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Abstract  

An object-based image analysis (OBIA) approach provides a comprehensive 

method for delineating homogeneous segments based on spectral charac-

teristics, geometry, and spatial imagery structures. The present study utiliz-

es OBIA and machine learning (ML) techniques to map cashew plantations 

in Ariyalur district of Tamil Nadu, India. Sentinel-2 Multi-Spectral Instrument 

(MSI) imagery, acquired during the 2023 kharif season, was employed as the 

primary data source due to its high spatial and spectral resolution, suitable 

for detailed land cover mapping. The OBIA methodology involved multi-

resolution segmentation using eCognition software to delineate homogene-

ous image objects based on spectral, spatial, and contextual characteristics. 

Machine learning algorithms, including random forest (RF), support vector 

machine (SVM), and decision tree (DT), were evaluated to improve classifi-

cation accuracy. The SVM demonstrated the best superior performance, 

achieving an overall accuracy of 92.1% and a kappa coefficient of 0.85.  The 

results underscore the effectiveness of ML techniques in conjunction with 

OBIA for precise cashew plantation mapping while contributing to improved 

land use/land cover mapping, agricultural resource management, and sus-

tainable development within the region.   
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Introduction  

Cashew (Anacardium occidentale L.) is one of India's top foreign exchange-

earning perennial horticultural crops. In addition to generating valuable 

foreign exchange earnings of approximately Rs 4,000 crore annually, cash-

ews support the rural economy by giving 11.5 million people, particularly 

women, stable jobs in the agricultural and processing sectors. (Source: Di-

rectorate of Cashew and Cocoa Development). In Tamil Nadu, cashew plan-

tations are primarily located in Ariyalur, Cuddalore, Pudukkottai, and Si-

vagangai districts. Accurate crop area mapping is vital for supporting policy-

making, ensuring food security, and providing critical data for resource allo-

cation and agricultural planning. These maps assist in yield prediction, crop 

production statistics, crop rotation records, soil productivity, crop stress 

analysis, damage evaluation, and agricultural activity monitoring (1).  

 Remote sensing and geospatial technologies are essential for  

accurate crop area estimation, facilitated by high-frequency satellite images 
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and the development of advanced classification algo-

rithms. Over the last decade, researchers have conducted 

numerous studies to enhance the accuracy and efficiency 

of crop classification (2). 

 Pixel-based classification methods have shown limi-

tations in inaccurately mapping horticultural crops due to 

their significant spatial heterogeneity (3). Various studies 

indicate that traditional pixel-based classifiers do not use 

spatial information to classify imagery, making OBIA more 

efficient than pixel methods (4). Object-Based Image Anal-

ysis has proven effective for mango mapping, with studies 

indicating high classification accuracies. For instance, indi-

ces use achieved an overall accuracy of 89% in mango or-

chard mapping (5). While traditional visual interpretation 

techniques have been useful, advanced object-based clas-

sifiers have demonstrated promising results for classifying 

high-resolution data for natural resource mapping (6-8). 

Using Sentinel series data at a regional scale has improved 

crop species mapping, reducing errors in crop area estima-

tion and enhancing agricultural practices (9). Machine 

learning algorithms have emerged as a powerful tool for 

land cover analysis, enabling precise crop classification. 

Integrating ML techniques enhances understanding of en-

vironmental dynamics and supports sustainable resource 

management. Machine learning algorithms, such as SVMs 

and RFs, improve land use land cover (LULC) classification 

accuracy by analyzing satellite imagery to effectively iden-

tify and categorize different land cover types (10). The Sen-

tinel data used in crop discrimination and crop area esti-

mation produced an accuracy of 4 to 5 percent greater 

than Landsat data (11). The high spatial resolution (10-60 m.) 

allows for precise mapping of agricultural fields, effectively 

identifying crop types and monitoring growth stages (12). 

The amalgamation of Sentinel-2 data with ML and object-

based classification methodologies has exhibited consid-

erable promise for diverse applications, including land 

cover categorization and habitat mapping. This synergistic 

approach combines remote sensing data with advanced 

algorithms to enhance the accuracy and efficiency of envi-

ronmental monitoring. Accurately mapping and monitor-

ing these plantations is essential for effective agricultural 

management, sustainable development, and informed 

decision-making regarding land use and resource alloca-

tion. However, pixel-based remote sensing methods often 

lack the spatial and spectral accuracy needed for cashew 

plantations (13). This study uses an OBIA approach com-

bined with ML techniques to provide precise land cover 

mapping. The combination of ML and OBIA enhances data 

analysis and decision-making in land use management, 

facilitating accurate monitoring, predictive modeling, and 

improved resource allocation for sustainable agriculture. 

OBIA techniques coupled with ML classifiers have demon-

strated high accuracy in land use classification and 

achieved kappa values of 0.90 in various urban environ-

ments (14). The high-resolution capabilities of Sentinel-2 

imagery, along with the strengths of OBIA, enable detailed 

identification of homogeneous segments of cashew plan-

tations based on their spectral and spatial characteristics. 

The primary aim of this study is to map cashew plantations 

in the Ariyalur district and evaluate the performance of 

various ML algorithms. 

Classifier model                 

The different ML algorithms used for plantation mapping 

(15). These algorithms can effectively classify satellite im-

ages based on training data. Effective crop recognition can 

be accomplished through the use of classification algo-

rithms such as RF, SVM, and DT, which use remote sensing 

data, image processing techniques, and ML. The integra-

tion of these methods significantly enhances accuracy and 

efficiency in agricultural applications (16).  

 Several classification algorithms are available for 

application on segmented objects, with optimal features 

for object-based crop recognition. With the rapid develop-

ment of ML in recent years, image classification algorithms 

and tools have become increasingly accessible, making 

their application in crop recognition more widespread. 

These explore three typical ML algorithms for image object 

classification RF, SVM, and DT. 

Decision tree (DT)             

In DT, the root of the tree is used to predict the class level 

of a dataset. The advantage of the DT is its ease of under-

standing and presentation, requiring minimal data prepa-

ration (17). Each branch of the tree represents the results 

of the tests conducted at the internal node. A branch cor-

responds to a specific value or range of values for the test-

ed attribute. The leaf nodes represent the final decision or 

prediction after the data have passed through all the rele-

vant internal nodes. These nodes contain the predicted 

class or value. The DT algorithm is used to solve regression 

and classification problems. Studies have demonstrated 

that DT algorithms are central to Developing object-based 

rule set classification. Decision tree algorithms for object-

based land cover classification. This approach is particu-

larly useful for creating detailed and interpretable rule sets 

for classifying different land cover types from Landsat 8 

imagery (18). 

 Decision tree has several disadvantages, including 

the likelihood of generating an inefficient solution and 

overfitting. To address the latter, tree pruning is typically 

employed, involving the removal of one or more gap layers 

(i.e., branches). Pruning reduces classification accuracy for 

training data but increases accuracy for dealing with un-

knowns in general (19). 

Random forest (RF)         

Random forest is a collective classifier consisting of nu-

merous autonomous DT that perform RF classification 

tasks. The RF generates multiple random DT through boot-

strapping and random feature selection, leveraging predic-

tions from previously constructed trees. Every tree is 

trained using a subset of the input data. The remaining 

data, known as out-of-bag samples, are used for unbiased 

validation. The final classification result is determined by 

majority voting across all trees. Random forest is a highly 

robust classifier that effectively addresses overfitting and 

noise. It can also efficiently process high-dimensional data 
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(20). RF can struggle with high-dimensional data, leading 

to overfitting and misclassification, particularly when dis-

tinguishing between similar land use and land cover clas-

ses. 

Support vector machine (SVM)          

Support vector machine is a supervised learning classifica-

tion and regression analysis method. This technique estab-

lishes an ideal decision boundary referred to as a hyper-

plane. The SVM algorithm determines the most effective 

hyperplane that differentiates various classes. This hyper-

plane separates the data from the training data, which 

separates the data from the training data based on the 

minimum misclassification of pixels based on the mini-

mum misclassification of pixels. The SVM adopted an itera-

tive approach to create the optimal hyperplane and differ-

entiate the patterns of the training dataset. The effective-

ness of the SVM model depends on crucial parameters 

such as kernel functions, cost, and gamma, which are criti-

cal in determining the support vectors and handling non-

linear data patterns (21). The performance of SVM is highly 

dependent on the choice of kernel function and the tuning 

of its parameters. Incorrect selections can lead to subopti-

mal classification results (22).   

 

Materials and Methods 

Study area         

Ariyalur District, a significant cashew-growing region in 

Tamil Nadu, is geographically located between 10.54° and 

11.30° N latitude and 78.40° to 79.30° E longitude (Fig. 1). 

Lacking major natural boundaries, the district is bordered 

by the Kollidam river to the north and the Vellar river to 

the south. The district's soils are predominantly ferrugi-

nous, with a clayey texture that varies from red on the sur-

face to yellow on the lower horizon. These well-drained 

soils are generally free of salt and carbonates, with rela-

tively low organic matter, nitrogen, and phosphorus con-

tent but adequate potash and lime. Red clay soils are prev-

alent in the Sendurai, T. Palur, Andimadam, and Jeyankon-

dam blocks, while black soils are found in the Thirumanur 

and Ariyalur blocks. 

 

Datasets and geoprocessing tools          

Sentinel-2 data, with its high spatial resolution of 10 me-

ters, is ideal for crop mapping. Multispectral Sentinel-2 

imagery, acquired during the 2023 kharif season and ex-

hibiting less than 5% cloud cover, was accessed through 

the Copernicus Data Space Ecosystem (23). The Sentinel-2 

bands used for the false color composite (FCC) include B8 

near Infrared (NIR) at 842 nm, B4 (red) at 665 nm, and B3 

(green) at 560 nm. The FCC enhances vegetation, render-

ing it a bright red color, and facilitating the differentiation 

between vegetated and non-vegetated areas. This combi-

nation is beneficial for analyzing vegetation health and 

crop conditions, as healthy vegetation strongly reflects NIR 

(24). 

 ArcGIS10.1 and QGIS 3.38.0 were utilized to handle 

spatial datasets and perform Geographical Information 

System (GIS) operations. eCognition 9.0 software was em-

ployed for object-based image classification, and Excel 

was used for deriving statistical analyses. 

Land use land cover (LULC) classification          

Land use land cover studies are critical because they form 

the base layer for many earth-based applications. LULC 

maps are valuable for analyzing landscape composition 

and structure, identifying changes in the landscape, and 

assessing transformations across environmental gradients 

(25). Crop level mapping is necessary to yield forecasts, 

create statistics from agricultural data, track crop rotation, 

map soil productivity, identify crop stress, assess crop 

damage, and track farming activity (26). This research gen-

erated a LULC map (Fig. 2) using an RF approach with 

maize, rice, cashew, forest, built-up areas, and water 

bodies. 

Object-based segmentation         

The input Sentinel-2 data was processed into a false color 

composite using the image mixture layer in eCognition 

software. The process involved segmentation using the 

multiresolution segmentation technique, a bottom-up 

region merging approach classified as a region-based algo-

rithm. This technique begins by treating each pixel as a 

separate object and then progressively merges smaller 

objects into larger segments in iterative steps (27). 
Fig. 1. Study area map. 

Fig. 2. Land use land cover map for the Ariyalur district. 
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 Segmentation creates spectrally homogeneous ob-
jects associated with real-world features on the ground 
(28). Previous research has highlighted the challenges in 
determining optimal segmentation parameters (29). In 
image segmentation, selecting an appropriate segmenta-
tion scale is crucial, ensuring that the resulting objects 
accurately represent specific land use types. However, 
mixed pixels can complicate segmentation, particularly in 
areas with small objects or heterogeneous landscapes. 

 The segmentation parameters, such as scale (Sc), 
shape (Sh), and compaction (Cm), are typically determined 
through trial-and-error approaches (30). However, a for-
mal method for determining optimal scale factors involves 
the Estimation of Scale Parameter (ESP) tool (31). The ESP 
tool suggested 70 for Sc, 0.3 for Sh, and 0.6 for Cm in this 
research. The segmentation parameters, including scale 
(Sc), shape (Sh), and compaction (Cm), are often deter-
mined through trial-and-error methods (Fig. 3). Using 
these scale parameters, the multiresolution algorithm in 
eCognition Developer 9.0 was employed to segment the 
images into spectrally homogeneous objects. 

Object feature extraction            

Each segmented object was analyzed to extract various 
attributes, including spectral (mean or median values for 
each spectral band), textural (roughness, contrast, or ho-
mogeneity), geometric (shape and compactness), and con-
textual features (relationship with neighboring objects). 
Feature extraction is a crucial process in many fields, sim-
plifying the identification and classification of relevant 
data. Recent advancements in eCognition software have 
significantly improved feature extraction capabilities in 
urban and agricultural environments. Rule-based tech-
niques and algorithm-based classification have enhanced 
land cover mapping, while feature space optimization has 
led to higher accuracy in agricultural applications (32). 
LISS-IV high-resolution and Cartosat-1 data were utilized 
for mapping horticultural plantations using a semi-
automatic object-oriented feature extraction model ap-

proach in ENVI software. The feature extraction model in-
corporated textural, contextual, spectral, and NDVI infor-
mation for classifying plantation crops with an object-
oriented technique. The results achieved a reasonable 
classification accuracy of 75-80% (33). The eCognition soft-
ware for object-based classification and representative 
objects for the mango crop were carefully delineated and 
used to train the module. Several iterations were per-
formed to increase the classification accuracy to 91.2% 
(34). 

Training sample extraction          

Manually identified and labeled training samples were 
collected for each land cover class: water, crop, and forest. 
These training samples were used to train the classifier, 
enabling it to learn the distinguishing features of each 
class. In eCognition, a class hierarchy organizes object 
classes in a parent-child structure, facilitating the system-
atic classification of image objects. General categories are 
placed at higher levels, while specific categories are posi-
tioned at lower levels. 

Classification and post-classification refinement           

The trained models were applied to classify each object 
into non-cashew categories. Each RF, DT, and SVM algo-
rithm generated an individual classification map (Fig. 4-6). 
The ML algorithms utilized the training data to classify im-
age objects into predefined classes based on the extracted 
features for rule-set classification. A common procedure 
for classifying segmented objects using a rule-set algo-
rithm involves assigning objects to classes based on prior 
knowledge and nearest-neighbor training samples (35). 

Decision tree (DT) strength          

The DT methodology is widely employed to make predic-
tions. Researchers commonly opt for this technique due to 
its simplicity and clarity in identifying patterns within ex-
tensive and limited datasets and its ability to forecast val-
ues (36). The DT algorithm utilizes if-then-else rules to cre-
ate classification pathways. 

Fig. 3. eCognation Segmentation Process. 
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Decision tree (DT) weakness          

Decision tree classification algorithms face challenges 

such as instability in rule generation, sensitivity to small 

data changes, and difficulty in providing consistent, inter-

pretable rules for decision-making (37). 

Random forest (RF) strength           

The RF algorithm, widely recognized in supervised learn-

ing, constructs a forest of multiple trees, enabling regres-

sion and classification techniques. Its foundation lies in 

the DT algorithm, where multiple trees are formed and 

combined to produce the desired output (38). 

Random forest (RF) weakness         

Random forest can be challenging due to its complexity, 

parameter selection, and the need for effective variable 

importance measures, especially in high-dimensional set-

tings with sparse data (39). 

Support vector machine (SVM) strength          

The SVM is widely applied across multiple domains, includ-

ing face detection, text categorization, and image classifi-

cation, due to its robust ability to handle complex da-

tasets. The method is grounded in the theoretical frame-

work of structural risk minimization, which aims to bal-

ance model complexity and training error for improved 

generalization performance (40). 

Support vector machine (SVM) weaknesses          

SVMs require careful selection of kernel functions to trans-

form data into higher dimensions, which can complicate 

implementation (41). Ground truth data was used to train 

the RF, DT, and SVM models. The features extracted from 

the segmented objects served as input variables, while the 

ground truth labels (cashew or non-cashew) acted as the 

output classes. The classified map was refined by merging 

objects to ensure coherent and meaningful areas (42). Spa-

tial filters were applied to remove noise, and post-

classification smoothing techniques were employed to 

generate the crop area map. A plantation crop comparison 

between object-based and pixel-based classification meth-

ods revealed the superiority of the object-based approach.  

Accuracy assessment and validation            

A confusion matrix evaluated classification accuracy by 

comparing the object-based classified image with ground 

truth data. The kappa coefficient was also calculated to 

assess the agreement between the two classifications. The 

accuracy of various object-based supervised classification 

methods was assessed in this study using an error matrix 

with validation samples. The results of object-based classi-

fication for cashew plantations using these different super-

vised classification techniques (Fig. 4-6). The classified 

images were statistically validated using ground truth da-

ta, generated through an error matrix and kappa statistics 

to assess classification accuracy. A total of 120 ground 

truth locations were identified and documented for classi-

fication, subsequently verified through visual interpreta-

tion using satellite imagery available on Google Earth Pro. 

As described by Lillesand, an error matrix was generated 

based on the agreement and disagreement of classified 

objects (43). This matrix was then used to calculate the 

kappa coefficient and overall accuracy (44).   

 

Results   

Overall accuracy trends with different machine learn-

ing algorithms           

The performance of Ml classifiers- DT, SVM, and RF was 

evaluated to estimate the block-level cashew area in the 

Ariyalur district (Tables 1 and 1a-1c). Among these algo-

rithms, the SVM algorithm achieves 92.1% overall accuracy 

(OA) with a kappa coefficient of 0.85, followed by the RF 

Fig. 4. Cashew area map using random forest algorithm. 

Fig. 5. Cashew area map using decision tree algorithm. 

Fig. 6. Cashew area map using support vector machine algorithm. 
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algorithm with an overall accuracy of 89.6% and a kappa 

value of 0.79.  

 The DT classifier exhibited the lowest performance 

estimate, with an OA of 81.1% and a kappa coefficient of 

0.62. However, it exhibited the lowest performance esti-

mate in the cashew area in the Ariyalur district. 

 The results were compared against the statistical 

area reported by the Department of Economics and Statis-

tics (2023), which records 31,678 hectares of cashew plan-

tations (Table. 2). The comparison revealed that the SVM 

classifier achieved accuracy, with a deviation of 3.10% 

from the statistical cashew area. The RF method resulted 

in a moderate deviation of 5.95%, whereas the DT method 

exhibited the most significant deviation at 11.22%, indicat-

ing overestimation. In a similar study, it was reported that 

the mango areas in major blocks of Krishnagiri district 

were 9,077.9 hectares, while the statistical area reported 

by the Department of Economics and Statistics was 9,746.2 

hectares (34). The estimated area deviated by 6.85% from 

the statistical data. 

Block-level classification area         

In Ariyalur district, a cashew plantation area map was gen-

erated using ML algorithms for block-wise area estimation 

(Table 3). In the Andimadam block, according to the esti-

mated cashew area, it was 11,208 ha RF, followed by 

11,505 ha SVM and 10,507 ha DT. In the Sendurai block, the 

SVM estimated the highest cashew area to be 10,476 ha, 

the RF estimated 10,208 ha, and the DT estimated 9,615 

ha. For the Jayamkondam block, the RF model predicted 

2,607 ha, slightly greater than the 2,520 ha, predicted by 

the SVM model, whereas the DT model estimated a larger 

area of 3,321 ha. 

 In the Ariyalur block, the RF was classified as 2,929 

ha, the SVM predicted 2,778 ha, and DT estimated the low-

est area at 2,023 ha. For the T. palur block, the SVM provid-

ed the highest estimate of 2,531 ha, followed by the RF 

model at 2,403 ha and the DT model at 2,202 ha. In the 

Thirumanur block, the SVM again predicted the highest 

area (917 ha), the RF model estimated at 545 ha, and the 

DT model predicted 813 ha. 

 Overall, the total cashew area predicted across all 

blocks was 30,727 ha by SVM, 29,900 ha by RF, and 28,481 

ha by the DT. These results indicate that the SVM consist-

ently predicted a higher cashew area across most blocks, 

while the DT provided lower estimates. 

 These results highlight that the SVM consistently 

produced higher cashew area estimates across most 

blocks, demonstrating its effectiveness for cashew classifi-

cation in the Ariyalur district compared with the other al-

gorithms. This superior performance suggests that an SVM 

may be more suitable for cashew area delineation in this 

region. Moreover, although valid simultaneously, the DT 

and RF classifiers achieved relatively lower accuracies. 

 

 

District Model 
Overall 

accuracy 

(%) 

Kappa 
coeffi-

cient 

Ariyalur cashew 
area 

Random forest 89.6 0.79 

Decision tree 81.1 0.62 

Support vector machine 92.1 0.85 

Table 1. Individual classification results of efficient performing algorithm 

Table 1a. Random forest accuracy assessment 

 

Predicted class from the map 

 Cashew Non-cashew Accuracy 

Cashew 73 7 91.3% 

Non-cashew 6 36 85.7% 

Reliability 92.4 83.7% 89.6% 

Overall accuracy 89.6% 

Kappa index 0.79 

A
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u
a
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la

ss
 f

ro
m

  

Table 1b. Decision tree accuracy assessment 

 

Predicted class from the map 

 Cashew Non-cashew Accuracy 

Cashew 68 12 85.0% 

Non-cashew 11 31 73.8% 

Reliability 86.1% 72.1% 81.1% 

Overall accuracy 81.1% 

Kappa index 0.62 

A
ct

u
a

l c
la

ss
 f

ro
m

  

 

Predicted class from the map 

 Cashew Non-cashew Accuracy 

Cashew 76 4 95.0% 

Non-cashew 6 36 85.7% 

Reliability 92.7% 90.0% 92.1% 

Overall accuracy 92.1% 

Kappa index 0.85 

A
ct

u
a

l c
la

ss
 f

ro
m

  

Table 1c. Support vector machine accuracy assessment 

District Estimated 
area (in ha) 

Statistical 
area (in ha) 

Deviation 
(in %) 

Decision tree 31678 28481 11.22 

Support vector machine 31678 30727 3.10 

Random forest 31678 29900 5.95 

Table 2. Comparison of estimated and statistical cashew areas with devia-
tions for different classification methods 

Blocks RF SVM DT 

Andimadam 11208 11505 10507 

Sendurai 10208 10476 9615 

Jayamkondam 2607 2520 3321 

Ariyalur 2929 2778 2023 

T.Palur 2403 2531 2202 

Thirumanur 545 917 813 

Total 29900 30727 28481 

Table 3. Block-wise distribution of cashew area in the Ariyalur district (in ha) 

https://plantsciencetoday.online


7 

Plant Science Today, ISSN 2348-1900 (online) 

Discussion 

Performance of different ML algorithms           

This study indicated that the SVM was the best-performing 

algorithm for cashew plantation classification, achieving 

an OA of 92.1% with a kappa coefficient of 0.85. The RF 

closely followed, with an OA of 89.6% and a kappa value of 

0.79. The DT classifier exhibited the lowest performance, 

with an OA of 81.1% and a kappa coefficient of 0.62. Deci-

sion tree creates simple decision boundaries, which may 

not capture the complexity of object features, leading to 

less accurate classification. They can also overfit the train-

ing data, resulting in poor results. 

 These results support the effectiveness of combin-

ing ML algorithms and OBIA for precise cashew area maps. 

In a comparable study, SVM is an effective instrument for 

defining cashew regions, with an OA of 88.6% and a kappa 

coefficient of 0.86 in crop monitoring utilizing Sentinel 2 

data (45).  

 In some cases, SVM also demonstrates strong per-

formance, achieving accuracies of 95.48% in the eucalyp-

tus classification (46) and 89.88% for betel palms (47). Al-

gorithm performance based on input data and source pa-

rameters. In addition, RF required more feature values 

than SVM to achieve maximum accuracy, attributed to 

SVM's strength in performing higher accuracy using limited 

input data. We also found that the SVM classifier was more 

sensitive to influence the data redundancy compared with 

the RF classifier. 

 The segmentation scale parameter is one of the 

critical factors for quality segmentation. The scale parame-

ter properties the spatial scale of segmentation, as it is 

positively related to the size of objects. Multi-

segmentation-based classification sometimes suffers from 

error propagation at the object level across varying object 

scales, potentially impacting the accuracy and consistency 

of the classification results. Object-based classification 

was correctly applied using rule-set parameters for seg-

mentation, allowing the objects to be accurately classified 

(48). 

 In a similar study, it was reported that SVM pro-

duced the most accurate land cover maps, with a kappa 

coefficient of 0.916, whereas the value was 0.909 for RF 

(49). Other studies have suggested that classification and 

regression trees can outperform SVM in crop classification. 

SVM outperformed in the Lake Urmia Basin (Iran), achiev-

ing 91.4% accuracy (50). Conversely, in the Munneru river 

basin (India), the RF was the best-performing algorithm, 

with an accuracy of 94.5% (51). Similarly, RF outperformed 

the SVM in LULC classification in Botswana's greater Gabo-

rone planning area (52). 

 Additionally, the accuracy is heavily dependent on 

the quality of training samples. Thus, maintaining high-

quality input samples is crucial, and adopting advanced, 

efficient algorithms is recommended for achieving accu-

rate crop classifications. Cashew plantations are mostly 

suitable for object-based classification in future work.  

Conclusion  

An integration of OBIA segmentation and ML classifiers 

was explored for cashew classification from sentinel 2 da-

ta. The optimal scale parameter for segmentation was de-

termined through quantitative measures, ensuring effec-

tive delineation of objects. Feature selection significantly 

improved segmentation and classification accuracy while 

reducing the computational cost of image analysis. Using 

an object-based approach, the SVM classifier achieved an 

overall accuracy of 92.1% and a kappa coefficient of 

0.85%. This proposed classification procedure demon-

strates its potential for large-area cropland mapping and 

agricultural monitoring. This study demonstrates ML algo-

rithms, such as SVM, RF, and DT, for classifying cashew 

plantation areas in the Ariyalur district. Among the classifi-

ers, the SVM performed best with an overall accuracy of 

92.1% and a kappa coefficient of 0.85, whereas the RF al-

gorithm followed, DT had a lower accuracy of 81.1%.  

 The algorithm's accuracy depends on the crop type, 

data characteristics, and environmental conditions. The 

SVM classifier is suitable for dealing with complex data 

boundaries. It is, therefore, most effective for cashew clas-

sification, while the ability of the RF model to capture spa-

tial variations proved valuable for block-level analysis. A 

hybrid approach that combines the strengths of different 

models could be considered to improve accuracy.  

 This study highlights the importance of selecting 

appropriate ML algorithms for specific crops and regions. 

Future research could explore the integration of multiple 

algorithms to improve cashew area estimation and other 

land use classifications.  

 This study evaluated their effectiveness in delineat-

ing the topography of the complicated terrain of Ariyalur 

district. The classifiers also substantiated their utility in 

segregating land use and land cover at the regional and 

sub-regional levels with optimal classification accuracy. 

The thematic maps generated for cashew cultivation pro-

vide valuable insights that can inform several policies re-

lated to cashew exports and incentives for processing in-

dustries. Several policy decisions can be advocated with 

higher precision and judicial use of resources. 

 Additional restrictions included the recognition of 

juvenile plantations, the differentiation of plantations 

within agro-horticultural systems, and the management of 

intercropping scenarios.  To achieve accurate object seg-

mentation, it was crucial to provide the correct scale pa-

rameter; otherwise, it was challenging. Additionally, it was 

essential to assign the training classes correctly, as incor-

rect assignments could lead to misclassification. 

 For algorithm improvement, future studies could 

integrate and assess additional features to better discrimi-

nate crop types with similar phenollogical characteristics. 

Incorporating more spectral indices, texture measures, 

and temporal data could enhance the models ability to 

differentiate between crops with similar growth patterns, 

leading to more precise classification outcomes.   
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