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Abstract   

The study aimed to evaluate the effectiveness of Digital Soil Mapping (DSM) 

compared to traditional soil mapping methods, which can help implementing 

precise near-real-time smart agricultural applications. Conventional soil surveys, 

while informative, often lack detail and are labour-intensive. DSM addresses these 

limitations by integrating soil data with environmental covariates and classification 

algorithms. Four hundred forty soil profile data points were collected from various 

sources and grouped according to the USDA Soil Taxonomy at the soil subgroup 

level. Utilizing Landsat 8 satellite data and 33 environmental covariates, the decision 

tree algorithm generated 56 rules to predict soil classes. Key influencing factors 

identified include agro-climatic zones, physiography, mean annual minimum 

temperature, the green wavelength region of spectral data, rainfall and geology. The 

model was trained on 348 data points and validated on 92 data points, achieving a 

classification accuracy of 79.35% and a Kappa coefficient of 0.78, indicating high 

reliability. The study concludes that DSM is a viable alternative to conventional soil 

mapping methods, primarily using decision tree algorithms. It demonstrates that 

the accuracy of DSM can be significantly enhanced by incorporating a larger number 

of soil profile observations and relevant environmental covariates. The expert 

system approach provides a more detailed and up-to-date understanding of soil 

distribution, crucial for agricultural planning and natural resource management in 

the Coimbatore district, Western Tamil Nadu. 
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Introduction   

Soil is a fundamental source of life and the cornerstone of agriculture. The primary 

factors influencing soil formation include climate, organisms, topography, parent 

material and time (1). These factors contribute to the physical and chemical 

properties of soils, which vary widely (2). Understanding soil behaviour is crucial for 

all agronomic practices, as soil classification helps simplify complex soil properties, 

making it easier to group soils into similar categories for various uses (3). Soils are 

characterized not only by their horizons but also by spatial variations and changes in 

environmental characteristics and socio-economic factors (4). 

 Conventional soil surveys have long been a key tool for soil classification. 

However, these traditional methods are time-consuming, labour-intensive and 

often lack details (5). Additionally, conventional soil maps cannot reflect current soil 

conditions, as it is challenging to access all areas. Despite their usefulness, polygon-
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based mapping methods have limitations, such as delineating 

the spatial extent of soil boundaries and generalizing soil classes 

(6). Advancements in geostatistical methods, modelling 

approaches and algorithms have led to the development of 

pedometric mapping, also known as predictive soil mapping or 

digital soil mapping (DSM). This quantitative method captures 

spatial and temporal variations in soil types and properties (7). 

DSM helps in downscaling and updating the soil resource 

information by accounting the soil-forming factors prevailing the 

study area (8). 

 The advent of DSM commenced with the conceptualization 

of the soil forming factors for practical application as SCORPAN-

SSPFe (soil spatial prediction function with spatially 

autocorrelated errors) with the addition of spatial location (9). DSM 

replaces the conventional soil surveys employing the subjective 

decision of the surveyors and incorporates the pedological 

knowledge in every step of the modelling process (10). The 

expert system approach in DSM has the advantage of decision-

making with higher reliability of expert suggestions in complex 

situations. The main components of an expert system are: (1) 

Source Data: Information on soil data and other environmental 

covariates; (2) Knowledgebase: A set of facts and rules generated 

by soil scientists concerning soil variations. (3) Inference Engine: 

Combines the derived rule sets with the source data to give 

logical conclusions and predictions (11). Several machine 

learning algorithms have been used in pedometrics to improve 

digital soil maps, such as tree-based models (12, 13), neural 

networks (14), distance-based learners (15, 16), logistic 

regression (17) and support vector machines (14, 18). 

Considering the advantages posed by the tree-based ensemble 

models, most of the studies have included the tree-based 

models as the benchmark models for predicting the soil 

attributes (19, 20). The primary point is selecting the correct 

algorithm of the kind of data, which reflects on the accuracy of 

the final output. Decision trees are straight forward to 

understand and the outcome can be easily interpreted (13). 

 In India, soil surveys and mapping have been carried out 

at varying scales and intensities by different organizations, such 

as ICAR-National Bureau of Soil Survey and Land Use Planning 

(ICAR-NBSS & LUP), State Land Use Survey of India (SLUSI), 

National Remote Sensing Centre (NRSC) and State Agricultural 

Universities (SAU). The soil survey scale varies from 1:4,000 to 

1:250,000. The soil survey at scales of 1:50,000 and 1:250,000 was 

completed for the entire country by NRSC and ICAR-NBSS & LUP, 

respectively (21). Detailed soil surveys at the cadastral level were 

carried out by SLUSI and other state survey organizations at 

different scales (1:4000 to 1:10000) and completed for many 

research farms, watersheds and specific state blocks. Despite 

having comprehensive resources on soil maps, India lacks 

spatially continuous and quantitative soil information required 

for many modelling efforts. DSM can address this problem and 

provide a faster solution for quantitative soil class or soil property 

information (22). In general, the efficiency of most of the data 

mining models decreases as the number of class elements 

increases (23).  This study focused on predicting soil class maps 

at the subgroup taxonomic level using existing soil information, 

auxiliary data and decision tree models for the Western region of 

Tamil Nadu, Southern India. The findings help evaluate the 

model’s applicability in predicting the lower hierarchical 

information within the soil classification schema. Based on the 

model results obtained, the current model can be advocated for 

the bottom - up approach (24) of generating a soil information at 

different administrative levels. The derived soil maps updated 

near real time can help in advocating the required agricultural 

practices and can provide inputs to the smart farming systems.  

 

Materials and Methods 

Study area 

Coimbatore district is situated in the western part of Tamil Nadu, 

southern India. It lies between latitudes 11°24′23″N to 10°13′12″

N and longitudes 76°39′20″E to 77°18′00″E, covering an area of 

4,721.28 square kilometres (Fig. 1). The district is elevated at 411 

meters above mean sea level. Coimbatore has a tropical climate 

with significant variations in temperature and rainfall. The mean 

annual maximum temperature is recorded at 32.7°C, while the 

minimum is 21.5°C. The district receives total rainfall ranging 

from 550 mm to 900 mm, with an average annual rainfall of 647.2 

mm. The Northeast Monsoon contributes majorly to the district's 

rainfall. According to the USDA Soil Taxonomy (Soil Survey Staff, 

2014), the soils in the Coimbatore district are classified into five 

orders: Vertisols, Inceptisols, Entisols, Ultisols and Alfisols. The 

soil texture varies from fine clay to coarse sandy loam, with 

sandy clay loam occupying the largest area. The primary soil 

types include Red, Black, Brown, Alluvial, Colluvial and Forest 

soil. From a geological perspective, the Coimbatore district is 

underlined by a wide range of high-grade metamorphic rocks of 

the peninsular gneissic complex.  

Soil data collection and analysis 

A comprehensive dataset of 440 soil profile information points 

was compiled, sourced from existing soil maps (218 points) and 

actual profile observations (222 points). The actual profile 

observations were sourced from soil survey thesis/reports from 

the Department of Soil Science, Tamil Nadu Agricultural 

University and the Soil Survey and Land Use Organization (SS & 

LUO), Coimbatore, southern India. Utilizing ArcGIS 10.6 software, 

a random stratified sampling procedure was employed to extract 

182 points from the NRIS soil map and 36 points from the NBSS & 

LUP soil map. The physiographic map served as the constraining 

feature for this sampling process. All attribute information was 

meticulously stored in a database and subsequently compiled 

for further analysis. Considering the scope of the study, the 

current study concentrated on assessing the potential of the 

algorithm in delineating the soil class information rather than 

delving deep into the basic soil morphological properties of the 

study area.  

Environmental covariates 

The present study utilized a comprehensive set of ancillary data 

representing the key factors of soil formation: climate, 

organisms, relief and parent material (Table 2). The data 

information of such derived environmental covariates was 

detailed in the following subsections. Some of the derived 

environmental covariates are depicted in the Fig. 2a and Fig. 2b. 

Climate 

 Monthly minimum and maximum temperature data were 

sourced from the Worldclim 2 global climate data website 

(https://www.worldclim.org/data/worldclim21.html), available 

at a 30 arc-second spatial resolution (approximately 1 km²). This 

https://plantsciencetoday.online
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Fig. 1. Locational information of the study area. 

Fig. 2a. Environmental covariates derived for the study area. 

Fig. 2b. Environmental covariates derived for the study area. 
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data was processed to calculate the mean annual temperature 

using ArcGIS 10.6 software. Monthly rainfall data from 1971 to 

2018 were collected from 627 meteorological stations. This 

dataset was meticulously checked for outliers and processed 

using the inverse distance weighted (IDW) average method to 

generate high-resolution rainfall surface maps at a 30-meter 

spatial resolution. Furthermore, categorical data on Agro-

Climatic Zones and agroecological regions were incorporated, 

with these maps being rasterized based on their respective zone 

and region attributes. 

Organism 

The Landsat 8 satellite data, with a spatial resolution of 30 

meters, was downloaded from USGS Earth Explorer platform 

(https://earthexplorer.usgs.gov/). This dataset, characterized by 

significantly low cloud cover, was used for the study. The false 

color composite (FCC) of the satellite imagery comprises four 

spectral bands: green (0.53-0.59 µm), red (0.64-0.67 µm), near-

infrared (NIR) (0.85-0.88 µm) and short-wave infrared (SWIR) 

(1.57-1.65 µm). A three-level land use/land cover classification 

map of NRSC on a 1:50,000 scale was also included as a potential 

covariate for soil classification (25).  

Relief 

Topography or relief is characterized by using digital elevation 

models (DEM). In this study, the ASTER DEM with a spatial 

resolution of one arc-second (approximately 30 meters) was 

downloaded from the LP DAAC website and processed to derive 

various secondary terrain parameters. These parameters were 

derived using multiple algorithms that quantify the terrain's 

morphological, hydrological, ecological and other aspects. 

Eighteen terrain parameters were extracted from the DEM using 

morphometric tools available in SAGA GIS version 9.20 software. 

In addition to the derived terrain parameters, maps of 

physiographic units and the Western Ghats region were utilized 

as terrain-representing environmental covariates.  

Parent material 

The geology and geomorphology maps of Tamil Nadu, 

generated at a 1:50,000 scale by the Geological Survey of India 

(GSI) and the National Remote Sensing Centre (NRSC), were used 

to represent the parent material factor (26). These maps provide 

detailed classifications based on the origin of landforms and 

geological formations, offering critical insights into the physical 

structures and materials that influence soil formation. 

Layer stacking 

Discrete variables such as Land Use & Land Cover, Physiography, 

Geomorphology, Western Ghats, Geology, Agro-Climatic Zones 

(ACZ) and Agroecological Zones (AEZ) were then rasterized using 

the ArcGIS 10.6 Software. Further, all derived covariates were 

reprojected and resampled to UTM Zone 43 North projection and 

30 m resolution, respectively. Finally, these pre-processed 

environmental covariates were layer-stacked into a single 

composite file for subsequent analysis. 

Decision tree analysis 

See5 algorithm and file generation 

The overall methodology of the study and its workflow are 

depicted in the Fig. 3. The See5 algorithm is a powerful tool for 

deriving classification rules, making it suitable for soil 

classification studies (27). The algorithm generates decision trees 

that can be transformed into easily interpretable "if-then" rule 

sets. For the decision tree classification, the NLCD v2.08 sampling 

tool was used. This tool, provided the Multi-Resolution Land 

Characteristics Consortium (MRLC), is an add-on module for 

ERDAS Imagine 9.1 software. It facilitates the generation of the 

necessary files for the decision tree classifier, namely: (1) Name 

Fig. 3. Methodology flowchart adopted for classifying the subgroup classes of the study area. 

https://plantsciencetoday.online
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File: Describes the attributes and classes, acting as metadata for 

the decision tree classification; (2) Training File: Contains 

information on training cases from which classification rules are 

extracted, (3) Test File: Contains test cases used to evaluate the 

accuracy of the classifier. 

Model training and validation 

A random holdback procedure has been enabled to eliminate 

the spatial dependency of the datasets, with 348 points used for 

training and 92 points used for testing. The See5 algorithm was 

used to construct decision trees from the training dataset. The 

process involves recursively splitting the dataset from root to 

terminal nodes based on the most informative variables. This 

hierarchical structure allows soil classes to be classified based on 

the input variables. Pruning was applied to improve the accuracy 

of the decision trees. Pruning helps to reduce the decision tree's 

complexity by removing branches, which do not contribute 

significantly to the classification accuracy. In this study, a global 

pruning of 25% with a minimum of two cases were applied, that 

means branches with less than two cases were pruned and 25% 

of the least significant branches were removed to prevent 

overfitting. 

Generation of rule sets 

The decision trees generated by the See5 algorithm were 

transformed into "if-then" rule sets. These rule sets are easier to 

understand and interpret than complex tree structures. The rule 

is based on a formula, Statistics (n, lift x or n/m lift x), where n 

represents the number of training cases. In case m appears, it 

means the ones that do not belong to the classes predicted using 

the rulesets. Lift x's value can be calculated by dividing the 

accuracy estimated using the rules by its relative frequency. 

Using the Laplace ratio, (n-m+1)/(n+2), the accuracy of each rule 

can be determined with the conditions that satisfy the rules and 

give values between 0 and 1, which shows reasonable 

confidence (28).  

Image classification 

The rules generated by the See5 algorithm were used in ERDAS 

Imagine software for image classification. The NLCD tool 

facilitated the automatic generation of soil class layers and error/

confidence layers. This automation significantly reduced the 

complexity and time required for manual rule construction. 

Using the See5 classifier option available in the NLCD tool, the 

soil subgroup maps were produced based on the rules 

generated by the decision tree algorithm. 

Accuracy assessment 

Accuracy assessment is an important validation technique to 

compare the classes allocated in the classified image to their 

corresponding classes in the "test" file. This process involves 

calculating various accuracy measures from the error matrix, 

where the rows and columns represent the number of classes in 

the test data (29). Measures such as overall accuracy (OA), Kappa, 

user accuracy (UA) and producer accuracy (PA) were calculated 

with the help of the derived confusion matrix. The reliability and 

performance of the digital image classification were evaluated 

using these accuracy measures. 

 

 

Results  

Model performance  

To address the "black box" nature of the machine learning 

algorithms and facilitating the interpretability of the algorithm, 

decision trees that were converted into the rulesets were used to 

determine the covariate importance and evaluate the model's 

performance. A total of 56 rules (Supplementary material, Table 

1) were generated by the See5 algorithm for both training and 

test data. Model evaluation was primarily based on the tree size 

and the error percentage calculated for both training and test 

datasets. For the training datasets, the tree depicted a 

misclassification of 84 cases out of 348 given cases, with an error 

rate of 24.1% and 75.9% of correctly classified classes. Similarly, 

for test data, the tree misclassifies 19 of the 92 test cases, with an 

error rate of 20.7% and 79.3% of correctly classified classes.  

Covariate importance  

The percentage influence of the covariate predictors for the soil 

classification was identified using the rulesets generated. Out of 

33 environmental covariates, only 27 layers are considered for 

rule generation and the percentage of influence of such selected 

layers is calculated and depicted in Table 2.  

Digital soil subgroup mapping 

Using the rules generated from the See5 decision tree algorithm, 
the soil subgroup level map and the corresponding confidence 

maps were generated. (Fig. 4, 5). From the map output, it is 

evident that, out of 28 subgroups given for training, only 25 

subgroups were mapped and this algorithm failed to map three 

subgroups viz., Paralithic Ustorthents, Lithic Ustropepts and 

Typic Calciustepts. The soil subgroups under Inceptisols and 

Alfisols soil orders are well distributed throughout the district. 

From visually assessing the soil subgroup maps classified, it is 

evident that the study area depicted an heterogenous soil 

characteristics throughout the study area. Besides, spatial 

impressions of the environmental covariates on the final 

prediction maps were also visible in the eastern parts of the 

study area. Such restrictions can be mitigated by employing 

appropriate covariate selection techniques. Moreover, with the 

subgroup maps predicted at 30m resolution, the soil managerial 

activities can be complimented with the help of the soil class 

information. The subgroup confidence map shows the error 

percentage variation between the classified and reference maps 

and helps us identify the areas of improvement. The confidence 

map shows values varying from 12 to 100, meaning the error 

percentage in classified pixels varies from 0 to 88. 

Accuracy assessment  

The accuracy assessment was facilitated based on the confusion 

matrix derived (Supplementary material, Table 2) for the test 

datasets. Based on the derived metrics , the efficiency of the 

predicted digital soil map was analyzed. The User accuracy of 

subgroups such as Aquic Haplustalfs, Aquic Ustifluvents, 

Fluventic Ustropepts, Gypsic Haplusterts, Humic Dystrustepts, 

Lithic Haplustalfs, Lithic Haplustepts, Lithic Ustorthents, 

Oxyaquic Haplustepts, Paralithic Ustropepts, Typic Haplusterts, 

Typic Rhodustalfs and Ultic Haplustalfs are found to have higher 

percentage when compared to other subgroups. Four soil 

subgroups show zero per cent of user accuracy, which indicates 

that those classes were not classified correctly. Producer 
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 Table 1. List of environmental covariates utilized in the study 

Covariate Parameter Scale Type 

Climate 

Maximum Annual Temperature ⁰C / 30 sec N 

Minimum Annual Temperature ⁰C / 30 sec N 

Mean Annual Rainfall mm/ 30 sec N 

Agro-Climatic Zone 30 m C 

Agroecological Zone 30 m C 

Organisms 

Land Use and Land Cover Map 1:50000 scale C 

Landsat 8 – Green 30 m N 

Landsat 8 – Red 30 m N 

Landsat 8 – NIR 30 m N 

Landsat 8 – SWIR 30 m N 

Relief 

Elevation (SRTM DEM) 30 m N 

Hill Shading 30 m N 

Aspect 30 m N 

Convergence Index 30 m N 

General Curvature 30 m N 

Longitudinal Curvature 30 m N 

Slope length steepness (LS) factor 30 m N 

Maximum Curvature 30 m N 

Mid Slope Position 30 m N 

Minimum Curvature 30 m N 

Plan Curvature 30 m N 

Profile Curvature 30 m N 

Slope Gradient 30 m N 

Tangential Curvature 30 m N 

Terrain Ruggedness Index 30 m N 

Topographic Wetness Index 30 m N 

Total Catchment Area 30 m N 

Total Curvature 30 m N 

Valley Depth 30 m N 

Western Ghats 30 m C 

Physiography 1:50000 scale C 

Parent Material 
Geomorphology 1:50000 scale C 

Geology 1:50000 scale C 

Note:  N- Numerical Predictors; C- Categorical Predictors; ⁰C- degree celcius; mm – millimeter; m - meter 

Table 2. Percentage influence of the covariate variables implemented for DSM 

Sl. No. Covariates Attribute usage (%) Sl. No. Covariates Attribute usage (%) 

1 Agro Climatic Zone 97 15 Elevation 9 

2 Physiography 78 16 Land use Land cover 9 

3 Mean annual minimum temperature 64 17 Agroecological Zone 8 

4 Spectral data -Green wavelength 56 18 Plan Curvature 4 

5 Rainfall 47 19 Profile Curvature 3 

6 Geology 46 20 Slope length and slope 3 

7 Mean annual maximum temperature 24 21 Minimal Curvature 3 

8 Geomorphology 22 22 Slope (in degree) 3 

9 Spectral data - Near-Infrared 18 23 Convergence Index 2 

10 Mid-slope position 18 24 Maximal Curvature 2 

11 Total Catchment Area 15 25 Analytical Hill Shading 1 

12 Spectral data –Blue wavelength 15 26 Total Curvature 1 

13 Valley Depth 12 27 Spectral data –Red 1 

14 General Curvature 10       

https://plantsciencetoday.online
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accuracy for four subgroups namely, Lithic Ustropepts, Rhodic 

Paleustalfs, Typic Calciustepts and Paralithic Ustorthents were 

found to have a higher percentage of omission error, which 

indicates that these classes have a higher probability of 

misclassification. Out of 92 validation points, 73 were correctly 

classified. The overall accuracy of the map is 79.35%, indicating 

that the soil classes were almost correctly classified. Kappa 

coefficient was estimated to be 0.78, indicating very good 

classifier's performance (30). 

 

Discussion 

Visual assessment 

The predicted soil class map displayed a greater diversity in soil 

class elements, with the diversity decreasing from north to south. 

The model’s increased efficiency in predicting soil-

environmental features is evident from the higher diversification 

of the soil classes in the areas of anthropogenic activities and 

lower diversification in the ghat regions. Typic Haplustalfs, 

belonging to the Alfisol soil order, covered the largest 

proportions of the study area. The algorithm excluded three 

classes of the soil subgroup from the soil classification. 

Discrepancies in spatial discontinuity of the class elements were 

evident in the central southern region of the predicted soil class 

map. This ambiguity in the feature space of the predicted raster 

may result from the propagation of the distinct boundary 

impressions of the categorical predictor. Although 

countermeasures such as elimination (31) or replacement could 

be considered, the environmental covariates were retained due 

to their importance in the model application.  

 

Model evaluation and covariate importance  

The performance of the model and the efficiency of the classified 

maps are generally based on the nature of the input datasets, 

sampling strategy, model characteristics, visual inspection and 

evaluation metrics proposed for efficacy assessment (32, 33). In 

general, the performance of the same or a particular algorithm 

may vary with other studies. Though speculating the reasons 

behind the difference is difficult, in most cases, differing 

topographical contexts and other related parameters might be 

the reason for the contrasting behaviour of the algorithms. 

Further, the algorithm's efficiency was assessed based on the 

test datasets utilized for deriving the evaluation metrics.  

 Rather than opting for a single evaluation metric, the 
study proposed the model's efficiency through four evaluation 

metrics concentrating on the model and each categorical 

element's performance in classification. From the overall 

accuracy and kappa statistics computed, it could be inferred that 

the model performed optimally in classifying the soil classes. 

When compared to other class prediction studies involving the 

See5 (C5.0) algorithm (34), the soil class predictions yielded 

overall accuracies of 83% (Order), 80% (subgreat group) and 71% 

(Family). Most DSM studies (14, 35, 36) indicated the efficiency of 

tree-based models in classifying or predicting soil attributes. The 

overall accuracy of the DSM maps recommended for each 

taxonomic level ranged from approximately 70% (37, 38) 

coinciding with the results obtained (79.35%).  

 The primary limitation of the model is its failure to 

accommodate all the subgroup category classes. This limitation 

may be attributed to the low sampling frequency of certain 

classes and the propagation of misclassification errors arising 

from insufficient observations to effectively segregate the feature 

Fig. 4. Digital soil subgroup map of Coimbatore district.  Fig. 5. Confidence map generated for classified digital soil map.  
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space (39). In most studies, the accuracy of the class predictions 

decreased with increasing number of classes (lower taxonomic 

group) to be classified (23, 24, 40, 41). However, this study 

successfully delineated the soil subgroup class variables by 

achieving an optimal overall accuracy measure. Consistent with 

most studies, climate covariates contributed the most to the soil 

class prediction, followed by the physiography and parent 

material covariates. The inclusion of climatic variables can be 

related to the prevalence of the monsoon conditions over the 

study region. The highest influence exhibited by the climatic and 

parent material parameters must be scrutinized, as only five 

climatic variables and three parent material variables were 

included in the model application. Such usage of the covariate 

attributes to the class predictions might indicate the inclusion of 

the genetic characteristic of the soil (Parent material) as well as 

its changes instigated by the climatic parameters. 

 

Conclusion 

Digital Soil Mapping enables the downscaling and updating soil 

polygons, originally delineated through conventional soil 

mapping procedures, with near real-time soil information. The 

derived digital soil subgroup maps can be used to implement the 

policy and farm-level decisions, with an added assessment of the 

immediate changes in the soil's chemical properties. Knowledge 

of the soil class information can promote immediate responses 

and efficient management activities. Although obtaining an 

efficient DSM methodology is still in development, the increased 

efficiency of the method can be achieved through the implication 

of pedological knowledge at each step of the mapping process. 

Furthermore, critical areas that require scrutiny in DSM 

methodologies include the quality and quantity of input 

datasets, sampling strategy, covariate selection, hyperparameter 

optimization, evaluation metric and covariate importance. Thus, 

the accuracy of the derived soil map demonstrates that the 

implemented algorithm efficiently predicted the soil class 

information.   
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