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Abstract   

The health of every individual heavily depends on the consumption of fruits. 

Although fruits are exceptionally healthy, their perishable characteristics pose 

difficulties for prolonged storage. Ineffective post-harvest techniques can impede 

the supply chain, leading to considerable losses for producers. Therefore, there is an 

urgent need to reduce post-harvest losses to enhance agricultural productivity. 

Conventional post-harvest treatments involving synthetic chemicals are increasingly 

being recognized for their potential negative impacts on human health. In response, 

the use of bio-based edible coatings derived from plant materials is gaining 

significant attention and encouragement. Edible coatings effectively extend the shelf 

life of fruits by controlling oxidation, moisture loss and gas exchange. Coatings 

enriched with bioactive materials create an additional protective layer that slows 

down respiration rates, thereby prolonging the freshness of the fruits. This review 

provides an abridged overview of edible coatings, discussing their applications and 

classifications and concludes by emphasizing chitosan as one of the most effective 

compounds. Additionally, the review explores innovative materials and 

nanotechnology-based edible coatings, along with their application techniques for 

various fruits. These advancements aim to address supply chain challenges and 

enhance food security. 
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Introduction   

Fruits are vital to human nutrition, providing a significant source of energy, dietary 

fiber and essential micronutrients, including minerals, vitamins, phytochemicals 

and flavonoids (1). In recent years, the importance of horticultural products in daily 

diets has increased substantially due to their health benefits, which include flavor 

compounds, antioxidants and crucial nutrients (2). Furthermore, the post-harvest 

treatment market has experienced strong growth, with the market size expected to 

increase from $1.59 billion in 2023 to $1.74 billion in 2024, at a compound annual 

growth rate (CAGR) of 9.7% (3). Fruits, especially those with high water content 
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(≥75%), are highly perishable and prone to rapid deterioration 

due to factors such as transpiration, insect damage, respiration 

and microbial activity (4). 

 Fruits are classified based on their maturation 

mechanisms into climacteric and non-climacteric types. 

Climacteric fruits, such as bananas, mangoes and apples, 

undergo significant post-harvest ripening driven by ethylene, 

while non-climacteric fruits, like grapes, citrus and strawberries, 

cease ripening once harvested, requiring different storage and 

handling techniques. Climacteric fruits ripen rapidly after 

harvest, becoming more susceptible to microbial infections and 

spoilage (5). This accelerated ripening and subsequent 

deterioration present considerable challenges for postharvest 

handling, leading to significant economic losses and food 

insecurity. Currently, only 30% of total fruit production is 

consumed, with postharvest losses being even more 

pronounced in developing nations. These losses highlight the 

critical need for effective postharvest management to reduce 

waste and enhance food security (6). 

 Several factors influence the shelf life of fresh produce, 

including the variety of the crop, its maturity level, the ripening 

phase and handling practices. External conditions, such as 

atmospheric factors (ethylene levels, temperature, O2, CO2) and 

stress factors, also play a significant role in the preservation of 

fruits. Issues such as moisture loss, microbial deterioration and 

enzymatic browning intensify further complicate the 

preservation of fruit quality during handling, storage and 

transportation. Citrus fruits, such as lemons and blood oranges, 

are particularly susceptible to chilling injuries during cold 

storage. For example, lemons may develop internal cavities, skin 

discoloration and brown sunken spots on the peel after 

prolonged exposure to cold. Blood oranges are especially 

vulnerable to cold stress, exhibiting chilling injury symptoms at 

temperatures as low as 5°C, which can lead to significant quality 

degradation (7). 

 To address these challenges, bio-based edible coatings 

have been developed as a solution to extend the shelf life of fruits 

and vegetables (8). The amalgamation of edible coatings with 

nanotechnology breakthroughs presents numerous advantages, 

such as enhanced water barrier attributes, augmented 

mechanical strength and regulated release of bioactive 

compounds . Natural coatings, derived from biodegradable 

sources such as waxes, gums and plant extracts, provide both 

consumer safety and environmental sustainability. In contrast, 

synthetic coatings, often made from petrochemical 

components, require stricter safety regulations to ensure their 

suitability for human health and the environment. The growing 

consumer preference for natural coatings, using ingredients like 

beeswax and carnauba wax, is driven by increasing interest in 

eco-friendly and natural products (9).  

 Chitosan’s ability to form films allows it to create a semi-

permeable layer on fruits, effectively controlling gas exchange 

and reducing respiration rates. This property prolongs ripening 

and maintains fruit quality longer than other bio-based 

polymers, such as alginate, which may lack equivalent control 

over gas permeability . Regulating respiration is crucial for 

extending the shelf life of fruits during storage and transportation 

(10). This review offers an in-depth analysis of the effects of these 

compounds on prolonging the shelf life of fruits, emphasizing 

their roles in reducing postharvest losses, enhancing fruit quality 

and tackling global issues with food security and sustainability. 

1. Edible Coating 

The use of edible coatings in China dates back to the 12th 

century. However, it wasn't until 1922 that edible coatings were 

officially recognized, with the introduction of fruit waxing, which 

was later applied commercially to both vegetables and fruits 

(11). These coatings were developed as a safer alternative to 

hazardous synthetic chemicals that could pose risks to 

consumer health. Made from biological or chemical substances, 

edible coatings are applied in one or more layers to the surface of 

products, as studied by (12). 

 Edible coatings are thin, consumable layers made from 

naturally derived materials. Their primary function is to create a 

protective barrier that reduces moisture loss, regulates gas 

exchange and prevents microbial spoilage of fruits. This helps 

preserve the freshness and overall quality of fruits during 

storage, as shown in Fig. 1. The sensory attributes of the fruit 

should remain unaffected by the edible coating, which typically 

has a thickness of less than 0.3 mm (13). Materials commonly 

used in edible coatings, such as polysaccharides, proteins and 

lipids, offer distinct advantages. For example, polysaccharides 

are known for their excellent gas barrier properties, while lipids 

are effective in reducing moisture loss due to their hydrophobic 

nature (10). 

2. Edible coating classification based on composition 

Edible coatings are widely used in the food industry to enhance 

shelf life, quality and safety. Chitosan, when applied to fruits like 

apples, provides strong antimicrobial properties but dissolves 

under acidic conditions. Pectin, commonly used on citrus fruits, 

helps reduce moisture loss but is less effective in high-moisture 

environments. Alginate, often used for fresh produce, retains 

moisture but offers limited gas barrier properties. Cellulose, 

applied to cheese, prevents oxidative spoilage but limits 

moisture exchange. Starch, used on tomatoes, adds visual 

appeal but has weak moisture barrier properties. Wax, such as 

carnauba wax, extends fruit shelf life but can hinder respiration if 

over-applied (14). Edible coatings are classified into four 

categories based on their composition: lipids, hydrocolloids, 

composites and active ingredients, as shown in Fig. 2. 

Fig.1. Impact of Edible Coatings on Fruit Shelf life 
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2.1 Hydrocolloids 

Hydrocolloids, water-attracting polymers derived from plants, 

animals and microbes, have a wide range of applications, 

particularly in coating solutions for fruits. They are used to coat 

food items without affecting their texture, flavor and color during 

preservation. Typically, they are either partially or completely 

soluble in water and their primary function is to increase viscosity 

(15). These hydrocolloids are classified into two categories based 

on their composition: polysaccharides and proteins. 

2.1.1. Polysaccharides 

The primary polysaccharides commonly used in the formulation 

of edible coatings for fruits include chitosan, carrageenan, 

alginate, cellulose, gellan gum and pullulan (10). While these 

coatings generally have limited moisture barrier properties due 

to their solubility in water, they offer relatively low oxygen 

permeability. Polysaccharide-based edible coatings are typically 

applied to fresh or minimally processed fruits to create a 

modified atmosphere that reduces the respiration rate. These 

coatings also improve the mechanical handling properties of the 

fruits (16). 

 Chitosan, derived from chitin found in the exoskeletons of 

crustaceans, is an edible polymer widely used in the 

development of coatings for fruits (17). It provides mechanical 

strength similar to that of natural gums and has high viscosity. 

Chitosan forms clear, transparent films that act as a barrier to 

oxygen while being highly permeable to carbon dioxide, offering 

protection against a range of microorganisms (18). 

 Pectin, a naturally occurring substance in fruits, is used in 

the production of high-quality coatings. These coatings maintain 

stability even at temperatures up to 180°C. Additionally, pectin 

can be dissolved in polyvinyl alcohol to enhance its 

characteristics (19). 

 Cellulose is one of the most naturally abundant materials, 

composed of long chains of a hydroglucose polymer. Methyl 

cellulose, a specific type of polysaccharide, is frequently used in 

coating formulations. As the primary structural component of 

plants, cellulose is the most prevalent complex carbohydrate 

worldwide. Through chemical modifications, cellulose can be 

adapted to produce cellulose ether-ester films (20). 

 Gums are water-insoluble substances widely utilized in 

various applications. A blend of guar gum is often used to create 

uniform coatings with strong adhesive properties, even in moist 

conditions. Polysaccharide-based gums, primarily derived from 

the endosperm of plant seeds in the Leguminosae family, are 

rich in galactomannans composed mainly of the 

monosaccharides mannose and galactose. The structure varies 

by plant source, with mannose forming linear chains linked to 

glucopyranosyl residues as side chains (21). Polysaccharides are 

extracted from seed gums, including guar, locust bean, tara and 

tamarind (22). 

 Alginate exhibits advantageous characteristics for 
culinary applications. Its distinctive colloidal properties render it 

excellent as a stabilizer, thickening, suspending agent, coating or 

film former and gel former (23). Alginate is widely used across 

industries, including food, beverage, textiles, printing and 

pharmaceuticals (24). In edible coatings, alginate functions as a 

thickening agent, stabilizer, emulsifier, chelating agent, 

encapsulant, swelling agent and suspending agent. Its ability to 

swell and its water solubility are essential characteristics for 

handling fresh-cut fruits with high moisture content on their 

surfaces (25). 

Fig. 2. Different types of edible coating  
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2.1.2. Coatings based on protein   

Protein-based bio-coatings, derived from both plant and animal 

sources, are known for their hydrophilic nature, which makes 

them less effective as barriers against water vapor. However, they 

offer favorable organoleptic properties (26). A study by Valencia 

et al. found that proteins and polysaccharides are commonly 

used as structural components in bio-based coatings due to their 

abundance (27). Coatings made from protein materials are 

generally more neutral in flavor, transparent and bland 

compared to those formulated with lipid materials (28). 

 Collagen is a naturally occurring macromolecule found in 
the dermal layers and hides of mammals (such as bovine and 

porcine), as well as in avian and aquatic species. It is widely used 

as an edible coating material due to its biodegradable, non-toxic 

and non-antigenic properties. Additionally, collagen is highly 

valued for its exceptional mechanical strength, oil resistance, 

oxygen barrier capabilities and biocompatibility. Its versatility 

also allows it to serve as a carrier for a variety of compounds and 

additives (29). 

 Casein, a protein sourced from milk, exhibits superior 

mechanical and barrier properties compared to polysaccharides, 

due to its excellent ability to form cohesive coatings. Ascorbic 

acid enhances the antioxidant properties of casein coatings 

through several mechanisms. It acts as a free radical scavenger 

by donating electrons to neutralize harmful radicals, thereby 

preventing oxidative damage. Additionally, ascorbic acid chelates 

metal ions such as iron and copper, reducing their catalytic role in 

oxidative reactions and stabilizing the coating. It also works 

synergistically with other antioxidants, regenerating compounds 

like tocopherols to increase the overall antioxidant efficacy. 

Moreover, ascorbic acid enhances emulsion stability, 

safeguarding food goods from oxidative deterioration by 

establishing stable interfaces. Ascorbic acid levels typically 

decline during fruit aging due to the enzymatic action of ascorbic 

acid oxidase. Therefore, enriching coatings with ascorbic acid is 

recommended to help maintain the fruit’s ideal antioxidant 

levels (30). 

 Gelatin is a protein polymer derived from animal sources, 

including skins, bones, connective tissues and fish skins, through 

partial hydrolysis of collagen. This process involves treating raw 

animal materials with dilute acid or alkali, which breaks down 

the crosslinking in the collagen matrix, resulting in a substance 

known as "warm water-soluble collagen," commonly referred to 

as gelatin. Gelatin films are extensively utilized to preserve meat 

and other food items by providing a covering that prolongs shelf 

life and sustains quality . Park et al. reported that zein protein has 

low solubility in water but readily dissolves in aqueous alcohol 

and glycol ester solutions (31). These properties make zein an 

ideal material for producing coatings due to its strong binding 

and adhesive capabilities.  

 Corn zein protein is highly efficient in preventing color 

changes, preserving firmness and extending the shelf life of fruits. 

Additionally, it exhibits exceptional oxygen barrier properties. 

Coatings made with corn zein show remarkable resistance to 

water vapor, offering barrier capabilities that are approximately 

800 times more effective than those of other coating materials 

and wrapping films. 

 Soybean protein materials are well-suited for use in 

edible coatings due to their low permeability to oxygen and 

carbon dioxide, as well as their cost-effectiveness (32). When 

combined with other components, these materials have been 

used to extend the shelf life of eggplants and walnut kernels (33). 

 Whey protein isolates (WPI) can be converted into flexible 

and transparent films that offer excellent barrier properties 

against gases, aroma compounds and oils, outperforming those 

made from polysaccharides and lipids. However, these films 

have limited mechanical strength and high-water vapor 

permeability due to the significant presence of hydrophilic 

amino acids in their composition (34). A study found that a whey 

protein-based emulsion coating reduced weight loss and 

browning in fresh-cut apples by 26.55% and 46.39%, 

respectively, thus improving freshness during storage. Another 

study showed that a composite coating of WPI and wax 

increased dry matter content and fruit hardness compared to 

WPI alone. While WPI is biodegradable and suitable for various 

foods, its moisture absorption in humid environments 

undermines its barrier properties. Additionally, WPI's low tensile 

strength limits its protective ability, especially in high humidity, 

reducing its long-term effectiveness (35). 

2.2 Coatings based on Lipids 

The quality of fruits has been preserved using edible coatings 

made from lipids, which provide a shiny and lustrous finish. 

Examples of lipid materials include beeswax and carnauba wax. 

One of the key properties of lipids is their water resistance (36). 

Wax coatings offer superior moisture barriers compared to both 

lipid-based and non-lipid coatings. However, the thickness and 

greasiness of oil, fat and wax-based coatings can make them 

challenging to apply to fruit surfaces and may impart a rancid 

flavor (37). 

 Hexanal is naturally synthesized by certain plant species, 

with linoleic and linolenic acids acting as biological precursors for 

its synthesis. The biosynthesis of hexanal involves metabolic 

pathways associated with lipoxygenase (LOX) and hydroperoxide 

lyase (HPL) as reported by researchers. The enzymes responsible 

for this process include LOX, HPL, lipolytic acyl hydrolase and (E, 

Z)-2,3-enal isomerase. Hexanal treatment has demonstrated 

efficacy in prolonging the shelf life of fruits by suppressing 

phospholipase D (PLD)  activity (38). 

 Fatty acids enhance the flexibility of lipid coatings by 
acting as plasticizers, disrupting the film's crystalline structure, 

which increases molecular mobility and prevents cracking. 

Unsaturated fatty acids provide greater flexibility than saturated 

ones. Additionally, fatty acids improve adhesion by reducing 

surface tension, promoting better wetting and spreading on the 

fruit and creating a more effective barrier against moisture loss 

and gas exchange. A commercial example of this is the use of 

fatty acid-based coatings on apples, which reduce water loss and 

maintain firmness, thereby extending shelf life. Lipid-based 

coatings serve as both moisture and oxygen barriers, 

contributing to the long-term preservation of food quality. These 

coatings can be applied to a wide range of products, including 

confectionery, fruits, vegetables, dairy items, chocolates, cereals, 

poultry, fish, frozen goods and dried products. In recent years, 

lipid-based films and coatings have gained significant attention 

for their functional attributes and nutritional benefits (39). 

 Bioactive compounds, such as essential oils, have been 
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used as food preservatives (40) and can be incorporated into 

edible coatings to enhance their efficacy in preserving fruit 

quality and reducing microbial spoilage, thereby extending shelf 

life. 

 Shellac is a natural resinous substance produced by the 

scale insect Kerria lacca, consisting of a mixture of resin, pigment 

and wax (41). It is highly valued for its excellent film-forming 

properties and water resistance, making it widely used in 

coatings and functional materials. In the food industry, shellac 

functions as a glazing agent, improving the aesthetic of items like 

confectionery, chocolates and fruits, while also offering a 

moisture barrier. Referred to as "confectioner's glaze," it is 

approved by the FDA and aids in minimizing moisture loss, 

thereby prolonging shelf life . However, over time, shellac's 

brittleness and susceptibility to self-esterification can 

compromise its integrity, causing it to crack. Its solubility in 

alkaline media and organic solvents further limits its use. 

Additionally, because shellac is derived from insects, it is 

excluded from vegetarian products, leading to the search for 

plant-based alternatives (42). 

 Carnauba wax, a plant-derived lipid, is widely used in 

food applications, particularly as an edible coating to extend the 

postharvest shelf life of various horticultural commodities. In the 

food industry, it is primarily employed as a glazing agent for fruits 

and confections. It is commonly applied to apples and citrus 

fruits to provide a shiny finish while serving as a moisture barrier. 

Carnauba wax, owing to its natural origins and hypoallergenic 

characteristics, presents an attractive alternative to synthetic 

coatings. Designated as a safe food additive by both the FDA and 

EFSA, it is utilized in an array of products, including chocolates 

and baked goods . Additionally, its biodegradable nature 

supports the growing consumer demand for sustainable food 

practices (43) 

2.3 Coatings based on Composite 

Composite or multicomponent coatings consist of lipid-based 

materials, such as polysaccharides and proteins. These 

composites are divided into two categories: conglomerates and 

bilayer composites. Bilayer composites are made up of two 

layers, each formed from mixtures of one or more materials, such 

as lipid/lipid, polysaccharide/protein, protein/protein, or lipid/

polysaccharide (44). Conglomerates are created by combining 

two or more biopolymers to form a homogeneous layer, which 

combines the key attributes of each component. Typically, 

conglomerate edible coatings are made by blending biopolymers 

like polysaccharides (e.g., starch, chitosan and pectin), proteins 

(e.g., gelatin, casein) and lipids (e.g., waxes, oils). This blend forms 

a cohesive layer that leverages the strengths of each biopolymer. 

For example, polysaccharides provide film-forming properties, 

proteins contribute structural strength and lipids offer moisture 

barrier capabilities. Recent research on edible coatings for fruits 

has focused on innovative combinations of natural materials to 

enhance preservation and quality. These biodegradable coatings 

act as protective barriers, extending shelf life by reducing 

moisture loss, gas exchange and decay while preserving sensory 

qualities. Commonly used biopolymers include polysaccharides, 

proteins and lipids, which are often combined to optimize 

mechanical strength and moisture barrier properties. Studies 

have shown that coatings with cassava starch and essential oils 

significantly reduce water loss and enhance antioxidant 

properties in fresh-cut apples, while beeswax and chitosan 

coatings improve the quality and appearance of strawberries by 

reducing decay rates (45). 

2.4. Active ingredient 

Active ingredients refer to substances incorporated into coating 
formulations that serve specific purposes beyond providing 

structure or texture. These ingredients are typically added to 

enhance the coating's properties or to impart additional 

functionalities, such as improving the shelf life of fruits, 

enhancing food safety, improving sensory attributes, or offering 

nutritional benefits (10). 

 Salicylic acid (SA) is recognized as a signalling molecule 

that regulates various physiological processes and induces 

systemic resistance (46). According to Kumar et al. , SA reduced 

metabolic activity and slowed the hydrolysis of complex 

carbohydrates into soluble solids content (SSC), thereby 

delaying the increase of SSC in tomato fruits (47). 

 Ascorbic acid (AA) and its analogs have been the subject 

of numerous studies on fruits, with concentrations typically 

ranging from 0.5% to 4% (w/v). The anti-browning effects of 

ascorbic acid have been tested on various fresh-cut fruit 

products under a wide range of conditions (22). Additionally, AA 

is  rich antioxidantand helps to minimize the loss of vitamin C. 

Studies have shown that AA treatment is particularly beneficial 

for kiwifruit, as it helps maintain its quality during storage, 

making it an important strategy for post-harvest handling. 

Similarly, AA has been effective in preserving the quality of many 

other fruits, demonstrating its versatility and broad applicability 

across different fruit varieties (48). 

 Rosemary extract is becoming increasingly popular as a 

bio-based coating for fruits due to its beneficial properties and 

functional uses. Derived from the rosemary plant (Rosmarinus 

officinalis), this natural compound is rich in antioxidants and 

essential oils, which enhance its effectiveness in food 

preservation. A study by Ribeiro-Santos et al. examined the 

impact of rosemary extract, a natural antimicrobial agent, on Fuji 

apples (49). The results showed that the coating significantly 

reduced microbial proliferation, preserved fruit firmness and 

minimized browning, thus improving both the shelf life and 

overall quality of the apples. 

 Citric acid also exhibits antimicrobial properties, 

inhibiting the growth of spoilage microorganisms and pathogens 

on fruit surfaces. Its primary advantage lies in extending the shelf 

life of fruits while ensuring their safety during storage and transit. 

A study by de Oliveira et al. explored the effects of calcium 

chloride and citric acid, both individually and in combination, on 

the quality of pineapples during storage (50). The researchers 

found that coatings infused with citric acid effectively preserved 

fruit firmness, inhibited microbial growth and slowed the decline 

of sensory characteristics, ultimately enhancing the quality of 

pineapples (51). 

 Chitosan coatings are highly regarded in the field of food 

preservation, particularly among hydrocolloids and lipids, due to 

their exceptional characteristics that surpass those of other 

edible coatings. One of the key advantages of chitosan is its 

strong antimicrobial activity, which effectively inhibits the growth 

of microbes and significantly extends the shelf life of perishable 

fruits, as reported by (52). Chitosan is also recognized as 
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Generally Recognized as Safe (GRAS) by the US FDA, further 

enhancing its appeal as an edible coating and it has been widely 

explored in various studies, as noted by (53). While other 

hydrocolloids have limited applications, chitosan’s versatility 

allows it to meet a broad range of food preservation needs. 

Research has shown that chitosan treatment effectively prolongs 

the shelf life of various fruits by slowing decay. It has proven 

particularly effective for strawberries, mangoes, bananas and 

sweet cherries, reducing microbial loads and preserving sensory 

attributes. Additionally, chitosan coatings have been found to 

improve storage conditions for fruits such as longan and apples, 

highlighting its broad applicability (54).  

3. Chitosan 

The term "chitin" is derived from the Greek word "chitosan," 

signifying "a protective covering." Recently, the food industry has 

shown considerable interest in using chitosan-based edible 

coatings as an innovative packaging material for food products 

(55). Chitosan is typically extracted from the shells of marine 

crustaceans and is widely used in various industrial and medical 

applications. Industrial chitosan (poly-β-1,4-N-acetyl-D-

glucosamine) is produced by chemically deacetylating chitin, 

which is extracted from the exoskeletons of arthropods. Edible 

chitosan films exhibit excellent oxygen permeability and serve as 

effective barriers against water (56). Chitosan has proven 

successful in controlling fungal diseases that degrade fruit 

quality during storage (57). Table 1 outlines the pre-harvest 

application of chitosan, which has been effective in extending 

shelf life and improving various quality attributes (58-64). 

Similarly, postharvest chitosan treatments, as presented in Table 

2, have demonstrated significant improvements in quality 

parameters and extended the shelf life of produce (65-71). 

3.1. Impact of chitosan on Respiration rate and Physiological 

loss in weight 

Chitosan has proven highly effective in reducing physiological 

weight loss in fruits such as strawberries (72). The application of 

chitosan coatings significantly mitigated weight loss in fruits 

throughout the storage period. Research on mangoes (Mangifera 

indica cv. Dashehari) revealed that chitosan coatings at 

concentrations of 0.5% and 1.0% effectively reduced weight loss 

to 5.82% and slowed the ripening process. Chitosan-treated 

mangoes maintained greater firmness, measuring 15.50 N after 

21 days of storage, compared to untreated fruits, which exhibited 

lower firmness. This effect is attributed to the semi-permeable 

membrane formed by chitosan, which alters the internal 

atmosphere of the fruit and reduces gas exchange. These 

changes significantly delay the climacteric peak, helping to 

prevent rapid deterioration (73).  

3.2. Impact of chitosan on Peroxidase Activities and Polyphenol 
Oxidase 

Chitosan coatings significantly inhibited the accumulation of 

anthocyanins, flavonoids and total phenolic content, whether a 

1% or 2% glutamic acid solution was applied alongside the 

chitosan (74). Additionally, chitosan demonstrated a partial 

Fruits Variety Pre harvest spray treatment Shelf life of treated fruits in days Reference 

Apricot Armenian plums Chitosan 0.01%, 0.05% or 0.25%  

 Fruits treated with a 0.25% chitosan as pre-
harvest spray were stored for 16 days while fruits 

treated with a 3% chitosan pre-harvest spray 
were sustained for 70 days in cold storage. 

(58) 

Barhi dates Phoenix sp 
Chitosan 1, 2 and 3 g/L & Nano-chitosan 
1, 2 and 3 cm3 /L and CaCl2 1, 2 and 3 g/L 

Fruits treated with a 3% chitosan as pre-harvest 
spray were sustained in cold storage for 70 days. (59) 

Mango Mangifera sp Chitosan 0.5, 1.0 and 1.5% 
Fruits treated with a 1.5% chitosan as pre-harvest 

spray were prolonged at 25°C for 12 days. (60)  

Peach 

  
‘Florida prince’ 

Chitosan at 0.5 and 1.0% & CaCl2 at 2  and 
4% 

Fruits treated with a pre-harvest spray of 1% 
chitosan and 4% CaCl₂ were prolonged for 35 

days under ambient conditions. 
(61) 

Rambutan 

  
‘Malwana special’ 

40 ppm concentration of chitosan 
fungicide and Copper chitosan 

and chitosan oligomer 

Fruits treated with a pre-harvest spray of 40 ppm 
chitosan were stored for 7 to 10 days. (62)  

Raspberries  

  
‘Autumn Bliss’ Chitosan 0.5, 1.0 or 2.0% 

Fruits treated with a pre-harvest spray of 2% 
chitosan were sustained at 0°C and 90% RH, 

extending their shelf life up to 12 days. 
(63) 

Straw berry 
Camarosa 

  
Calcium chloride (@ 0.5%, 1.0% and 

1.5%) and chitosan (@ 5g/L and 6g/L) 
Fruits treated with a pre-harvest spray of chitosan 

were sustained at 7°C for 7 days. (64) 

Table 1. Impact of pre-harvest Chitosan spray treatment on the shelf life of fruits 

Fruits Variety Coating Shelf life of treated fruits in days Reference 

Acid lime Citrus sp 
Essential oil of Cinnamomum 

camphora (CCEO) loaded in nanoemulsion 
of chitosan coating 

Fruits dipped in a nanoemulsion chitosan were 
sustained for 5 days after harvest.  

(65) 

  

Apricot Prunus sp 
Chitosan and chitosan nanoparticles 

(CHNPs) 

Fruits dipped in chitosan and chitosan nanoparticles 
were sustained for 9 days at room temperature (25 ± 3°

C) and 30 days in cold storage (5 ± 1°C). 

(66) 

  

Blue berry Vaccinium sp Chitosan/thyme oil coating combined with Fruits coated with a chitosan/thyme oil mixture and (67) 

Kiwi fruit Actinidia sp Chitosan 0.6%, 0.8% and 1% Fruits treated with 1% chitosan were maintained at 5 ± (68) 

Mango “Kent” Hot water (HW) and 1% chitosan coating 
Fruits dipped in 1% chitosan were retained at 13 ± 0.5°

C and 85%-90% relative humidity for 28 days.  (69) 

Orange Citrus sp 
 Salicylic acid 1%, chitosan 0.5% 

supplemented with nano (ZnO) (0.50 g/L)  
 Fruits dipped in a chitosan and nano ZnO 

combination were retained for 20 days. (70) 

Sour sop Annona sp Chitosan cinnamon essential oil coating  
Fruits coated in chitosan and cinnamon essential oil 

are kept at 16°C for 11 days. (71) 

Table 2. Effect of Chitosan coating on postharvest shelf life of fruits 
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inhibitory effect on peroxidase activity and suppressed the 

proliferation of polyphenol oxidase (PPO). Acting as effective 

protective barriers, chitosan coatings help mitigate lipid 

oxidation and carefully regulate flavor compounds, gas 

exchange and moisture retention, thereby preserving and 

enhancing food quality. In control groups, PPO activity increased 

after two days of storage, while chitosan-treated samples 

exhibited reduced PPO activity over the same period. Chitosan 

indirectly reduced polyphenol oxidase activity, minimized rapid 

water loss in litchi and lowered the respiration rate, which 

collectively contributed to reduced bio-heat generation (75). 

3.3. Effect of Chitosan on Fruit Firmness 

In a study, it was observed that chitosan coatings markedly 

enhanced fruit firmness, with treated fruits exhibiting superior 

flesh firmness assessments relative to untreated counterparts 

across all experimental groups. The initial firmness of the fruits 

was preserved following chitosan application, with substantial 

changes becoming evident on the sixth day of storage. In 

contrast, non-coated fruits exhibited a gradual softening trend 

throughout the storage period. Fruits coated with 1.5% chitosan 

demonstrated superior flesh firmness compared to those treated 

with 1% chitosan, indicating a clear difference between the two 

concentrations. Similar improvements in firmness associated 

with higher chitosan concentrations have been observed in 

studies involving tomatoes and papayas (76). A detailed study on 

the impact of chitosan coatings on plums showed that chitosan 

effectively preserved fruit firmness at around 78% and reduced 

weight loss by approximately 52% during storage, compared to 

untreated control groups. The key factor in these results was the 

reduction in respiration rates, which helped slow down the 

metabolic processes that typically cause deterioration. 

Additionally, the study highlighted that chitosan coatings not 

only maintained firmness but also enhanced the overall quality 

of the fruit (77). 

3.4. Impact of chitosan on Fruit Colour 

Chitosan coatings help to preserve the external colour of fully 

ripe strawberries by reducing moisture loss. These coatings 

significantly decrease moisture loss, preserving the fruit's 

firmness and overall quality by forming a semi-permeable barrier 

that slows respiration and minimizes exposure to environmental 

factors that cause color degradation. This helps maintain the 

bright red color, enhancing market value. Moreover, higher 

temperatures accentuate the color differences between coated 

and untreated strawberries, making the visual quality more 

pronounced. Chitosan also helps retain AA during storage, 

reducing enzymatic browning and further preserving color 

integrity. Variations in factors such as AA, sugar profiles, 

peroxidase activity and other phenolic compounds-key 

substrates for enzymatic browning-can lead to the formation of 

dark-colored pigments (78).  

3.5. Impact of chitosan on Antibacterial activity 

Antibacterial composite films made from chitosan or 

hydroxypropyl methylcellulose, enhanced with essential oils 

(such as lemon, tea tree, or bergamot), were applied to 

inoculated agar plates as a model for solid food systems. The 

study demonstrated that chitosan films enriched with essential 

oils effectively inhibited the growth of bacteria, including 

Escherichia coli. The antibacterial activity of the chitosan films 

was significantly enhanced against Gram-positive bacteria, with 

the essential oils proving more effective than the polymer alone. 

Moreover, there is considerable evidence suggesting that 

chitosan combined with essential oils can significantly extend 

the storage life of certain fruits and vegetables, including table 

grapes (79) and sweet peppers (80). 

 Pre-harvest applications of chitosan sprays offer 
significant benefits by enhancing fruit quality and reducing 

susceptibility to diseases. Research indicates that these 

treatments improve fruit firmness and reduce weight loss during 

storage, helping to maintain overall quality while acting as a 

protective barrier. Additionally, pre-harvest chitosan triggers 

plant defense mechanisms, decreasing infection rates from 

diseases such as Botrytis cinerea (81). Post-harvest chitosan 

treatments aim to preserve fruit quality after harvest. Chitosan 

coatings effectively reduce fungal rot and extend the shelf life of 

various fruits. The antimicrobial and antioxidant properties of 

these coatings inhibit pathogen growth and help maintain the 

fruit's physicochemical properties during storage. They are 

particularly effective in extending the shelf life of fruits like 

raspberries and strawberries, enhancing their marketability (82). 

While pre-harvest sprays focus on disease prevention and 

improving fruit quality, post-harvest applications help control 

decay and maintain freshness during storage. 

4. Novel material as edible coating 

Consumers are increasingly seeking healthier food options with 

preserved quality and environmentally friendly packaging, 

driving research into new methods and techniques. Significant 

efforts are being made to create and analyze novel materials that 

incorporate innovative components as binding agents. 

Additionally, new processing systems are being tested to 

optimize costs, functional properties and bio-based coatings 

(83). The findings related to these innovative materials are 

presented below. 

4.1. Whole Grain Flours 

Legume flours are ideal for film formation due to their high 

protein and starch content. Additionally, some legume flours are 

rich in fats, providing a valuable source of minerals, proteins and 

vitamins, often cost-effective price. Mung bean flour, known for 

its functional properties and biodegradability, is particularly 

suitable for various fruit applications. For example, edible 

coatings made from mung bean starch significantly enhance the 

shelf life of cut papaya by maintaining freshness and reducing 

spoilage. Furthermore, mung bean protein-based coatings 

effectively reduce weight loss and fungal contamination in fruits, 

extending their shelf life during storage. Research also shows 

that edible coatings based on mung bean flour help preserve the 

quality of various fruits by improving texture and moisture 

retention (84). 

4.2. Fruits and Vegetables Residues 

 Peel residue has been developed and characterized using a 

blend of flour from ripe banana peels and corn starch, as 

reported by de Faria et al. (85). By-products from citrus fruits also 

serve as excellent film-forming materials. In particular, grapefruit 

albedo has demonstrated beneficial functional properties in the 

films produced. Similar results were observed for films created 

from pomelo peel flour (86). 
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 4.3. Root plants 

Starches derived from tubers and roots, like sweet potatoes, 

cassava and potatoes, have shown promising results as coatings 

and edible films. Researchers are also exploring the potential of 

flour and starch from less common root crops for these 

applications. For example, achira flour has been investigated as 

an innovative material for film formation. Citrus fruits, including 

oranges and lemons, have shown significant preservation 

benefits when coated with green composite coatings made from 

root plant residues. These coatings effectively reduce 

postharvest spoilage rates and slow down fruit respiration, 

thereby extending the overall shelf life of citrus fruits. (87). 

4.4. Plant Gums 

 In recent years several naturally occurring gum exudates from 

plants, including gum Arabic, gum karaya, gum ghatti, mesquite 

gum and tragacanth gum, have drawn interest for potential 

applications. Gum Arabic, a historically significant natural gum 

with a lineage of over 5000 years, is well acknowledged for its use 

in sectors such as food, paint and textiles. It provides 

emulsification, stabilization, thickening and binding capabilities 

(88). In a specific study, Gum Arabic coatings were applied to 

strawberries to enhance their shelf life and preserve sensory 

qualities, including taste and texture, during cold storage. The 

results showed a significant reduction in spoilage and an 

extended storage duration, highlighting the potential of Gum 

Arabic as a natural preservative. Additionally, gum Arabic serves 

as a protective coating that extends the shelf life of food items, 

such as pecan nuts, by reducing their greasy and damp 

appearance. 

5. Advanced edible coating through nanotechnology 

Nanotechnology offers an advanced strategy for enhancing the 

delivery systems of targeted plant extracts, including vitamins, 

essential oils and polyphenols, known for their antibacterial and 

antioxidant properties. The submicron scale of these systems is 

used to modify gas transport characteristics and facilitate the 

release of natural compounds, while also improving mechanical 

performance, durability, transparency and antimicrobial activity. 

Nanotechnology significantly enhances edible coatings by 

incorporating nanoparticles that improve mechanical strength, 

create cohesive and resilient coatings and better withstand 

environmental stressors, thus reducing spoilage rates. The 

addition of inorganic nanoparticles enhances barrier properties 

against moisture and gas, slowing respiration and microbial 

growth and leading to an extended shelf life for fruits and 

vegetables. Metal-based nanoparticles, such as silver and zinc 

oxide, provide antimicrobial properties, enhancing food safety 

and shelf life. Recent advancements include the development of 

nanoemulsions to enhance the delivery of bioactive compounds, 

as well as composite coatings combining different nanoparticles, 

such as chitosan with silver, for improved microbial control and 

flexibility. Moreover, there is a growing trend toward using 

biodegradable materials in these coatings, with innovations that 

combine plant-derived compounds and nanomaterials to create 

eco-friendly options that enhance food safety while remaining 

fully biodegradable (89). Nanotechnology encompassed all 

systems with dimensions smaller than a micron. Carbon 

nanotubes have emerged as a promising addition to edible 

coatings for citrus fruits due to their remarkable properties. 

Research has shown that incorporating carbon nanotubes into 

these coatings improves their mechanical strength and barrier 

functionality, helping to retain the fruit's moisture while 

exhibiting antibacterial properties, which contribute to lower 

spoilage rates during storage (90).  

 Substances with significant potential for polymeric nano 

systems have been integrated into edible coatings alongside 

essential oils known for their antimicrobial properties. For 

example, nanoparticles of lemongrass oil and turmeric oil were 

combined to form alginate-chitosan nanocapsules. Additionally, 

lemongrass oil was encapsulated in cellulose acetate 

nanocapsules using the nanoprecipitation technique. This 

method creates nanocapsules that effectively concentrate active 

lemongrass oil while preserving its integrity and bioactivity. The 

cellulose acetate-based nanocapsules demonstrate strong 

antibacterial properties, making them ideal for food 

applications, particularly for extending the shelf life of perishable 

products like fruits. Furthermore, this encapsulation technique 

enhances the stability of the volatile compounds in lemongrass 

oil, thereby boosting its effectiveness in food packaging (91). 

Recently, the essential oil of Zataria multiflora was encapsulated 

in chitosan nanoparticles to produce a coating material that 

enhanced antioxidant activity and extended the shelf life of 

cucumbers (92). Traditional chitosan coating methods, such as 

dipping in chitosan gel, have been compared with nanoparticle 

applications. The use of nanoparticles on apples resulted in a 

non-continuous coating that reduced moisture content, 

increased surface interaction and exhibited a stronger 

antimicrobial effect against microorganisms (93). 

6. Different techniques of Edible coatings application  

An edible coating is a layer placed to a product's surface, which 

can be either a single layer or a multilayer film, composed of 

biological or chemical constituents (94). Presented herein are 

several techniques for the application of bio-based edible 

coatings to the surfaces of fruit.. 

6.1. Dipping 

The dipping technique is one of the simplest methods for 

applying edible coatings, involving three steps: immersion and 

dwelling, deposition and evaporation (95). After removing the 

excess coating solution, the food is typically dried either at room 

temperature or using a drying system. Research indicates that 

multiple factors such as immersion duration, withdrawal speed, 

number of dipping cycles, parameters of the coating solution 

(including density, viscosity and surface tension) and drying 

conditions substantially influence the density and morphology of 

coatings produced via dipping (96).  

6.2. Spraying 

The spraying technique involves dispersing fine droplets onto 

the outer surface of fruits utilizing a nozzle system. This approach 

includes three main types of spraying: air-assisted airless 

atomization, pressure atomization and air spray atomization. 

Spray technology allows for multilayer applications of interlayer 

solutions and uniform coatings with consistent thickness. Known 

for its low viscosity, this method produces thicker coatings 

compared to the dipping method. In the electro-spraying 

process, a strong electric field generates charged droplets, 

ranging from micrometric to sub-micrometric sizes, with a 

narrow size distribution. Spray coating is widely used to apply 
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edible coatings in a fine mist over the surfaces of fruits, making it 

ideal for irregularly shaped varieties like grapes and tomatoes. 

Studies focused on grape preservation have found that using 

biodegradable coatings applied through spraying help retain 

firmness and significantly reduce moisture loss. Similarly, 

research on tomatoes indicates that antimicrobial coatings 

applied via spraying effectively minimize spoilage and extend 

shelf life (97). 

6.3. Electro spraying 

Electro-spraying is an advanced technique for applying bio-

based substances to fruits and other food items. In this process, 

an electric field generates a fine mist or aerosol, which is then 

evenly deposited onto the fruit's surface. This method offers 

precise control over droplet size and distribution, making it 

particularly effective for coating irregularly shaped items. Electro

-spraying facilitates uniform coverage, reduces material wastage 

and allows for meticulous control of both coating thickness and 

composition. A recent study examined the antimicrobial effects 

of edible coatings applied via electro-spraying on various fruits, 

such as peaches and plums. Results indicated that these 

coatings, infused with bioactive compounds, effectively inhibited 

microbial growth, thereby extending the fruit’s shelf life. This 

research emphasized the advantages of electro-spraying, 

highlighting its capacity to form efficient coatings that also 

enhance food safety by reducing spoilage from bacteria and 

fungi (98). 

6.4. Panning 

The panning method, also known as pan coating, is a traditional 

technique for applying bio-based coatings to fruits and other 

food products. In this process, the product is placed in a rotating 

drum or pan, where the coating material is gradually added until 

reaching the desired thickness. The coating adhered to the fruit’s 

surface through repeated tumbling and agitation within the pan. 

Research has explored the application of panning techniques 

specifically for minimally processed fruits, showing that these 

coatings effectively prevent moisture loss and microbial 

contamination in items like sliced apples and packaged berries. 

The protective film formed by the coatings helps preserve fruit 

quality and enhances shelf stability, making this method 

beneficial for the food industry (99).  

6.5. Brushing 

The brushing method for applying bio-based edible coating to 

fruits involves manually spreading a prepared coating solution 

over the fruit's surface using a brush or similar tool. This method 

offers benefits such as precision and flexibility, making it 

particularly suitable for small-scale or artisanal fruit production. 

However, it requires higher labour input compared to other 

methods and is impractical for large-scale industrial 

applications. A recent study examined the effectiveness of hot 

water brushing (HWB) as a method for disinfecting organic citrus 

fruits, aiming to reduce postharvest decay. The results indicated 

that HWB effectively minimized fungal spoilage while preserving 

essential quality traits, such as firmness and flavour. This 

approach highlights how brushing, when combined with 

suitable treatments, can enhance fruit freshness practically and 

efficiently (100). 

 

7. Future perspective 

The future of edible coatings for extending fruit shelf life lies in 

leveraging nanotechnology to boost functionality, tailoring 

formulations for specific fruits, exploring innovative application 

methods, sourcing sustainable ingredients, incorporating active 

packaging and addressing scalability and commercialization 

challenges. This progress is driven by innovation, collaboration 

and sustainability, aiming to reduce food waste, strengthen food 

security and meet evolving consumer demands. Interdisciplinary 

collaboration and the adoption of emerging technologies will 

benefit all stakeholders in the fresh produce supply chain. 

 Careful monitoring of interactions between fruits and 

coatings is essential to prevent the inclusion of undesired 

compounds. Key objectives should include prioritizing 

nanotechnology, exploring cost-effective base materials and 

developing labour-efficient techniques. Emphasis should be 

placed on designing customized edible coatings compatible with 

a variety of products to maximize shelf life. Future research must 

address existing knowledge gaps and introduce innovative 

coating applications that improve functionality and sensory 

qualities. Additionally, assessing the technological readiness of 

bio-based coating solutions for broader adoption is crucial.   

 

Conclusion   

This review highlights the crucial role of chitosan coatings in 

extending the post-harvest life of fruit crops, emphasizing their 

advantages in sustainable storage management. Chitosan, a 

biopolymer, forms a protective edible matrix that minimizes 

water loss, inhibits microbial growth and reduces oxidative 

degradation while enhancing structural firmness and decreasing 

decay. Edible coatings, often formulated with chitosan, waxes 

and bioactive natural extracts, serve as effective barriers against 

moisture and microbes, helping to preserve the sensory, 

nutritional and visual qualities of fruits. When combined 

synergistically with other treatments, chitosan coatings further 

optimize post-harvest quality by reducing respiration rates and 

improving the stability and integrity of various fruits. 

 The integrated use of these bio-preservative treatments 

improves texture retention, reduces spoilage and maintains 

overall fruit quality. However, their effectiveness depends on 

factors such as fruit type, application method and storage 

conditions. Future research should focus on optimizing 

formulations and delivery techniques while evaluating their 

effectiveness across a broader range of fruit crops. Collectively, 

these innovative technologies offer eco-friendly, sustainable 

solutions for extending fruit shelf life, minimizing post-harvest 

losses and supporting global food security. 
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