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Abstract

The study aimed to evaluate the effectiveness of Digital Soil Mapping (DSM)
compared to traditional soil mapping methods, which can help implementing
precise near-real-time smart agricultural applications. Conventional soil surveys,
while informative, often lack detail and are labour-intensive. DSM addresses these
limitations by integrating soil data with environmental covariates and classification
algorithms. Four hundred forty soil profile data points were collected from various
sources and grouped according to the USDA Soil Taxonomy at the soil subgroup
level. Utilizing Landsat 8 satellite data and 33 environmental covariates, the decision
tree algorithm generated 56 rules to predict soil classes. Key influencing factors
identified include agro-climatic zones, physiography, mean annual minimum
temperature, the green wavelength region of spectral data, rainfall and geology. The
model was trained on 348 data points and validated on 92 data points, achieving a
classification accuracy of 79.35% and a Kappa coefficient of 0.78, indicating high
reliability. The study concludes that DSM is a viable alternative to conventional soil
mapping methods, primarily using decision tree algorithms. It demonstrates that
the accuracy of DSM can be significantly enhanced by incorporating a larger number
of soil profile observations and relevant environmental covariates. The expert
system approach provides a more detailed and up-to-date understanding of soil
distribution, crucial for agricultural planning and natural resource management in
the Coimbatore district, Western Tamil Nadu.
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Introduction

Soil is a fundamental source of life and the cornerstone of agriculture. The primary
factors influencing soil formation include climate, organisms, topography, parent
material and time (1). These factors contribute to the physical and chemical
properties of soils, which vary widely (2). Understanding soil behaviour is crucial for
all agronomic practices, as soil classification helps simplify complex soil properties,
making it easier to group soils into similar categories for various uses (3). Soils are
characterized not only by their horizons but also by spatial variations and changes in
environmental characteristics and socio-economic factors (4).

Conventional soil surveys have long been a key tool for soil classification.
However, these traditional methods are time-consuming, labour-intensive and
often lack details (5). Additionally, conventional soil maps cannot reflect current soil
conditions, as it is challenging to access all areas. Despite their usefulness, polygon-
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based mapping methods have limitations, such as delineating
the spatial extent of soil boundaries and generalizing soil classes
(6). Advancements in geostatistical methods, modelling
approaches and algorithms have led to the development of
pedometric mapping, also known as predictive soil mapping or
digital soil mapping (DSM). This quantitative method captures
spatial and temporal variations in soil types and properties (7).
DSM helps in downscaling and updating the soil resource
information by accounting the soil-forming factors prevailing the
study area (8).

The advent of DSM commenced with the conceptualization
of the soil forming factors for practical application as SCORPAN-
SSPFe (soil spatial prediction function with spatially
autocorrelated errors) with the addition of spatial location (9). DSM
replaces the conventional soil surveys employing the subjective
decision of the surveyors and incorporates the pedological
knowledge in every step of the modelling process (10). The
expert system approach in DSM has the advantage of decision-
making with higher reliability of expert suggestions in complex
situations. The main components of an expert system are: (1)
Source Data: Information on soil data and other environmental
covariates; (2) Knowledgebase: A set of facts and rules generated
by soil scientists concerning soil variations. (3) Inference Engine:
Combines the derived rule sets with the source data to give
logical conclusions and predictions (11). Several machine
learning algorithms have been used in pedometrics to improve
digital soil maps, such as tree-based models (12, 13), neural
networks (14), distance-based learners (15, 16), logistic
regression (17) and support vector machines (14, 18).
Considering the advantages posed by the tree-based ensemble
models, most of the studies have included the tree-based
models as the benchmark models for predicting the soil
attributes (19, 20). The primary point is selecting the correct
algorithm of the kind of data, which reflects on the accuracy of
the final output. Decision trees are straight forward to
understand and the outcome can be easily interpreted (13).

In India, soil surveys and mapping have been carried out
at varying scales and intensities by different organizations, such
as ICAR-National Bureau of Soil Survey and Land Use Planning
(ICAR-NBSS & LUP), State Land Use Survey of India (SLUSI),
National Remote Sensing Centre (NRSC) and State Agricultural
Universities (SAU). The soil survey scale varies from 1:4,000 to
1:250,000. The soil survey at scales of 1:50,000 and 1:250,000 was
completed for the entire country by NRSC and ICAR-NBSS & LUP,
respectively (21). Detailed soil surveys at the cadastral level were
carried out by SLUSI and other state survey organizations at
different scales (1:4000 to 1:10000) and completed for many
research farms, watersheds and specific state blocks. Despite
having comprehensive resources on soil maps, India lacks
spatially continuous and quantitative soil information required
for many modelling efforts. DSM can address this problem and
provide a faster solution for quantitative soil class or soil property
information (22). In general, the efficiency of most of the data
mining models decreases as the number of class elements
increases (23). This study focused on predicting soil class maps
at the subgroup taxonomic level using existing soil information,
auxiliary data and decision tree models for the Western region of
Tamil Nadu, Southern India. The findings help evaluate the
model’s applicability in predicting the lower hierarchical
information within the soil classification schema. Based on the
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model results obtained, the current model can be advocated for
the bottom - up approach (24) of generating a soil information at
different administrative levels. The derived soil maps updated
near real time can help in advocating the required agricultural
practices and can provide inputs to the smart farming systems.

Materials and Methods
Study area

Coimbatore district is situated in the western part of Tamil Nadu,
southern India. It lies between latitudes 11°24'23"N to 10°13'12"
N and longitudes 76°39'20"E to 77°18'00"E, covering an area of
4,721.28 square kilometres (Fig. 1). The district is elevated at 411
meters above mean sea level. Coimbatore has a tropical climate
with significant variations in temperature and rainfall. The mean
annual maximum temperature is recorded at 32.7°C, while the
minimum is 21.5°C. The district receives total rainfall ranging
from 550 mm to 900 mm, with an average annual rainfall of 647.2
mm. The Northeast Monsoon contributes majorly to the district's
rainfall. According to the USDA Soil Taxonomy (Soil Survey Staff,
2014), the soils in the Coimbatore district are classified into five
orders: Vertisols, Inceptisols, Entisols, Ultisols and Alfisols. The
soil texture varies from fine clay to coarse sandy loam, with
sandy clay loam occupying the largest area. The primary soil
types include Red, Black, Brown, Alluvial, Colluvial and Forest
soil. From a geological perspective, the Coimbatore district is
underlined by a wide range of high-grade metamorphic rocks of
the peninsular gneissic complex.

Soil data collection and analysis

A comprehensive dataset of 440 soil profile information points
was compiled, sourced from existing soil maps (218 points) and
actual profile observations (222 points). The actual profile
observations were sourced from soil survey thesis/reports from
the Department of Soil Science, Tamil Nadu Agricultural
University and the Soil Survey and Land Use Organization (SS &
LUO), Coimbatore, southern India. Utilizing ArcGIS 10.6 software,
arandom stratified sampling procedure was employed to extract
182 points from the NRIS soil map and 36 points from the NBSS &
LUP soil map. The physiographic map served as the constraining
feature for this sampling process. All attribute information was
meticulously stored in a database and subsequently compiled
for further analysis. Considering the scope of the study, the
current study concentrated on assessing the potential of the
algorithm in delineating the soil class information rather than
delving deep into the basic soil morphological properties of the
study area.

Environmental covariates

The present study utilized a comprehensive set of ancillary data
representing the key factors of soil formation: climate,
organisms, relief and parent material (Table 2). The data
information of such derived environmental covariates was
detailed in the following subsections. Some of the derived
environmental covariates are depicted in the Fig. 2a and Fig. 2b.

Climate

Monthly minimum and maximum temperature data were
sourced from the Worldclim 2 global climate data website
(https://www.worldclim.org/data/worldclim21.html), available
at a 30 arc-second spatial resolution (approximately 1 km?). This
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data was processed to calculate the mean annual temperature
using ArcGIS 10.6 software. Monthly rainfall data from 1971 to
2018 were collected from 627 meteorological stations. This
dataset was meticulously checked for outliers and processed
using the inverse distance weighted (IDW) average method to
generate high-resolution rainfall surface maps at a 30-meter
spatial resolution. Furthermore, categorical data on Agro-
Climatic Zones and agroecological regions were incorporated,
with these maps being rasterized based on their respective zone
and regjon attributes.

Organism

The Landsat 8 satellite data, with a spatial resolution of 30
meters, was downloaded from USGS Earth Explorer platform
(https://earthexplorer.usgs.gov/). This dataset, characterized by
significantly low cloud cover, was used for the study. The false
color composite (FCC) of the satellite imagery comprises four
spectral bands: green (0.53-0.59 um), red (0.64-0.67 um), near-
infrared (NIR) (0.85-0.88 um) and short-wave infrared (SWIR)
(1.57-1.65 um). A three-level land use/land cover classification
map of NRSC on a 1:50,000 scale was also included as a potential
covariate for soil classification (25).

Relief

Topography or relief is characterized by using digital elevation
models (DEM). In this study, the ASTER DEM with a spatial
resolution of one arc-second (approximately 30 meters) was
downloaded from the LP DAAC website and processed to derive
various secondary terrain parameters. These parameters were
derived using multiple algorithms that quantify the terrain's
morphological, hydrological, ecological and other aspects.
Eighteen terrain parameters were extracted from the DEM using
morphometric tools available in SAGA GIS version 9.20 software.
In addition to the derived terrain parameters, maps of
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physiographic units and the Western Ghats region were utilized
as terrain-representing environmental covariates.

Parent material

The geology and geomorphology maps of Tamil Nadu,
generated at a 1:50,000 scale by the Geological Survey of India
(GSI) and the National Remote Sensing Centre (NRSC), were used
to represent the parent material factor (26). These maps provide
detailed classifications based on the origin of landforms and
geological formations, offering critical insights into the physical
structures and materials that influence soil formation.

Layer stacking

Discrete variables such as Land Use & Land Cover, Physiography,
Geomorphology, Western Ghats, Geology, Agro-Climatic Zones
(ACZ) and Agroecological Zones (AEZ) were then rasterized using
the ArcGIS 10.6 Software. Further, all derived covariates were
reprojected and resampled to UTM Zone 43 North projection and
30 m resolution, respectively. Finally, these pre-processed
environmental covariates were layer-stacked into a single
composite file for subsequent analysis.

Decision tree analysis
See5 algorithm and file generation

The overall methodology of the study and its workflow are
depicted in the Fig. 3. The See5 algorithm is a powerful tool for
deriving classification rules, making it suitable for soil
classification studies (27). The algorithm generates decision trees
that can be transformed into easily interpretable "if-then" rule
sets. For the decision tree classification, the NLCD v2.08 sampling
tool was used. This tool, provided the Multi-Resolution Land
Characteristics Consortium (MRLC), is an add-on module for
ERDAS Imagine 9.1 software. It facilitates the generation of the
necessary files for the decision tree classifier, namely: (1) Name

DIGITAL SOIL MAPPING :

| Existing soil profile Observations

| Environmental Covariates I

Legacy Soil Maps and other

sources +

(Stratified Random Sampling) |

ERDAS Imagine 9.1 Software

Resampling and Re-projection

B

NLCD v2.08 Sampling tool

|‘—

y

Generation of rulesets

Covariate
Importance

h 4

Model Training

y
| | Model Validation

Accuracy
Assessment
(Validation

datasets)

T Soil subgroup and
confidence map

G—i Spatial Model Fitting and Classification

Fig. 3. Methodology flowchart adopted for classifying the subgroup classes of the study area.
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File: Describes the attributes and classes, acting as metadata for
the decision tree classification; (2) Training File: Contains
information on training cases from which classification rules are
extracted, (3) Test File: Contains test cases used to evaluate the
accuracy of the classifier.

Model training and validation

A random holdback procedure has been enabled to eliminate
the spatial dependency of the datasets, with 348 points used for
training and 92 points used for testing. The See5 algorithm was
used to construct decision trees from the training dataset. The
process involves recursively splitting the dataset from root to
terminal nodes based on the most informative variables. This
hierarchical structure allows soil classes to be classified based on
the input variables. Pruning was applied to improve the accuracy
of the decision trees. Pruning helps to reduce the decision tree's
complexity by removing branches, which do not contribute
significantly to the classification accuracy. In this study, a global
pruning of 25% with a minimum of two cases were applied, that
means branches with less than two cases were pruned and 25%
of the least significant branches were removed to prevent
overfitting.

Generation of rule sets

The decision trees generated by the See5 algorithm were
transformed into "if-then" rule sets. These rule sets are easier to
understand and interpret than complex tree structures. The rule
is based on a formula, Statistics (n, lift x or n/m lift x), where n
represents the number of training cases. In case m appears, it
means the ones that do not belong to the classes predicted using
the rulesets. Lift x's value can be calculated by dividing the
accuracy estimated using the rules by its relative frequency.
Using the Laplace ratio, (n-m+1)/(n+2), the accuracy of each rule
can be determined with the conditions that satisfy the rules and
give values between 0 and 1, which shows reasonable
confidence (28).

Image classification

The rules generated by the See5 algorithm were used in ERDAS
Imagine software for image classification. The NLCD tool
facilitated the automatic generation of soil class layers and error/
confidence layers. This automation significantly reduced the
complexity and time required for manual rule construction.
Using the See5 classifier option available in the NLCD tool, the
soil subgroup maps were produced based on the rules
generated by the decision tree algorithm.

Accuracy assessment

Accuracy assessment is an important validation technique to
compare the classes allocated in the classified image to their
corresponding classes in the "test" file. This process involves
calculating various accuracy measures from the error matrix,
where the rows and columns represent the number of classes in
the test data (29). Measures such as overall accuracy (OA), Kappa,
user accuracy (UA) and producer accuracy (PA) were calculated
with the help of the derived confusion matrix. The reliability and
performance of the digital image classification were evaluated
using these accuracy measures.

Results
Model performance

To address the "black box" nature of the machine learning
algorithms and facilitating the interpretability of the algorithm,
decision trees that were converted into the rulesets were used to
determine the covariate importance and evaluate the model's
performance. A total of 56 rules (Supplementary material, Table
1) were generated by the See5 algorithm for both training and
test data. Model evaluation was primarily based on the tree size
and the error percentage calculated for both training and test
datasets. For the training datasets, the tree depicted a
misclassification of 84 cases out of 348 given cases, with an error
rate of 24.1% and 75.9% of correctly classified classes. Similarly,
for test data, the tree misclassifies 19 of the 92 test cases, with an
error rate of 20.7% and 79.3% of correctly classified classes.

Covariate importance

The percentage influence of the covariate predictors for the soil
classification was identified using the rulesets generated. Out of
33 environmental covariates, only 27 layers are considered for
rule generation and the percentage of influence of such selected
layersis calculated and depicted in Table 2.

Digital soil subgroup mapping

Using the rules generated from the See5 decision tree algorithm,
the soil subgroup level map and the corresponding confidence
maps were generated. (Fig. 4, 5). From the map output, it is
evident that, out of 28 subgroups given for training, only 25
subgroups were mapped and this algorithm failed to map three
subgroups viz., Paralithic Ustorthents, Lithic Ustropepts and
Typic Calciustepts. The soil subgroups under Inceptisols and
Alfisols soil orders are well distributed throughout the district.
From visually assessing the soil subgroup maps classified, it is
evident that the study area depicted an heterogenous soil
characteristics throughout the study area. Besides, spatial
impressions of the environmental covariates on the final
prediction maps were also visible in the eastern parts of the
study area. Such restrictions can be mitigated by employing
appropriate covariate selection techniques. Moreover, with the
subgroup maps predicted at 30m resolution, the soil managerial
activities can be complimented with the help of the soil class
information. The subgroup confidence map shows the error
percentage variation between the classified and reference maps
and helps us identify the areas of improvement. The confidence
map shows values varying from 12 to 100, meaning the error
percentage in classified pixels varies from 0 to 88.

Accuracy assessment

The accuracy assessment was facilitated based on the confusion
matrix derived (Supplementary material, Table 2) for the test
datasets. Based on the derived metrics , the efficiency of the
predicted digital soil map was analyzed. The User accuracy of
subgroups such as Aquic Haplustalfs, Aquic Ustifluvents,
Fluventic Ustropepts, Gypsic Haplusterts, Humic Dystrustepts,
Lithic Haplustalfs, Lithic Haplustepts, Lithic Ustorthents,
Oxyaquic Haplustepts, Paralithic Ustropepts, Typic Haplusterts,
Typic Rhodustalfs and Ultic Haplustalfs are found to have higher
percentage when compared to other subgroups. Four soil
subgroups show zero per cent of user accuracy, which indicates
that those classes were not classified correctly. Producer
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Table 1. List of environmental covariates utilized in the study

Parent Material

Geomorphology

1:50000 scale

Covariate Parameter Scale Type
Maximum Annual Temperature °C /30sec N
Minimum Annual Temperature °C /30sec N
Climate Mean Annual Rainfall mm/ 30 sec N
Agro-Climatic Zone 30m C
Agroecological Zone 30m C
Land Use and Land Cover Map 1:50000 scale C
Landsat 8 - Green 30m N
Organisms Landsat 8 - Red 30m N
Landsat 8 - NIR 30m N
Landsat 8 - SWIR 30m N
Elevation (SRTM DEM) 30m N
Hill Shading 30m N
Aspect 30m N
Convergence Index 30m N
General Curvature 30m N
Longitudinal Curvature 30m N
Slope length steepness (LS) factor 30m N
Maximum Curvature 30m N
Mid Slope Position 30m N
Minimum Curvature 30m N
Relief Plan Curvature 30m N
Profile Curvature 30m N
Slope Gradient 30m N
Tangential Curvature 30m N
Terrain Ruggedness Index 30m N
Topographic Wetness Index 30m N
Total Catchment Area 30m N
Total Curvature 30m N
Valley Depth 30m N
Western Ghats 30m C
Physiography 1:50000 scale C
C
C

Geology

1:50000 scale

Note: N- Numerical Predictors; C- Categorical Predictors; °C- degree celcius; mm - millimeter; m - meter

Table 2. Percentage influence of the covariate variables implemented for DSM

Sl. No. Covariates Attribute usage (%) Sl. No. Covariates Attribute usage (%)
1 Agro Climatic Zone 97 15 Elevation 9
2 Physiography 78 16 Land use Land cover 9
3 Mean annual minimum temperature 64 17 Agroecological Zone 8
4 Spectral data -Green wavelength 56 18 Plan Curvature 4
5 Rainfall 47 19 Profile Curvature 3
6 Geology 46 20 Slope length and slope 3
7 Mean annual maximum temperature 24 21 Minimal Curvature 3
8 Geomorphology 22 22 Slope (in degree) 3
9 Spectral data - Near-Infrared 18 23 Convergence Index 2
10 Mid-slope position 18 24 Maximal Curvature 2
11 Total Catchment Area 15 25 Analytical Hill Shading 1
12 Spectral data -Blue wavelength 15 26 Total Curvature 1
13 Valley Depth 12 27 Spectral data -Red 1
14 General Curvature 10
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Fig. 4. Digital soil subgroup map of Coimbatore district.

accuracy for four subgroups namely, Lithic Ustropepts, Rhodic
Paleustalfs, Typic Calciustepts and Paralithic Ustorthents were
found to have a higher percentage of omission error, which
indicates that these classes have a higher probability of
misclassification. Out of 92 validation points, 73 were correctly
classified. The overall accuracy of the map is 79.35%, indicating
that the soil classes were almost correctly classified. Kappa
coefficient was estimated to be 0.78, indicating very good
classifier's performance (30).

Discussion
Visual assessment

The predicted soil class map displayed a greater diversity in soil
class elements, with the diversity decreasing from north to south.
The model's increased efficiency in predicting soil-
environmental features is evident from the higher diversification
of the soil classes in the areas of anthropogenic activities and
lower diversification in the ghat regions. Typic Haplustalfs,
belonging to the Alfisol soil order, covered the largest
proportions of the study area. The algorithm excluded three
classes of the soil subgroup from the soil classification.
Discrepancies in spatial discontinuity of the class elements were
evident in the central southern region of the predicted soil class
map. This ambiguity in the feature space of the predicted raster
may result from the propagation of the distinct boundary
impressions of the categorical predictor. Although
countermeasures such as elimination (31) or replacement could
be considered, the environmental covariates were retained due
to their importance in the model application.
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Fig. 5. Confidence map generated for classified digital soil map.

Model evaluation and covariate importance

The performance of the model and the efficiency of the classified
maps are generally based on the nature of the input datasets,
sampling strategy, model characteristics, visual inspection and
evaluation metrics proposed for efficacy assessment (32, 33). In
general, the performance of the same or a particular algorithm
may vary with other studies. Though speculating the reasons
behind the difference is difficult, in most cases, differing
topographical contexts and other related parameters might be
the reason for the contrasting behaviour of the algorithms.
Further, the algorithm's efficiency was assessed based on the
test datasets utilized for deriving the evaluation metrics.

Rather than opting for a single evaluation metric, the
study proposed the model's efficiency through four evaluation
metrics concentrating on the model and each categorical
element's performance in classification. From the overall
accuracy and kappa statistics computed, it could be inferred that
the model performed optimally in classifying the soil classes.
When compared to other class prediction studies involving the
See5 (C5.0) algorithm (34), the soil class predictions yielded
overall accuracies of 83% (Order), 80% (subgreat group) and 71%
(Family). Most DSM studies (14, 35, 36) indicated the efficiency of
tree-based models in classifying or predicting soil attributes. The
overall accuracy of the DSM maps recommended for each
taxonomic level ranged from approximately 70% (37, 38)
coinciding with the results obtained (79.35%).

The primary limitation of the model is its failure to
accommodate all the subgroup category classes. This limitation
may be attributed to the low sampling frequency of certain
classes and the propagation of misclassification errors arising
from insufficient observations to effectively segregate the feature
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space (39). In most studies, the accuracy of the class predictions
decreased with increasing number of classes (lower taxonomic
group) to be classified (23, 24, 40, 41). However, this study
successfully delineated the soil subgroup class variables by
achieving an optimal overall accuracy measure. Consistent with
most studies, climate covariates contributed the most to the soil
class prediction, followed by the physiography and parent
material covariates. The inclusion of climatic variables can be
related to the prevalence of the monsoon conditions over the
study region. The highest influence exhibited by the climatic and
parent material parameters must be scrutinized, as only five
climatic variables and three parent material variables were
included in the model application. Such usage of the covariate
attributes to the class predictions might indicate the inclusion of
the genetic characteristic of the soil (Parent material) as well as
its changes instigated by the climatic parameters.

Conclusion

Digital Soil Mapping enables the downscaling and updating soil
polygons, originally delineated through conventional soil
mapping procedures, with near real-time soil information. The
derived digital soil subgroup maps can be used to implement the
policy and farm-level decisions, with an added assessment of the
immediate changes in the soil's chemical properties. Knowledge
of the soil class information can promote immediate responses
and efficient management activities. Although obtaining an
efficient DSM methodology is still in development, the increased
efficiency of the method can be achieved through the implication
of pedological knowledge at each step of the mapping process.
Furthermore, critical areas that require scrutiny in DSM
methodologies include the quality and quantity of input
datasets, sampling strategy, covariate selection, hyperparameter
optimization, evaluation metric and covariate importance. Thus,
the accuracy of the derived soil map demonstrates that the
implemented algorithm efficiently predicted the soil class
information.
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