period, emphasizing the 

importance of considering seasonal variations in disease 

management strategies. Similarly, other studies highlight 

the complexity of seasonal patterns and their varying 

impacts on different agricultural diseases, underscoring the 

need for targeted interventions during peak risk periods 

(19). 

 Regression models and sensitivity analysis identified 

several key weather parameters influencing rice blast 

severity. Solar radiation plays a critical role in influencing 

fungal growth and disease progression due to its direct 

effect on the biological and environmental conditions 

necessary for fungal survival. Solar radiation, particularly 

ultraviolet (UV) light, damages fungal cells by causing DNA 

mutations, impairing spore viability and hindering growth. 

These radiations also impact humidity and temperature, the 

two key factors that create an unfavourable environment 

for fungal pathogens. By reducing the relative humidity and 

increasing temperatures, solar radiation limits the moist 

conditions fungi need to thrive, thus significantly lowering 

disease severity. This aligns with the finding that solar 

radiation explains about 78 % of the variance in disease 

severity, as it directly disrupts fungal development. Solar 

radiation emerged as the most influential factor, accounting 

for approximately 78 % of the variance in disease severity 

(20). Other weather features such as average visibility, 

rainfall, sunshine hours, maximum wind speed and days of 

rain were identified as effective predictors for rice blast 

disease forecasting (21). Relative humidity, particularly 

evening relative humidity (RH2), was also identified as a 

significant predictor, supporting contemporary research on 

the importance of moisture in blast disease progression. 

Interestingly, the study found that minimum temperature 

had a negative relationship with disease severity in both 

stepwise and multiple linear regression models, indicating 

that lower temperatures generally favour blast disease 

development. This is consistent with the biological 

behaviour of Magnaporthe oryzae, the rice blast fungus, 

which thrives in cooler temperatures, typically between       

20 °C and 28 °C. At lower temperatures, the plant's 

physiological processes slow down, reducing its natural 

defence mechanisms, such as the production of reactive 

oxygen species (ROS) and the activation of defence-related 

genes. Furthermore, cooler temperatures extend the leaf 

wetness duration, which is crucial for spore germination 

and successful fungal infection. Under these conditions, the 

fungus was able to proliferate more efficiently, producing 

more spores and infecting new plant tissue. Higher 

temperatures, by contrast, can inhibit fungal growth by 

accelerating evaporation, drying plant surfaces and 

reducing the humidity levels required for the pathogen to 

thrive. This temperature-dependent behaviour of the rice 

blast fungus has been widely observed in other studies, 

underscoring the importance of cooler, moist conditions in 

Table 7. Sobol sensitivity indices for weather parameters influencing rice 
blast severity. 

Parameter First-order Index (S) Total Index (T) 

SR 0.7803 1.0168 

 RH2 0.0312 0.0312 

RH1 0.0534 -0.0092 

Min 0.0074 -0.0046 

Max 0.0055 0.0009 

LW 0.0030 -0.0017 

EVP 0.0015 -0.0009 

SS 0.0008 -0.0000 

RF -0.0032 0.0070 

Wind -0.0009 0.0025 
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promoting the development of rice blast disease (22). 

Similarly, it was found that temperature and humidity 

significantly affect rice blast disease severity, with high 

severity associated with low temperature and high humidity 

(23). The scientist Ali developed a predictive model for lentil 

wilt severity based on meteorological variables, finding 

significant correlations between these variables and disease 

severity (24). Maximum temperature showed a negative 

correlation, while minimum temperature, rainfall and 

relative humidity exhibited positive correlations with lentil 

wilt severity. 

 The ARIMA model outperformed the other models in 

capturing the relationship between weather parameters 

and disease severity due to its ability to account for both the 

temporal trends and seasonality in the data. By modelling 

these time-dependent patterns, ARIMA captured the 

complex dynamics between weather variables and disease 

progression more effectively, resulting in the highest R-

squared value (0.92) and lowest RMSE (2.39). This indicates 

that ARIMA was better at explaining variance and 

minimizing prediction errors compared to the other models. 

This suggests that time series approaches incorporating 

weather parameters as external regressors may be 

particularly effective for predicting rice blast severity. The 

strong performance of the ARIMA model indicates its 

potential utility in developing early warning systems for rice 

blast outbreaks, aligning with recent trends in agricultural 

forecasting. The forecasted Botrytis cinerea spores in Galicia 

and Northern Portugal using ARIMA models, combining 

meteorological and aerobiological parameters to provide 

useful tools for forecasting spore concentrations and 

reducing infection risks, forming the basis for a modern 

integrated grapevine pest-management strategy (25). 

 The sensitivity analysis provided valuable insights 

into the relative importance of different weather 

parameters. The high influence of solar radiation and 

relative humidity suggests that these factors should be 

prioritized in monitoring and predictive efforts. However, 

the complex interactions between parameters, as indicated 

by the differences between first-order and total sensitivity 

indices for some variables (e.g., rainfall and wind speed), 

underscore the need for comprehensive models that 

account for these interactions, as emphasized in recent 

literature. 

 While this study provides valuable insights, it has 
some limitations. The data were collected from a single 

location, which may limit the generalizability of the findings 

to other rice-growing regions. Future research should 

consider multi-location studies to validate these results 

across different agro-climatic zones. Additionally, the study 

focused on weather parameters, but other factors such as 

rice variety susceptibility, soil conditions and management 

practices also influence blast disease development (20, 26, 

27). Incorporating these factors into future models could 

further improve predictive accuracy and provide more 

comprehensive disease management recommendations.  

 

 

Conclusion 

This study demonstrates the significant influence of weather 

parameters, particularly solar radiation and relative humidity, 

in driving rice blast disease severity in Coimbatore. The ARIMA 

model’s superior performance in predicting disease 

outbreaks provides a valuable tool for timely and targeted 

disease management strategies, which could help minimize 

crop losses and improve resource efficiency. Future research 

should aim to incorporate additional factors like soil 

conditions and rice variety susceptibility and extend to multi-

location studies. Integrating machine learning techniques 

could further enhance predictive accuracy and bolster early 

warning systems for broader agricultural application. 
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