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Abstract  

The synthesis of nanoscale metals and non-metals is an intriguing subject, 

and the green synthesis of nanoparticles (NPs) is increasingly utilized across 

various sectors, including environmental science, agriculture, engineering, 

and food processing. Traditionally, the production of nanoscale materials 

relies heavily on physical and chemical processes, which can lead to 

significant challenges such as high energy consumption and environmental 

contamination. Poor management of agricultural and industrial waste 

contributes to greenhouse gas emissions, exacerbates climate change and 

disrupts ecosystems. Conversely, green nanotechnology offers a safer 

alternative by leveraging biological materials, that inherently provide 

capping and reducing agents. This approach is not only more cost-effective 

but also results in lower pollution levels, thereby enhancing environmental 

safety. Green synthesis involves the reduction of metallic and non-metallic 

atoms using plant extracts, microorganisms, and agricultural waste instead 

of conventional harmful substances. The bioactive compounds, including 

flavonoids, alkaloids, tannins, and saponins,  play a critical role in the bio-

reduction of metals and the production of nanoparticles. There has been 

the increasing interest in utilizing these biological sources for green 

nanoparticle production over the past decade from their potential to serve 

as economical and environmentally friendly alternatives. Overall, green 

nanotechnology demonstrates its potential to revolutionize industries and 

pave the way for a more sustainable and resilient future.  
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Introduction 

Nanoscience offers an extensive array of materials at the nanoscale, playing 

a vital role in creating sustainable technology for the betterment of 

humanity and preservation of the environment (1). Nanoparticle synthesis 

can be achieved using chemical, physical and biological approaches. While 

chemical and physical synthesis methods produce regulated and uniform 

NPs, these methods have drawbacks including the generation of harmful 
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and noxious by-products and the excessive bonding of 

chemicals to the surface of the nanoparticles. These 

constraints have prompted the emergence of eco-friendly 

alternatives referred to as green nanotechnology, which 

emphasizes the use of biological resources or ecologically 

friendly methods for nanoparticle production. The 

synthesis of nanoparticle synthesis towards sustainable 

and eco-friendly approaches is illustrated in Fig. 1. Green 

synthesis is widely recognized for its ability to swiftly and 

easily produce stable and biocompatible nanoparticles (2). 

Several  studies have demonstrated the efficacy of green 

synthesis methods in producing nanoparticles with 

favourable characteristics. Green synthesis techniques 

offer a feasible result by employing biological materials 

such as agricultural residues, microorganisms, and plant 

parts as sustainable resources for the production of nano 

particles (3).  

Unfortunately, an immense quantity of agricultural waste, 

estimated at approximately 380 million tons, is generated 

annually in India (4). The common practice of burning 

agricultural waste after harvest releases harmful gases 

such as carbon dioxide, methane, and nitrous oxide along 

with contaminants such as carbon monoxide, ammonia, 

sulfur dioxide, volatile organic pollutants, and particulate 

matter, severely impacting the environment through air 

and water pollution, and contributing to global warming 

(5). A novel method for converting agricultural wastes and 

industrial byproducts into bio-nanosorbents, bio-

nanodisinfectants, and bio-nanocatalysts has been made 

possible by the use of green nanotechnology (6). 

Microorganisms such as bacteria, fungi, yeast and algae 

are utilized in the synthesis of nanoparticles because the 

growth conditions such as nutrient, pH, pressure, and 

temperature can be adjusted to manage the process. The 

synergistic interaction among microorganisms leads to 

several beneficial characteristics, including accelerated 

rates of multiplication, diverse secondary metabolite 

production, rapid growth in confined environments and 

the ability to deactivate pollutants in a synergistic manner. 

As a result, microorganisms provide an ideal platform for 

synthesizing nanozerovalent particles, thereby improving 

reduction processes and the decomposition of pollutants. 

The abundance and diversity of plant species offer a 

plentiful supply of bioactive chemicals, including 

flavonoids, alkaloids, tannins, and saponins, which play a 

critical role in the bio-reduction of metals and the 

production of nanoparticles (7), drawing significant 

attention to plant-mediated synthesis (8,9). The potential 

of numerous plant parts to reduce metal ions and promote 

Fig. 1. Approaches for synthesis of nanoparticles and their prospective uses (9). 
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the synthesis of nanoparticles has been studied and these 

components include leaves, roots, and seeds. 

Biocompatibility and the controlled release of chemicals 

are two key features of green-synthesized nanoparticles. 

The effective use of nanoparticles is contingent upon 

various factors including NPs size, shape, types, and 

capping layer surrounding them. These characteristics are 

impacted by the source of synthesis. By reducing the 

amount of hazardous chemicals present, green 

nanoparticles use improves safety and provides an 

environmentally conscious and sustainable agricultural 

system. This review highlights the synthesis and 

applications of green nanoparticles in environmental 

remediation, agriculture, engineering, processing and 

many other fields, emphasizing their potential to 

revolutionize industries and bring about a new era of 

sustainability (10).  

Synthesis of nano particles 

 The two main approaches used for the synthesis of 

nano materials are, top-down and bottom-up approaches 

as shown in Fig. 2. Top-down methodologies involve 

breaking down bulk materials to create nanostructure 

materials. These techniques encompass mechanical 

milling, laser ablation, etching, sputtering, and electro-

explosion. The bottom-up approach involves building 

nanoparticles from smaller units, such as atoms, 

molecules, or ions, which are assembled into nanoscale 

structures. These techniques encompasses sol-gel 

method, laser pyrolysis, and spinning., In green synthesis, 

this approach can be made more sustainable by using 

natural resources or biological agents instead of toxic 

chemicals. 

Mechanism of green nanoparticle synthesis 

The involvement of living organisms like bacteria, fungi, 

plants, and so on to assist in the reduction of metals into 

nanoparticles is termed "green biosynthesis." This process 

is usually mediated by the intrinsic characteristics of 

biomolecules present in these types of species such as 

flavonoids, terpenoids, phenols, carbohydrates, saponins, 

steroids, etc. As shown in Fig. 3, a multitude of studies 

have demonstrated that the attachment of enzymes or 

their substrates  to nanoparticle surfaces can improve 

catalyzation (11). Because of their complex three-

dimensional folding, enzymes have specific catalytic 

capabilities owing to the spatial arrangement of important 

functional groups present in their active section. 

The biological constituents, viz., enzymes, proteins, and 

secondary metabolites in microorganisms and plants are 

accountable for reducing metals and creating a protective 

layer around individual nanoparticles known as the 

"capping layer" or "biological corona” (12). The biological 

corona enveloping the nanoparticles contains biological 

elements discharged from the plant or microorganism in 

an extract or culture medium employed during synthesis. 

This covering provides enduring stability to the 

nanoparticles in aqueous solutions, shielding them from 

clumping, and notably contributing to the interaction of 

green nanoparticles with cells. This facilitates the easy 

penetration of nanoparticles into bacterial, fungal, or plant 

cells and their organelles. Hence, the biological corona 

plays a crucial  role in nanoparticle production and its 

diverse applications across various fields.  

Factors influencing green synthesis 

Numerous factors influence the structure of metallic 

nanoparticles during green production, including the 

synthesis source, reaction time, salt concentration, pH, 

and temperature. These  particles dictate the formation 

and activity of metallic nanoparticles. The reaction time is 

critical in nanoparticle synthesis, and determines their 

stability, shape and size. Likewise, temperature plays a 

critical part in nanoparticle morphology. Higher 

temperatures facilitate rapid reduction and can lead to 

agglomeration if prolonged.  The synthesis of 

monodisperse AgNPs from rowan fruits at 90 ̊C was 

demonstrated. Moreover, it was found that at lower 

temperatures, the spherical gold nanoparticles tended to 

synthesis, whereas rod and plate shaped nanoparticles 

formed at higher temperatures (14). Green synthesis 

occurs rapidly at temperatures ranging from 70 to 90°C, 

however, prolonged reaction times and higher 

temperatures may result in the agglomeration with 

Fig. 2. Synthesis of nano particles. 

Fig. 3. Mechanism for green synthesis of nanoparticles (95). 
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various plant extracts (13). pH significantly influences 

nanoparticle size and shape, the acidic pH favoures the 

formation of larger nanoparticles with fewer structural 

groups attached to the corona layer (15). Furthermore, the 

chemical composition of the reaction constituents affects 

the synthesis of nanoparticles, especially the biomolecules 

that are accessible for reduction. 

Green nanoparticle synthesis 

Green nanoparticles are produced using biological 

systems, including plants, microorganisms (bacteria, 

fungi, and algae), and other biological entities. This eco-

friendly and cost-effective approach has gained attention 

due to its potential for large-scale synthesis without the 

use of harmful chemicals. The main types include metallic 

nanoparticles like silver (Ag) and iron (Fe) are effective in 

water purification and pollutant removal, with iron oxide 

(Fe₃O₄) nanoparticles being particularly useful for 

magnetic separation of contaminants. Metal oxide 

nanoparticles such as zinc oxide (ZnO) and titanium 

dioxide (TiO₂) act as photocatalysts for degrading organic 

pollutants and improving water and air quality. Other 

types include carbon-based nanoparticles like graphene 

oxide and polymeric nanoparticles derived from natural 

polymers such as chitosan, contribute to wastewater 

treatment and soil restoration. Quantum dots, bimetallic 

nanoparticles (e.g., Au-Ag), and specialty nanoparticles 

such as selenium, tellurium, and silica also play roles in 

areas like imaging, and catalysis. These nanoparticles are 

valued for their biocompatibility, scalability, and 

sustainable production methods. The types of 

nanoparticles synthesized biologically are listed in  Table 

1. 

Utilizing plant extract for green nanoparticle synthesis 

Plants are recognized as  natural chemical factories. The 

use of plant extracts in nanoparticle production has 

advantage over theo other organic techniques such as 

microbial synthesis because it avoids the difficulties 

associated with managing microbial colonies.  A workflow 

for the green production of NPs using plant extracts was 

shown in Fig. 4. Flavonoids, phenolic acids, and tannins 

are among the several polyphenolic substances found in 

mango leaves and inflorescence. These compounds 

function well as reductants in reaction involving the 

production of nanoparticles (16). These polyphenols assist 

to generate silver nanoparticles (AgNPs) from silver nitrate 

and have antioxidant propertes. Many phytochemicals 

found in ivy gourd stems including phenolic compounds, 

flavonoids, and terpenoids are essential for the production 

and stability of gold nanoparticles (AuNPs) (17).  These 

substances  facilitate the reduction of gold ions (Au3+) from 

hydrochloroauric acid (HAuCl4) to produce AuNPs, which 

are used to enhance for  the absorption rate of drug 

molecules in curing the cataracts (18). Flavonoids and 

phenolic acids, which are abundant in okra blossoms, 

function as reductant in the manufacturing of silver 

nanoparticles (AgNPs). Similarly, phytochemicals such as 

flavonoids, phenolic compounds, and terpenoids found in 

the leaves and roots of castor oil plants aided the 

formation of AgNPs by reducing the ionic metals. To 

enhance the bioavailability of drugs, these AgNPs are used 

in bioadhesive films for ocular distribution (19). Gallic acid 

from fig is an efficient reducing agent that helps in the 

production of dysprosium stannate nanoparticles. These 

nanoparticles are gas sensitive and can be used in gas 

sensor devices to detect volatile organic compounds and 

pollutants (20). Arecanut seed contains cellulose of 25–

35%, hemicellulose of 20–30%, lignin of 10-15%, ash of 5–

8%, silica of 1–2% and lauric-acid which have excellent 

antibacterial, antioxidant, and antiviral properties. AgNPs 

have been synthesized by reducing aqueous AgNO3 using 

the extract of arecanut by exposing it to microwave 

radiations at a rate of 2.45 GHz. The synthesized AgNPs are 

used as potential antimicrobial agents.  

Zinc oxide nanoparticles (ZnONPs) were synthesized from 

zinc nitrate hexahydrate using Parthenium hysterophorus 

whole plant aqueous extract  in which, the presence of 

phytochemicals such as flavonoids, saponins, phenols, 

terpenoids and tannins are essential for capping, 

stabilizing, and reducing metal ions from high oxidation 

Fig. 4. Integrating plant extracts for the green synthesis of nanoparticles (96). 

Type of Nanoparticle Materials Involved Biological Source 

Metal Nanoparticles Gold, silver, copper, zinc, platinum Plants, bacteria, fungi, algae 

Oxide Nanoparticles TiO2, ZnO, Fe2O3, CuO Plants, bacteria, fungi, algae 

Carbon Nanoparticles CNTs, graphene, fullerenes Fungi, algae 

Polymeric Nanoparticles Chitosan, alginate Algae, fungi 

Quantum Dots CdS, Se, semiconductor materials Plants, bacteria, fungi 

Composite Nanoparticles Metal-polymer composites Plants, microorganisms 

Table 1. Types of biologically synthesized nanoparticles  
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state to zero-valent species (21). The synthesized ZnONPs 

are employed to breakdown methylene blue dye from 

aquatic environments (22). Secondary metabolites 

including alkaloids, phenols, carbohydrates, saponins, and 

proteins found in the extract of Cyperus rotundus roots 

serve as stabilizing agents during the synthesis of metal 

nanoparticles. Gold nanoparticles (AuNPs) were generated 

by treating different ratios of Cyperus rotundus aqueous 

extract with a fixed volume of gold chloride (1:1, 1:2, 1:3, 

1:4, 1:5) using hot air heating method and the formation of 

gold nanoparticles was confirmed by observing the colour 

change from light yellow to greyish pink. The resultant 

AuNPs has antibacterial properties against Salmonella 

paratyphi and Staphylococcus aureus. With an increase in 

the concentration of AuNPs,  the inhibitory potential of 

AuNPs towards both gram-positive and gram-negative 

bacteria increases (23). Cynodon dactylon is particularly 

valued for its high content of phytochemicals such as 

flavonoids and phenolic acids which possess strong 

reducing and stabilizing properties. These compounds are 

capable of efficiently reduce the titanium precursor 

compound titanium isopropoxide, to form TiO2 

nanoparticles (24). The resultant TiONPs were used in the 

removal of organic pollutants from water bodies. Owing to 

their high surface area, photocatalytic activity and 

stability, these nanoparticles can effectively degrade 

organic pollutants under ultraviolet (UV) or visible light 

irradiation (25). The significance of plant extract-derived 

green nanoparticles is shown in Table 2. 

Agricultural waste for the synthesis of green 

nanoparticles 

Green treatment methods utilizing agricultural and agro-

industrial biowaste for bio-fabrication of nanomaterials 

due to the presence of biomolecules, which are capable of 

acting as capping or stabilizing agents, making them ideal 

for nanomaterial fabrication (26). It offers minimal toxicity, 

low cost, and resource-conserving advantages over 

traditional methods. The synthesis of nanoparticles from 

different sources of agricultural wastes such as fruit waste, 

vegetable waste etc., was shown in Fig. 5. Jackfruit peel is 

one of the underutilized wastes that have high amounts of 

pectin (0.12%), cellulose (27.75%), protein (0.03%), and 

starch (4%). Higher concentration of antioxidants in peel 

makes it a promising source of important biomolecules (1). 

When the solution of FeCl2 was added to peel extract, the 

solution instantly changed colour from yellow to vivid 

black, represent the development of FeNPs-JF as shown in 

Fig. 6 (27). FeNPs can be synthesized with excellent 

catalytic activity because of their large surface area, which 

affords active sites to produce hydroxyl radicals. The 

active species involved in the oxidative degradation of 

fuchsin basic dye by fenton-like oxidation. This is because 

of their high temperature at 800C for AgNPs synthesis. 

Excellent antibacterial activity was demonstrated by non-

woven textiles loaded with the bioinspired silver 

nanoparticles (4). Sapota pomace is considered as waste 

after extraction of juice from Manilkara zapota. The 

pomace contains high dietary fiber and is a significant 

source of phenolics (1–5%) and terpenoids (0.1–1%) and 

polysaccharides (10–40%) and flavonoids (0.5–2%). These 

compounds have been utilized as reducing agents for the 

production of AgNPs (reactivity, strong adsorption 

capacity, and low cost), they have gathered a lot of interest 

as possible catalysts for environmental remediation (28). 

Mango peel contain polymers such as polysaccharides of 

20–40%, lignin of 1–5%, flavonoids of 0.5–2%, 

hemicelluloses of 5–15%, and pectins of 5–15%, are used 

to produce Ag nanoparticles. Mango peel extract has been 

used to reduce aqueous AgNO3, and then incubated (29). 

These AgNPs are moderately stable and show antibacterial 

activity against both gram positive and negative 

microorganisms (30). Papaya peel contains various phyto-

constituents such as alkaloids (0.1%), terpenoids (0.1–1%) 

and flavonoids (0.5–2%) (31). These phyto-constituents act 

as stabilizing as well as reducing agents during the green 

synthesis of CuONPs from copper (II) nitrate trihydrate salt 

(32). The synthesized CuONPs are pure and crystalline with 

a band gap energy of 3.3 eV, possessing excellent 

electrical, catalytic, optical, magnetic and biological 

properties (33). The CuONPs have significant 

photocatalytic performance in degrading Palm Oil Mill 

Effluent (POME) with reduced phytotoxicity. The 

hydrolyzed lemon peel extract contains hesperidin 

flavanol, which functions as a reducing agent by releasing 

aglycone. For the first time, TiO2NPs were synthesised 

from lemon peel extract by reducing the bulk powder of 

titanium (34). The resulting nanoparticles absorption 

Sl. No Plants Parts NPs NPs size (nm) References 

1. Coccinia grandis Stem Au 20 (69) 

2. Mangifera indica Inflorescence Ag 30–70 (70) 

3. Morinda citrifolia Leaf, fruit, seed Ag 3–11 (71) 

4. Toxicodendron vernicifuum Rind Ag 2–40 (72) 

5. Capparis cantoniensis Leaf Ag 23 (73) 

6. Nerium oleander L Rind Au 20–40 (74) 

7. Stevia rebaudiana Leaf NiO 20–50 (75) 

       8. Abelmoschus esculentus Flower Ag 5.5–32 (76) 

9. Castor-oil plant Leaf, root Ag 38 , 29 (77) 

10. Garcinia mangostana Peel ZnO 25–70 (78) 

Table 2. Role of green nanoparticles synthesized from plant extract 
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spectra confirm that TiO2NPs with a band gap of 3.08 eV 

and utilized in self-surface cleaning, electronics, batteries 

and water treatment (35). Banana peels contains polymers 

such as hemicellulose, pectins, and lignin, which can be 

utilized to make palladium and silver nanoparticles. In the 

synthesis of palladium nanoparticles (PdNPs) the source of 

palladium was palladium chloride (PdCl2) which is reduced 

by banana peel extract to form palladium nanoparticles 

(PdNPs). These bio-inspired nanoparticles find 

applications as catalysts, sensors and making active 

membranes (36). Mangosteen peel is well known for 

having a high concentration of polyphenolic chemicals, 

including xanthones which have potent antioxidant effects 

and act as reducing agents in reaction involving the 

production of ZnO nanoparticles, having UV-blocking and 

antimicrobial properties when  xanthones effectively 

reduce zinc ions from zinc nitrate hexahydrate solution 

(37, 10). 

Cauliflower leaves are abundant in polyphenols, which 

serves as a reductant to produce nanoparticles. Leaf waste 

extract reduces Ag1+ in AgNO3 solution to Ag0 to produce 

silver nanoparticles (38). This process was verified by 

spectrophotometry which showed a colour shift from 

yellow to black. Biosynthesized AgNPs showed promising 

photocatalytic activity for degrading harmful synthetic 

methylene blue dye and efficient colorimetric sensing 

ability for detecting Hg2+ ions in industrial wastewater (39). 

Garlic peel stands out as a unique material that can serve 

as a lignocellulosic precursor for producing porous 

carbons. They have  an extensive surface area and 

Fig. 5. Generally used agricultural waste for the synthesis of nanoparticles i. Jackfruit peel waste; ii. Cauliflower leaf waste; iii.Mango peel waste; iv. Sapota pom-
ace waste; v. Papaya peel waste; vi. Lemon peel waste; vii.Arecanut waste; viii.Rice husk waste; ix.Garlic peel waste; x. Saw dust; xi.Walnut shell; xii.Corn cobs; 
xiii.Cotton waste; xiv.Coconut shell waste; xv.Banana peel waste; xvi.Parthenium weed waste. 

Fig. 6. FeNPs synthesized sustainably with jackfruit peel extract (1). 

https://plantsciencetoday.online


7 

Plant Science Today, ISSN 2348-1900 (online) 

multilayered porosity, a tailor-made need for effective 

energy storage devices (40). 

Cellulose nanocrystals were produced from arecanut husk 

fibers by sulfuric acid hydrolysis following the ultra sound 

method (7).  Cellulose nanocrystals exhibited effective 

antibacterial and antifungal activities against pathogens. 

Increased coconut crop production has led to a massive 

increase in coconut waste production. Coconut shell is 

composed mainly of lignin (36.51%) and cellulose (33.61%) 

and it absorbs less moisture content than other 

agricultural waste. The silver nanoparticles (AgNPs) were 

prepared by reducing the AgNO3 using coconut shell 

extract (CSE). CSE-AgNPs exhibited a wider range of 

inhibition than CSE against specific pathogens. The 

greater surface area of CSE-AgNPs may account for their 

higher inhibitory effect (41). Cotton residue stands out 

among agricultural residues due to its large production 

and high cellulose content, which enables r recycling and 

stimulates interest in cost-effectiveness, and 

environmental responsive. Owing to their abundance, bio-

compatibility, bio-degradability, and renewability, 

nanocelluloses (NCs) are a highly appealing way to 

recycling lignocellulosic residues (42). Cotton waste is 

hydrolyzed in an acidic solution to produce 

nanocelluloses. The resulting NCs are made up of long, 

pure fibres with a diameter of 30 nm. NCs are effective 

biomaterials that find usage in a variety of industries such 

as food, electronics, and green nano-composites (43). 

Rice husks  contains of cellulose (30–45%), lignin (15–
25%), hemicelluloses (20–35%), and silica (15–20%). SiNPs 

were produced using rice husk ash as the silica source and 

cetyltrimethyl ammonium bromide (CTAB) as the 

surfactant using the sol-gel approaches. It offers 

several uses like treatment of wastewater and the 

fabrication of nanocomposite materials (44). Corn cobs 

accounted for 20% of the total corn yield. Biochar, 

synthesized from corn cob waste by pyrolysis process was 

impregnated with macro and micronutrients to formulate 

as nanocomposite. Owing to the studies on salt index, 

water absorbance and retention, slow release column, and 

retention, biochar nanocomposite (BNC) has a lot of 

promise for application as a nanofertilizers (45).  Various 

green NPs synthesis from agricultural waste and its 

application are given in the Table 3. 

Green hybrid nanoparticle synthesis 

Green hybrid nanoparticles are eco-friendly materials 

synthesized using biological sources such as plant extracts 

or microbes, combined with other nanomaterials such as 

metals or polymers. This hybrid approach enhances the 

properties of the nanoparticles, such as stability, 

functionality, or biocompatibility, while minimizing 

environmental toxicity and promoting sustainability in 

various applications. The utilization of amrita (Tinospora 

co rdifolia) extract, aids in reducing copper (II) chloride, 

thus facilitating the production of copper nanoparticles 

(CuNPs). Subsequently, a solution containing manganese 

dioxide (MnO2) is introduced into the mixture of CuNPs. 

Where in sodium borohydride operates as reductants, 

facilitating the bonding of manganese dioxide atoms to 

the surface of the existing CuNPs. As a result, this process 

yields copper-manganese dioxide nanoparticles 

(Cu.MnONPs), effectively amalgamating copper with 

manganese dioxide particles (46). The synthesized 

Cu.MnONPs possess excellent adsorption properties; 

enabling the efficient capture and elimination of various 

pollutants from water, including heavy metals, organic 

Sl. No Vegetable/ fruit Plant part NPs synthesis Size (nm) Applications References 

1. Onion Outer peels Ag 20–40 
  Acetylation reaction (79) 

2. Sapota Pomace Ag 30–60 Antibacterial activities (80) 

3. Lemon Outer Peels TiO2 5–20 
  Optical and photocatalytic properties (81) 

4. Grapes Pomace Ag 20–50 
Used as Antidiabetic, Antioxidant Potential, 
and Antibacterial Activity Against Human 
Pathogens 

(82) 

5. Pineapple 
Leaf Ag 20–40 Used in enhancing optical properties and 

antibacterial activities. (83) 

Peel ZnO 10–30 Food packaging and Antibacterial activity (84) 

6. Caulifower Waste ex-
tract Ag 20–50 Used in biosensing of  Hg2+  and c degrada-

tion of methylene blue (MB) dye. (85) 

 7. Jackfruit Peel Fe 20–40 Act as catalyst for the degradation of Fuch-
sin Basic dye (1) 

 8. Banana Peel Pd 20–40 Used in making active membranes and as 
catalysis in devising sensors (86) 

9. Mango Peel Ag 20–50 Antibacterial activity used in preserving 
fruits and vegetable (87) 

10. Papaya Peel CuO 10–30 Degrading palm oil mill effluent (POME) by 
acting as a photocatalyst. (88) 

Table 3. Synthesis of green NPs from agricultural waste and their application 
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compounds, and pathogens. Indian mallow (Abutilon 

indicum) extract was used to reduce zinc nitrate 

hexahydrate, for the synthesis of zinc oxide nanoparticles 

(ZnONPs). Subsequently, a solution containing copper 

nitrate is added to the mixture of ZnONPs. Sodium 

borohydride acts as the reducing agent in this process, 

aiding in the bonding of copper atoms to the surface of 

existing ZnONPs. Consequently, copper-zinc oxide 

nanoparticles (Cu.ZnONPs) were generated and 

formulated into smart nanofertilizers for precision 

agriculture (47). These nanoparticles were engineered to 

gradually copper and zinc ions  in response to specific 

environmental cues such as soil moisture, pH levels, or 

nutrient deficiencies. By incorporating nanofertilizers with 

controlled-release mechanisms, farmers can optimize 

nutrient uptake by plants, minimize nutrient leaching into 

groundwater, and reduce environmental pollution.  

Utilization of microbes for green nanoparticles 

synthesis   

Green nanoparticle production relies considerably on 

microorganisms, either directly or indirectly. The ability of 

microorganisms to generate nanomaterial has been 

investigated in several studies. Microorganisms can 

produce nanoparticles by reducing or adsorbing metal 

ions (48). The initial stage of the nanoparticles formation 

in microorganisms is the internal or external accumulation 

of metal particles, which is then reduced by an enzyme to 

produce nanosized particles. Extracellular synthesis is 

comparatively more common than intracellular synthesis, 

primarily because of their ease of purification and 

recycling of nanoparticles generated extracellularly. On 

the other hand, purification may be more difficult for 

intracellularly generated nanoparticles as they may 

damage the cells during gathering. Despite the specific 

mechanism of microbial intracellular nanoparticle 

synthesis is unknown, it is thought that positive ions are 

captured by enzymes which are negatively charged  or 

surfaces of the cell walls and these ions are then reduced 

to produce nanoparticles.  

The marine bacterium Paracoccus haeundaensis utilizes its 

cell-free supernatant inorder to reduce the gold ions in 

chloroauric acid, resulting in spherical gold nanoparticles 

that measure 20.93 ± 3.46 nm on average (49). Proteus 

vulgaris ATCC-29905 has been used for producing iron 

oxide nanoparticles (FeONPs) by the extracellular 

technique (50). Proteus vulgaris functions as a possible 

agent in the ferric chloride reduction process, which leads 

to FeONPs (51), and has great antibacterial activities (52). 

Lactobacillus acidophilus converts sodium selenite into 

selenium nanoparticles with the help of reductants like 

enzymes and metabolites (53). The resultant nanoparticles 

exhibit stability and biocompatibility and hold promise for 

applications as antibacterial agents and dramatically 

breaking down the prefabricated bacterial biofilms (54). 

The  silver (Ag+) ions in silver nitrate are effectively reduced 

to silver (Ag) by Cupriavidus sp. reducing agents, which 

include enzymes and metabolites, promote the creation of 

silver nanoparticles (55). Thus formed AgNPs 

demonstrated antibacterial characteristics against clinical 

human pathogens that are gram-negative and their 

biofilms (56). Various biological organisms involved in the 

silver nanoparticle synthesis are shown in Fig. 7. 

ZnONPs and CuONPs have been produced from zinc 

acetate dihydrate and copper acetate monohydrate, 

respectively, using the Penicillium chrysogenum MF318506 

strain  that showed inhibitory actions towards an array of 

pathogens, encompassing gram-positive and gram-

negative bacteria in addition to certain phytopathogenic 

fungi (48,57). Titanium dioxide nanoparticles can be 

produced from titanium tetrachloride (TiCl4) by the 

filamentous fungus Aspergillus flavus where in the fungal 

biomass acts as a stabilizer and reductant. The resultant 

nanoparticles are photocatalytically active and promising 

agents for air and water detoxification and purification 

(58). Zinc oxide nanoparticles (ZnONPs) were produced 

sustainably from zinc nitrate using the ubiquitous fungus 

Fusarium oxysporum  as stabilizers and reductants (59). 

These are appropriate for an array of biologic and 

ecological purposes since they display antibacterial 

capabilities against both positive and negative gram 

bacteria (60). Silver nanoparticles (AgNPs) are produced 

from silver nitrate by filamentous fungus Trichoderma sp., 

which is frequently found in the soil and plant roots. These 

particles have applications for use in farming, and ecology 

Fig. 7. Biological synthesis of AgNPs (97). 
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as they exhibit significant antimicrobial action against an 

array of harmful microbes (61). 

Microalgae are primitive microscopic plants. They have 

significant benefits over higher plants as cell factories for 

nanoparticle production.  Since Chlorella vulgaris is a well-

known commercial algae with a rapid growth rate, it was 

chosen as the source of the gold nanoparticles (62). When  

exposed to gold chloride, the live cells produce large 

amounts of gold nanoparticles (AuNPs) in their cytoplasm 

(63). AuNPs are used in catalysis, sensors, biosensors and 

antibacterial applications. The production of MnO/C 

microspheres uses Nannochloropsis oculata, a spherical 

microalga with a diameter of 2 μm because of its easy 

availability and rapid growth rate. N. oculata primary cell 

wall is made of polysaccharides, which enable it to adsorb 

and absorb metal ions through electrostatic interactions. 

N. oculata culture mixture is introduced to the KMnO4/

Na2SO4 solution during the synthesis, causes metal ions to 

biosorb and spontaneously redox and deposit on the N. 

oculata surface (64). MnO/C microspheres with hollow 

pores show potential as  electrode materials for enhanced 

batteries powered by lithium-ions (65).  The production of 

green nanoparticles from different microbes is shown in 

Table 4. 

Challenges and future perspective 

Green nanotechnology iswidely used, but a several issues 

must be resolved. These challenges include the 

ecologically benign synthesis of nanoparticles by plant-

mediated methods. To meet this task, it is imperative to 

standardize green synthesis techniques and optimize 

reaction conditions (66). Characterizing green synthesized 

nanoparticles to ensure their quality, stability, and safety 

for a variety of applications is another critical step. 

However, the reproducibility and scalability of green 

synthesis techniques are significant hurdles. Large-scale 

consistency in nanoparticle synthesis can be challenging 

to attain due to the inherent variability in plant extracts, 

environmental factors, biological processes and their 

limitation was shown in Fig. 8. Evaluating the 

physicochemical characteristics and biological 

interactions of these nanoparticles requires the 

development of robust analytical methods and quality 

control procedures. In addition, it is essential to take 

regulatory compliance and risk assessment into account 

when addressing the negative impacts of green 

nanotechnology on human well-being and the 

environment (67). To overcome these obstacles and fully 

use green nanotechnology for the production of 

sustainable nanomaterials, cooperation among 

researchers, industrial stakeholders, and regulatory 

agencies is vital. 

Research efforts are anticipated to focus on quickening 
extraction processes from a variety of plants, 

microorganisms, agricultural leftovers such as crop 

residues, food processing byproducts, and biomass wastes 

in order to ensure the efficient use of the available 

resources (68). Customizing the properties of 

nanoparticles for specific applications such as agricultural 

and environmental cleanup, will be a significant field of 

research. By addressing these future directions, green 

nanotechnology which uses plants, microorganisms, and 

agricultural wastes for green nanoparticles can improve 

resource efficiency and sustainable development. 

 

Conclusion 

Growing interest has been shown in the green synthesis of 

nanoparticles as a non-toxic, eco-friendly, and economical 

approach. By using fewer chemical reagents and 

maximizing the benefits of various metals and non-metals, 

this innovative method produces composite nanoparticles 

that highlight the ability of plants, microbes, and 

agricultural wastes to promote synthesis. These naturally 

occurring substances that function as reductants and 

stabilizers have revealed uses in anything from 

environmental cleanup to agriculture having a 

revolutionary effect. It is critical to improve the use and 

sustainable growth of green synthetic nanoparticles. A 

comprehensive evaluation encompassing f agriculture to 

Sl. No Organism Species NPs type NPs shape Size (nm) References 

1. Bacterium 

Lactobacillus acidophilus Se Non-applicable 2–15 (54) 

Paracoccus haeundaensis Au Spheroidal 17.5–24.4 (49) 

Proteus vulgaris Fe2O3 Spheroidal 19.2–30.5 (89) 

Cuprividus sp. Ag Spheroidal 10–50 (55) 

2. 
 
Fungus 
  

Cladosporium cladosporioides Ag Spheroidal 30–60 (90) 

Penicillium chrysogenum ZnO, CuO Hexagon, spheroi-
dal 

9–35, 
10.5–59.7 (48) 

Aspergillus sydowii Ag Spheroidal 1–24 (91) 

3. 
 
Algae 
  

Chlorella vulgaris Au Spheroidal 10–200 (92) 

Nannochloropsis oculata MnO2 Cube Not applicable (93) 

Scenedesmus sp. Ag 
Spheroidal poly-

hedron, 
rod-shaped 

15–20 (94) 

Table 4. Synthesis of green nanoparticles from microbes 
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environmental remediation, food quality enhancement 

and engineering applications indicates the transformative 

influence of these particles in various sectors, as we serve 

towards sustainable growth and wider use of green 

synthetic particles. This review highlights the critical 

function of green-synthesized nanoparticles and 

illuminated a route towards a more robust and sustainable 

future. Thus, one of the more promising green 

biotechnologies that could balance the agro-ecosystem 

and inflict less environmental impact is the green 

biosynthesis of nanoparticles from agricultural waste, 

microorganisms, and extracts from plants. 
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