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Abstract  

In this study, the authors try to emphasize how Q-learning, a model-free 

reinforcement learning (RL) technique can be used for optimizing routing in 

a grid-based environment. This study aims to assess the efficacy of         

Q-learning in enhancing routing for agricultural supply chains, investigate 

its flexibility in dynamic environments, and compare its performance across 

several real-world scenarios. In this specific case of the banana chain, an 

agent is moving through various entities in the system - from local growers 

to small traders and warehouses. It models the routing problem as a Markov 

Decision Process (MDP) and the goal is to optimize cumulative reward. Sev-

eral possible cases are simulated, e.g. the finding of an optimal route for a 

given visit sequence that optimizes charging time and non-drivable paths 

left over when unexpected blockages occur to avoid energy wear penalties 

as well as how to best save costs; These results demonstrate the adaptabil-

ity and durability of Q-learning in dynamic environments to obtain near-

optimal solutions across diverse settings. Indeed, the present study adds to 

a growing body of research on the application of RL in logistics and supply 

chain management, highlighting its potential to enhance decision-making 

in complex and variable environments. The findings suggest that Q-learning 

can effectively balance multiple objectives, such as minimizing distance, 

reducing costs, and avoiding high-wear areas, making it a valuable tool for 

optimizing routing in real-world supply chains. Future work will explore 

broader applications and other RL algorithms in similar contexts.   
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Introduction  

The rapid advancements in artificial intelligence (AI) and machine learning 

(ML) have unlocked new opportunities for optimizing complex decision-

making processes in dynamic environments. A significant area of interest is 

RL, particularly within logistics and supply chain management. RL, a subset 

of ML, provides a framework for an agent to learn optimal policies through 

interactions with an environment. Among the various RL algorithms,       

Q-learning is notable for its model-free nature, enabling the agent to learn 

directly from raw experiences without requiring a model of the environ-

ment. Q-learning has been widely applied to routing problems, where the 

objective is to identify the most efficient path in each environment. These 
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problems are often modelled as a Markov Decision Process 

(MDP), which represents the environment through a set of 

states, actions, transition probabilities, and rewards (1). In 

this context, the goal of Q-learning is to discover an opti-

mal policy that maximizes the expected cumulative re-

ward, thereby enabling the agent to make decisions that 

lead to the most favorable outcomes over time (1). 

 Traditional routing algorithms, such as Dijkstra's 

and the A* algorithm, require a complete and static repre-

sentation of the environment to function effectively. How-

ever, real-world scenarios are frequently characterized by 

uncertainty and dynamic changes, such as road blockages, 

fluctuating traffic conditions, and varying transportation 

costs (2). These challenges necessitate the use of adaptive 

algorithms capable of responding to changes in real-time. 

Q-learning, with its ability to learn from continuous inter-

actions with the environment, is particularly well-suited 

for such applications (3). This research focuses on applying 

Q-learning to routing within a grid-based environment, 

specifically modeled on the banana supply chain. The en-

vironment is represented as a grid, where each cell corre-

sponds to a different stakeholder in the supply chain, such 

as farmers, local traders, and warehouses. The agent's task 

is to navigate from a starting point to a goal, passing 

through various intermediate points while optimizing mul-

tiple objectives, including minimizing distance, reducing 

costs, and accounting for wear and tear (4). In the grid-

based model, each cell corresponds to a specific stake-

holder or location within the banana supply chain. For 

instance, cells might represent local farms, trading cen-

ters, storage warehouses, or distribution hubs, reflecting 

the real-world journey of bananas from harvest to con-

sumer. This gives a resemblance to the real-world repre-

sentation of the banana supply chain. 

 Q-learning is a widely used RL  algorithm due to its 
simplicity and model-free nature, allowing it to learn opti-

mal policies without requiring a model of the environment 

(5). Unlike SARSA, which is an on-policy algorithm that 

updates its action-value function based on the actual ac-

tions taken, Q-learning is off-policy, updating based on the 

maximum reward across all possible actions, leading to 

more exploration and potentially better long-term policies 

(6). In contrast, Deep Q-Networks (DQN) utilize deep neural 

networks to approximate Q-values, enabling them to han-

dle larger and more complex state spaces (7). However, 

DQNs come with higher computational demands and re-

quire careful tuning to ensure stability, which can be chal-

lenging in dynamic environments. Q-learning’s computa-

tional efficiency and straightforward implementation 

make it particularly suitable for problems with well-

defined, discrete states-such as grid-based agricultural 

supply chains where rapid adaptation to changes is criti-

cal. 

 The study examines multiple situations to assess 

the efficacy of the Q-learning paradigm. These situations 

comprise optimal route selection based on distance, reac-

tions to unforeseen route obstructions, assessment of pen-

alties arising from substandard road conditions, and tac-

tics for cost reduction by circumventing high-cost routes 

(8). By simulating these scenarios, the research aims to 

demonstrate the flexibility and robustness of Q-learning in 

solving real-world routing problems. Previous studies have 

demonstrated the potential of RL  in dynamic environ-

ments, such as warehouse management and robotic path 

planning (9). However, there remains a need for more re-

search into the practical deployment of these algorithms 

in logistics and supply chains, particularly in sectors like 

agriculture, where conditions are highly variable. This 

work contributes to this growing body of research by ap-

plying Q-learning to a complex routing problem within the 

agricultural supply chain, providing insights into how RL 

can enhance operational efficiency and decision-making in 

dynamic environments.   

 

Materials and Methods 

Traditional MDP assume known transition probabilities. In 

contrast, Q-learning learns these probabilities through 

interactions with the environment, making it suitable for 

scenarios with unknown explicit probabilities and values. 

The MDP framework, introduced by A.A. Markov (1856-

1922), is widely used in dynamic systems modeling (10). In 

the context of the banana supply chain, states are defined 

as the different locations within the supply chain grid, such 

as farms, warehouses, or trading posts. Actions corre-

spond to the possible movements between these loca-

tions, and rewards are calculated based on factors like 

transportation costs, distance traveled, and penalties for 

delays, thus tailoring the MDP to the dynamics of agricul-

tural logistics. The key components of the MDP framework 

include State (S), Actions (A), and Transition versus future 

rewards. Probabilities (P), Reward (R), and Discount 

Factor   

 

The optimal reward is given by the Bellman equation 

given as          

 

 

V(s) : Expected return value at the current state‘s’,    

maxa : The maximum value of any possible action ‘a’,            

R(s, a): The expected reward for taking action ‘a’ at state ‘s’,     

yV(s’): The discount factor gamma multiplied by the value 

of the next state. 

 The choice of γ plays in determining an optimal 

reward, in this study, the discount factor (γ) was set to 

[0.9] a standard value. A higher γ emphasizes long-term 

rewards, encouraging the agent to plan routes that are 

optimal over time, while a lower γ focuses on immediate 

rewards, favoring quick and possibly suboptimal paths. 

The chosen value strikes a balance between these factors, 

aiming to optimize routes that account for both short-term 

efficiency and long-term benefits, γ lies between 0 to 1 

(inclusive). If γ is set to 0 the V(s’) term is negated com-

pletely and the model only cares about the immediate 

reward, if γ is set to 1, the model weights potential future 

rewards as equal to the immediate rewards. 

 

.......(Eqn-1) 
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 A Simulated case scenario of common stakeholders 

involved in the banana supply chains with their routes and 

their possible connections was made (Fig 1). A grid-based 

approach was used to address a RL routing problem. The 

agent navigates from the base (B) to the wholesaler (WS) 

through various stakeholders i.e. Farmer (F), Local Trader 

(LT), Primary Processing center (PPC), Central Warehouse 

(CW), and Distributor (D), actions include directional 

movements on a 4x4 grid (Fig 2). 

 The problem is solved using a RL  problem with Q-

learning using Open AI GYM Space in a python environ-

ment (11). Furthermore, Q-learning is a model-free RL al-

gorithm that helps an agent to learn the best policy for 

making the decisions in each environment. It does so by 

using a Q-value function that is then iteratively updated 

which determines the sum of the expected future reward 

when a given action is taken in a particular state. In per-

forming these updates, the Q-learning algorithm uses the 

Bellman equation that enables the agent to learn the opti-

mal policy though it does not need a model of the environ-

ment. This approach is especially used in applications 

where the state-action space is discrete and the agent 

aims to learn a policy that maximizes reward over time. 

Optimal Path Finding           

The problem of optimal pathfinding within a grid environ-

ment can be modeled as a MDP, where the environment is 

defined by a tuple (S, A, P, R, γ). 

 The state space S is defined as the set of all possible 
positions on the grid where n is the size of the grid and 

each state corresponds to a specific Sij  cell in the grid, de-

fined as:   

 

 

Action space A consists of four possible movements, up, 

down, left and right, where a1, a2, a3, a4 represents the di-

rection of movement respectively, these actions can be 

represented as 

 

 

The transition probability P  function defines the probabil-

ity of transitioning from one state St  to the next state, 

St+1 given an action at . For deterministic environments,      

P  is defined as  

 Reward function R(St, at) assigns a scalar value 

based on the action taken in a given state, where r is the 

Fig. 1. The Network diagram of all the possible routes for the Problem.  

Fig. 2. A 4x4 grid-based depiction of the stakeholders and their route connec-
tions.  

.......(Eqn-2) 

.......(Eqn-3) 

.......(Eqn-4) 
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magnitude of the reward. It can be expressed as: 

 

 The policy π(a | s)  defines the strategy used by the 

agent to select actions. The optimal policyπ * is the one 

that maximizes the expected cumulative reward, hereY is 

the discount factor, and V*(s’)  is the value of the next 

state. It is defined as:  

 The Q-learning algorithm that is used to iteratively 

update the action-value function Q(s,a)  which estimates 

the expected utility of taking action a  in state s . Here α  is 

the learning rate, and Y  is the discount factor. 

 

The equation is defined as: 

 

After training, the optimal policy π * is used to derive the 

optimal path from the initial state S0  to the goal state Sg , 

the path is visualized by marking the paths visited accord-

ing to π *, this step is defined as:  

 

 

Scenarios           

Scenario 1            

Optimal route selection based on distance, involving all 

stakeholders. 

Scenario 2        

Response to sudden route blockages leading to CW3. 

Scenario 3          

Consideration of wear and tear penalties set with constant 

“k” on certain routes due to poor road conditions. The 

weightage for wear and tear was set at 0.9 and for distance 

at 0.2. 

Scenario 4          

Cost reduction by avoiding high-cost routes due to tolls 

and wear and tear. 

 Each scenario reflects common challenges in agri-

cultural supply chains: sudden blockages simulate unpre-

dictable disruptions like road closures or accidents; wear 

and tear penalties represent varying road conditions 

affecting vehicle maintenance; and cost considerations 

reflect the need to balance transportation efficiency with 

economic factors, such as toll costs and fuel prices.   

 

Results   

This section provides the detailed results of the Q-learning 

Problem, The Optimal routes along with their optimal re-

sults, and Total rewards help us understand that the mod-

el generalizes well, Results in Table 1 and 2 are the opti-

mized and worst-case results respectively. The Initial grid 

in Fig 2. Shows the starting problem, the grid is the same 

for all scenarios, Different parameters in Different Scenari-

os will determine, the optimal route for the agent. 

Scenario 1         

Different Distance Involved: The RL model has determined 

an optimal route through the given grid, as indicated by 

the highlighted cells. The best route identified by the mod-

el starts at B, then proceeds through F1, LT3, PPC1, CW3, 

and D2, and finally ends at WS. This Highlighted path (Fig 3 a) 

represents the most efficient trajectory through the vari-

ous locations or waypoints in the grid. The model achieved 

this solution with optimal parameters, resulting in a Total 

Reward of -60 and a total distance of 168 km for the entire 

route, with the worst case being taking a route that would 

lead to a longer distance of 208 km. 

Scenario 2         

A blockage in Waypoint CW3: The RL model has identified 
an alternative optimal route through the grid, accounting 

for a blockage at CW3. The new best route, highlighted in 

the image, begins at B, then proceeds through F1, LT3, 

PPC1, CW2, D1, and finally reaches WS. This path (Fig 3 b) 

represents the most efficient trajectory given the new con-

straint of the blocked CW3 location. Despite the obstruc-

tion, the model maintained the same Total Reward of -60, 

although the total distance increased to 185 km. This out-

come demonstrates the model's ability to adapt to chang-

es in the environment while still optimizing for the defined 

reward function. The slight increase in total distance com-

pared to the previous scenario (from 168 km to 185 km) 

reflects the necessary detour to avoid the blocked area 

while still achieving an efficient route through the required 

waypoints. Here, in worst-case scenario if the agent fol-

lows the worst path, it follows a similar route to scenario 1, 

thus leading to a longer distance of 208 km. 

Scenario 3          

Wear and Tear Penalty: The wear and tear penalties are 

designed to mimic the impact of poor road quality, chal-

lenging terrain, and vehicle depreciation over time. These 

factors are critical in agricultural logistics, where maintain-

ing vehicle conditions can significantly affect operating 

costs and delivery reliability. The RL model has deter-

mined an optimal route through the grid while considering 

wear and tear penalties. The highlighted path starts at B, 

then proceeds through F2, LT1, PPC1, CW3, and D2, and 

finally ends at WS. This route (Fig 3 c) avoids the areas with 

very high wear and tear, which are depicted by the cross-

.......(Eqn-5) 

.......(Eqn-6) 

.......(Eqn-7) 

.......(Eqn-8) 
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shaded cells (F1, LT3, and CW2). The model achieved an 

improved optimal reward of -ve 51.60, compared to previ-

ous scenarios, with a total distance of 186 km. The total 

wear and tear constant k = 24, which factors into the over-

all optimization. This outcome demonstrates the model's 

ability to balance multiple objectives - minimizing dis-

tance, maximizing reward, and now also considering the 

impact of wear and tear on different path segments. The 

slight increase in total distance compared to the initial 

scenario is offset by the improved reward, likely due to the 

avoidance of high-wear areas, showcasing a more nuanced 

approach to path optimization in this complex environ-

ment. However, in the worst case, if the agent takes the 

worst path, then the total distance is reduced to 165 km, 

although hugely increasing the wear and tear penalty from 

k = 24 to k = 105. 

 

Scenario 4         

A Cost-based approach: The cost-based analysis incorpo-

rates factors such as toll charges, fuel expenses, and po-

tential penalties for delays. These components are crucial 

for logistics companies seeking to minimize expenses 

while maintaining timely deliveries, particularly in agricul-

Scenario Total Reward Optimized result Optimal Route 

1 -60 168 km (Total distance) B          F1         LT3        PPC1         CW3        D2        WS 

2 -60 185 km (Total distance) B         F1         LT3        PPC1         CW2        D1        WS 

3 -51.60 186 km (Total Distance); k = 24 wear and tear penalty B         F2         LT1        PPC1         CW3        D2        WS 

4 -60 173 km (Total Distance) ₹4610 Total cost B         F2         LT1        PPC1         CW2        D1        WS 

Table 1. Optimized results of the MDP problem in each scenario.  

Scenario Worst case result Worst Route 

1 208 km (Total distance) B         F2          LT2        PPC4         CW1        D1        WS 

2 208 km (Total distance) B          F2         LT2        PPC4         CW1        D1        WS 

3 165 km (Total Distance); k = 105 wear and tear penalty B          F1         LT3        PPC1          CW2       D2        WS 

4 200 km (Total Distance); ₹6490 total cost B          F1         LT1        PPC3         CW1        D1         WS 

Table 2. Results show the maximum possible worst-case for each scenario.  

A B 

C D 
Fig. 3. Grid-based representation of the Optimal Decisions taken by the agent for each scenario. (A)-Scenario 1,  (B)-Scenario 2, (C)-Scenario 3 and (D)-Scenario 4.
(Highlighted marks in scenario 2 represent blockade in CW3; The highlighted marks in scenario 3 represent the areas with more wear and tear).  
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tural contexts where margins are often narrow. In this new 

scenario, the RL model has identified an optimal route 

through the grid based on cost considerations. The high-

lighted path begins at B, continues through F2, LT1, PPC1, 

CW2, and D1, and finally reaches WS. This route (Fig 3 d) 

represents the most cost-effective trajectory through the 

various locations or waypoints in the grid. The model 

achieved a solution with a total cost of ₹4610 rupees and a 

Total Reward of -60. This outcome suggests that the RL 

model has balanced minimizing costs with maximizing the 

reward function. The highlighted cells indicate the chosen 

path, which likely represents a trade-off between the 

shortest distance and the least expensive route. The model 

has successfully navigated through the grid while optimiz-

ing for both cost and reward, demonstrating its ability to 

adapt to different optimization criteria in complex routing 

problems. Furthermore, in worst-case scenario, the agent 

will accumulate a distance of 200 km and an increase in 

cost from ₹4610 to ₹6490.  

 This outcome suggests that compared to classical 

routing algorithms like Dijkstra’s, which require a static 

and complete map of the environment, Q-learning demon-

strates greater flexibility. Its ability to adapt to real-time 

changes, such as sudden blockages, allows it to outper-

form static methods, especially in dynamic environments. 

Unlike Dijkstra’s algorithm, Q-learning continually updates 

its policy based on new information, optimizing routes 

even under unpredictable conditions. The RL model has 

balanced minimizing costs with maximizing the reward 

function. The highlighted cells indicate the chosen path, 

which likely represents a trade-off between the shortest 

distance and the least expensive route. The model has 

successfully navigated through the grid while optimizing 

for both cost and reward, demonstrating its ability to 

adapt to different optimization criteria in complex routing 

problems. 

 This is true because the form of rewards demon-

strated in Fig 4 is episodic confirms that the RL model min-

imizes penalties in all the analyzed scenarios and shows 

the corresponding penalties’ decrease. This has shown the 

generality of the model in being able to handle several 

constraints and optimization criteria. 

 

Limitations        

This study's main limitation is its reliance on a discrete, 

grid-based environment, which may not capture the full 

complexity of real-world supply chains with continuous 

variables. Additionally, the model assumes a simplified 

reward structure that might not fully represent economic 

trade-offs in a more complex logistics network. Future 

work could involve integrating continuous state spaces 

and incorporating a wider range of economic and environ-

mental variables to enhance the model’s robustness.  

 

Discussion 

A B 

C D 
Fig. 4. Episodic rewards of the different scenarios used, which shows, the model running well. (A)-Scenario 1, (B)-Scenario 2, (C)-Scenario 3 and                     (D)-

Scenario 4. 
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The RL model's effectiveness in route allocation was evalu-

ated through various scenarios, each with unique con-

straints and objectives. The RL model identified an optimal 

route starting at B, proceeding through F1, LT3, PPC1, CW3, 

D2, and ending at WS. The total reward achieved was -60, 

with a total distance of 168 km. This scenario highlights 

the model's ability to find the most efficient path in a grid-

based environment, optimizing for distance and reward. 

With CW3 blocked, the model rerouted through B, F1, LT3, 

PPC1, CW2, D1, and WS, maintaining the same reward of -

60 but increasing the distance to 185 km, the model 

demonstrated adaptability to environmental changes, 

effectively rerouting to maintain efficiency despite obsta-

cles. Considering wear and tear penalties, the model iden-

tified a route through B, F2, LT1, PPC1, CW3, D2, and WS, 

achieving an improved reward of -51.60 and a total dis-

tance of 186 km, with a wear and tear constant of 24. This 

scenario illustrates the model's capability to balance mul-

tiple objectives, including minimizing distance, maximiz-

ing reward, and avoiding high-wear areas. 

 The RL model optimized for cost, selecting a path 

through B, F2, LT1, PPC1, CW2, D1, and WS, resulting in a 

total cost of ₹4610 and a reward of -60. This scenario high-

lights the model's proficiency in optimizing routes based 

on cost considerations, achieving a balance between cost 

efficiency, and reward. The RL model's ability to adapt to 

various scenarios, such as blockages and wear-and-tear 

considerations, is supported by research on RL in dynamic 

environments.  

 The RL model consistently adapted to changing 

environmental conditions, such as blockages and wear 

and tear zones, finding optimal or near-optimal solutions. 

It successfully balanced multiple objectives, including dis-

tance, reward, wear and tear, and cost, showcasing its po-

tential for real-world applications. Given that the RL model 

is flexible and resistant to change, it will fit well into the 

logistic, transportation, and route planning scenarios 

where conditions and priorities change constantly. The 

use of RL can be effectively applied in logistics to optimize 

decisions throughout the supply chain and gain various 

advantages. Discussion on the effectiveness of RL in multi-

objective function problems like distance minimization, 

reward maximization, and cost reduction is evident. A 

study on deep RL  for logistics task coordination showed 

that RL algorithms could generalize solutions for various 

tasks, balancing efficiency and cost considerations effec-

tively (12). The model's ability to adapt to various scenari-

os and balance multiple objectives underscores its value in 

complex, dynamic environments.  

 

APPENDIX  

Dataset 

In this study, the application of RL, with a focus on Q-
learning, demonstrated its effectiveness in addressing 

route optimization problems within grid environments. 

The RL models were capable of adapting to dynamic con-

ditions, including variations in route parameters and the 

introduction of constraints such as blockages and wear-

and-tear penalties. This adaptability underscores the po-

tential of RL to enhance operational efficiency and cost-

effectiveness, particularly in complex logistical scenarios. 

The success of Q-learning in this context suggests that RL 

can be a powerful tool for optimizing logistics and supply 

chain management, especially in sectors where dynamic 

conditions frequently impact operations, such as agricul-

ture. Further research should explore other RL algorithms 

and techniques to push the boundaries of optimization in 

logistics and supply chains. Additionally, expanding the 

scope to include international market dynamics and glob-

al supply chain issues could provide valuable insights, 

offering a more comprehensive perspective on the chal-

lenges and opportunities in supply chain management on 

a global scale. This could lead to the development of more 

robust and universally applicable models, further enhanc-

ing the relevance and impact of RL in various industrial 

and agricultural contexts.   
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