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Abstract 

Climate change poses a critical threat to global food security and ecosystem 

sustainability, with soils serving as the backbone of the Earth’s ecosystems. 

This comprehensive review synthesizes the current understanding of how 

climate change impacts soil health, emphasizing the intricate interactions 

between soil’s physical, chemical, and biological properties. Rising 

temperatures, altered precipitation patterns, and increasingly frequent 

extreme weather events severely degrade soil structure, reduce fertility, and 

disrupt biodiversity. These changes accelerate soil erosion, nutrient 

depletion, and significantly diminish agricultural productivity. This review 

explores innovative strategies to enhance soil resilience, with a focus on 

conservation agriculture, cover cropping, and integrated nutrient 

management. Conservation agriculture practices improve soil structure and 

enhance water retention, while cover cropping increases soil organic matter 

and supports critical nutrient cycling processes. Integrated nutrient 

management ensures a balanced supply of essential nutrients and 

promotes beneficial microbial activity, further bolstering soil health and 

resilience. The importance of adopting a holistic, resilience-based approach 

to soil management to soil management is vital to mitigate the adverse 

effects of climate change, preserve vital ecosystem services, and secure 

sustainable agricultural productivity for future generations. This review 

provides critical insights for policymakers, researchers, and practitioners, 

offering practical solutions to safeguard soil health and ensure food security 

in the face of the challenges posed by a rapidly changing climate. 
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Introduction 

Climate change significantly impacts soil health, influencing soil formation, 
structure, and composition. These effects manifests as changes in soil 

texture, porosity, and its physicochemical and biological components (1). 

Rising atmospheric carbon dioxide (CO₂) concentrations, global 

temperatures, and shifting precipitation patterns adversely affect soil’s 

physical and biological properties, thereby disrupting its functioning and 

biogeochemical cycling processes (2). Furthermore, climate change alters 

critical soil characteristics such as acidity, sodicity, and salinity, which 

negatively affects crop production and overall soil health. These changes in 
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soil properties also play a crucial role in the spread and 

management of neglected tropical diseases and vectors. 

Additionally, microbial interventions have shown potential 

for enhancing soil resilience and fertility under changing 

climate scenarios (3). 

Climate change impacts soil health by influencing soil 

water retention, organic carbon content, erodibility, and 

long-term processes such as pedogenesis. Soil 

degradation due to these factors results in reduced crop 

yields, loss of biodiversity, and increased vulnerability to 

extreme weather events, such as floods and droughts. 

These effects pose significant challenges to the 

sustainable utilization of agricultural land. For instance, 

rising sea levels, higher temperatures, decreased 

precipitation, and poor irrigation practices contribute to 

increased soil salinity, which exacerbates soil degradation 

caused by climate change (4). Reduced soil organic matter, 

alterations in soil structure, and increased susceptibility to 

erosion further amplify these challenges, compromising 

nutrient cycles, plant growth, and crop quality (Fig. 1)  (5). 

The drivers of climate change are multifaceted, with the 

primary factor being the rise in greenhouse gas emissions, 

leading to global warming. Other contributors include 

variations in solar activity, such as fluctuations in sunlight 

intensity (6). Changes in Earth’s orbit and volcanic 

eruptions also influence global climate patterns. Human 

activities, particularly the release of aerosols, significantly 

affect the climate system through radiative forcing and 

interactions with cloud formation. These factors can either 

amplify or mitigate the Earth's response to climatic 

influences, with feedback mechanisms playing a crucial 

role in shaping the overall impact (7). Thus, climate change 

is a multifaceted phenomenon arising from a combination 

of natural and human-induced factors. 

Impact of climate change on plant health  

Rising global temperatures and increased concentrations 

of greenhouse gases significantly influence crop growth 

and the spread of phytopathogenic agents. Changes in 

temperature and precipitation regimes can alter the 

growth rate and pathogenicity of infectious agents, as well 

as the resistance of host plants (8) (Fig 2). Furthermore, 

climate change impacts disease management practices, 

including the timing, preference, and efficacy of control 

measures (9).  

 Temperature and precipitation variations can affect the 

performance of chemical control methods by changing the 

dynamics of fungicide, such as residue levels and product 

degradation rates (10). Additionally, the efficacy of climate 

chemical pesticides and the persistence of plant 

protection agents in the phyllosphere are susceptible to 

climatic changes  (11).  

To address these changes, it is important to develop new 

tools and strategies for disease control, including cultural 

methods, biological control methods, and plant breeding 

techniques. Encouraging the use of indigenous microbial 

communities can also play a role in maintaining plant 

health under changing climatic conditions. 

Crop growth, yield and quality 

Rising temperatures, reduced water availability, flooding, 

and salinity are significant factors that restrict the yields of 

vegetable crops. Climate change also affects the 

distribution and ecology of insects, their ability to 

overwinter, and the emergence of pests and diseases, all 

of which pose significant challenges to the production of 

vegetables. Ozone pollution and climate change 

particularly threaten future crop yield, especially in 

important agricultural regions, which could result in a 

substantial loss of wheat yield (12).  

Abnormal climatic conditions during harvest and post-

harvest stages have the potential to diminish the 

morphological, physiological, and biochemical quality of 

seeds, ultimately impacting their field performance and 

planting value. Extreme weather events such as heat 

waves, droughts, floods, and irregular precipitation 

patterns have a profound impact on existing agricultural 

cropping systems, productivity, and global food security. 

To mitigate these effects, adaptation measures such as 

breeding climate-resilient crops and implementing 

agronomic practices are necessary. 
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Fig.2. A schematic representation that describes how plant health is  
affected by climate change 
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Climate change also exerts a substantial influence on 

quality of plants, thereby impacting a wide range of crops 

and their cultivation.  For horticultural crops, factors such 

as rising temperatures, atmospheric CO2 levels, ozone 

depletion, UV radiation, heavy metal toxicities, extreme 

weather events, and changes in precipitation patterns 

have led to significant physiological and biochemical 

changes (13). Similarly, in vegetable crops, climatic 

elements such as light, temperature, drought, salinity, and 

flooding play pivotal roles in determining the quality and 

nutritional value of crops. Heat stress, for example, poses a 

severe threat to cole crops namely cabbage, cauliflower, 

broccoli, and Brussels sprouts, as it hinders curd setting 

and compromises product quality.  

The implications of climate change extend to seed quality, 

where factors like temperature and water availability 

directly influence seed development and germination. This 

can result in a decline in both the quantity and quality of 

seeds produced (13). 

Wheat production is particularly vulnerable to climate 

change, with higher temperatures projected to reduce 

wheat yields by 6% to 23% by 2050. Altered rainfall 

patterns further exacerbate water availability issues for 

wheat cultivation. Similarly, rice farming faces significant 

challenges as increased temperatures and variability in 

precipitation negatively affect yields, potentially reducing 

global rice production by 10% to 15% by 2050 (14). 

Corn, another globally important crop, is highly 

susceptible to rising temperatures and extreme weather 

events like droughts and heat waves, which could lead to a 

22% to 49% decrease in corn yields by 2050.  This 

highlights the urgent need for adaptive measures in 

agriculture. Soybean production is also at risk, with higher 

temperatures and altered precipitation patterns expected 

to result in an estimated 3.1% decrease in global soybean 

yields by 2050 (15). Understanding these effects is crucial 

for finding ways to reduce the impact of climate change on 

soybean farming. 

Effect of climate change on physiological functions in 

plants  

Climate change substantial influences the physiological 
functions of plants, encompassing plant growth rate, 

productivity, and defense mechanisms (16). These effects 

are evident across various types of crops, including 

vegetables. Broadly, the impacts of climate change on 

plants manifest as alterations in metabolic processes, 

reductions in nitrogen-based defences, imbalances in 

organic acid levels, weakening of plant defence systems 

against pests, and disruptions in critical physiological 

processes. 

Furthermore, climate change has the potential to modify 
plant-microbe interactions, which are vital for essential 

functions such as nutrient cycling, carbon sequestration, 

and plant immunity. Such changes can impair the overall 

health and resilience of plants, affecting their ability to 

adapt to environmental stressors. 

Overall, climate change poses substantial challenges to 

the physiological functions of plants, influencing their 

growth, productivity, and interactions with the 

environment. These challenges necessitate further 

research and innovative solutions to mitigate the adverse 

effects of a changing climate on plant systems  

 (17). 

Nutrient uptake and utilization 

Elevated levels of greenhouse gases, such as CO2, nitrous 

oxide (N2O) and methane (CH4), have the potential to alter 

precipitation patterns and disrupt nutrient cycling, 

thereby affecting nutrient uptake by plants. The combined 

effects of increased CO2 concentration and warming of the 

plant canopy influence the concentrations and movement 

of nutrients within plants. Excessive CO₂ levels can reduce 

the availability of essential nutrients, such as iron (Fe), zinc 

(Zn), and protein, in vegetable crops, thereby impacting 

their nutritional quality (18). Additionally, elevated 

temperatures can alter plant-herbivore interactions, 

potentially affecting plant chemistry and promoting the 

growth and nutrition of specific herbivorous species (19).  

Climate change significantly affects nutrient dynamics in 

plants, leading to changes in nutrient concentrations and 

translocation. Elevated CO₂ levels reduce potassium (K) 

concentrations in plant shoots and roots, while canopy 

warming increases nitrogen (N), phosphorus (P), and 

potassium (K) levels in shoots but decreases these 

nutrients in roots. Furthermore, higher CO2 levels are 

associated with lower Fe, Zn, and protein levels in 

vegetable crops, raising concerns about food security (20).  

Hydrological and temperature changes induced by climate 
change also impact nutrient dynamics on global scale. 

Extreme precipitation events increase nutrient leaching 

and transport through overland flow, which can adversely 

affect soil fertility and water quality. Overall, climate 

change alters nutrient availability, plant nutrient uptake, 

and nutrient cycling processes, thereby influencing plant 

growth, crop yields, and ecosystem sustainability. 

Impact of climate change on soil health 

Climate change significantly affects soil health by altering 

its physical, chemical, and biological properties, which, in 

turn, influence essential soil processes and functions. 

Changes in temperature, precipitation, and atmospheric 

composition, including increased greenhouse gas 

concentrations and nitrogen deposition, have direct and 

indirect impacts on soil health. Soil organic matter (SOM) 

serves as a critical indicator of soil health, with its 

maintenance being vital for mitigating rising atmospheric 

CO₂ levels  (16). Furthermore, climate change influences 

soil development, structure, texture, water retention 

capacity, and its ability to sustain crop productivity (Fig. 3). 

Understanding the interplay between climate change and 

soil health is crucial for predicting and managing the 

spread of soil-associated diseases and vectors. Given the 

fundamental role of soil health in ensuring food security, 

crop production, and human well-being, the adoption of 

climate-smart agricultural practices that enhance soil 

health and mitigate the adverse effects of climate change 

is imperative.     



RASHMI ET AL  4     

https://plantsciencetoday.online 

Physical properties 

Climate change alters precipitation patterns, including 

changes in rainfall intensity, frequency, and distribution. 

These shifts affects the temporal and spatial availability of 

soil water, impacting soil moisture levels and, 

consequently, the dynamics of soil processes (21). For 

instance, studies (22) highlight that intensified heavy 

rainfall events in certain regions increase risks of soil 

erosion and nutrient leaching. Changes in precipitation 

patterns directly affect soil water content and infiltration 

rates. Extreme precipitation events often lead to rapid 

surface runoff, reducing water infiltration and increasing 

the risk of soil erosion. These findings underscores the 

importance of understanding how precipitation changes 

influence soil water dynamics and the urgent need for 

sustainable land management practices to mitigate soil 

erosion risks.  

Precipitation variability also impacts soil structure and 

stability. Drought conditions caused by reduced 

precipitation can result in soil compaction, decreased 

porosity, and increased susceptibility to erosion. Research 

(23) emphasizes the need of adaptive soil management 

practices to maintain soil structure and prevent 

degradation under changing precipitation regimes. 

Precipitation changes have cascading effects on plant-soil 

water relations. These alterations influence plant water 

uptake, affecting plant growth, nutrient availability, and 

overall ecosystem productivity (Table 1). A study (24) 

demonstrated how precipitation changes impact eco-

hydrological processes, highlighting the interconnected 

nature of vegetation dynamics and soil water availability. 

Climate change also affects plant phenology, growth 

patterns, and distribution, subsequently altering the 

composition of root exudates and plant litter. These 

changes impact soil microbial communities and nutrient 

cycling processes. Disruptions in plant-soil interactions 

can lead to cascading effects on soil biodiversity and 

ecosystem functioning. A study  explored the  intricate 

links between plant-soil interactions, climate change, and 

soil biodiversity (25). 

 Unsustainable land management practices and soil 

degradation exacerbated by climate change can further 

modify structure of soil, deplete organic carbon, and 

diminish soil's capacity to retain water and nutrients 

(Table 2). 

Chemical properties 

Climate change significantly influences the chemical 
properties of soil, altering parameters such as pH, 

electrical conductivity (EC), and cation exchange capacity 

(CEC). Rising temperatures, elevated atmospheric CO₂ 

levels, and changes in rainfall patterns can modify soil pH, 

disrupt nutrient uptake, and indicate salinity issues 

through changes in EC, all of which can adversely impact 

crop productivity. The CEC, which governs the soil’s ability 

to hold and release essential nutrients, is also affected, 

influencing plant growth and ecosystem stability (26). 

These alterations can lead to soil acidification, sodicity, 

and salinization. Moreover, climate change drivers, 

including elevated CO2, temperature, nitrogen deposition, 

and altered rainfall, significantly   impact soil processes 

and nutrient availability (27). Altered soil properties can 

also impact the diversity and composition of soil 

organisms, potentially leading to the identification of 

novel species capable of adapting to climate-induced 

changes. Collectively, these changes highlights the 

profound impact of climate change on soil chemical 

properties and the overall  health and productivity of soil 

ecosystems (28). 

Climate change particularly affects soil pH, temperature, 
CO2 levels, and rainfall patterns can change soil pH. Higher 

temperature and acidic rainfall contributing to soil 

acidification, while other climate may cause alkalization. 

Shifts in pH directly impact soil health,  productivity and 

key soil processes (29). Variations in temperature and 

precipitation influence organic matter formation, soil 

water regimes, and mineral composition, which, in turn, 

affect pH levels. Changes in soil pH significantly influence 

Fig.3. A schematic representation of indicators/properties to assess soil 
health 

Soil Physical Parameter Effect of Climate Change Reference 

Bulk density Increases due to loss of soil organic matter (71) 

Porosity Decreases due to compaction from heavy rainfall (72) 

Aggregate stability Declines due to disruption of soil aggregates from extreme weather events (73) 

Infiltration rate Reduces because of surface sealing and soil crusting (17) 

Water holding capacity Decreases owing to loss of organic matter and structural stability (74) 

Hydraulic conductivity Diminishes due to compaction and poor structure (75) 

Aeration Lessens due to flooding and water logging (76) 

Texture Coarser texture over time in some regions because of wind and water erosion (77) 

Depth of topsoil Shallower due to accelerated erosion processes (78) 

Organic matter content Declines because of increased mineralization rates and loss through erosion (79) 

Table 1. Effect of climate change on soil physical parameters 
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microbial activity and the cycling rates of carbon and 

nitrogen, as these processes depend on net primary 

production and substrate availability. Additionally, climate 

change exacerbates metal toxicity in polluted soils, 

particularly in drier regions. Metal toxicity, however, varies 

among soil types depending on pH and metal 

concentrations. Changes in climate also affect metal 

availability and accumulation in soils, influencing plant 

and soil health (30). Climate change has notable effects on 

soil electrical conductivity (EC). Altered temperature and 

precipitation patterns can modify soil organic matter 

content, which directly impacts EC. Rising temperatures 

may increase EC, though compost application has been 

found to mitigate the effects of temperature changes on 

soil properties (31). Similarly, climate change impacts soil 

chemical properties such as cation exchange capacity 

(CEC) and organic matter content, both of which are 

crucial for maintaining the productivity and environmental 

quality of cultivated land (32). Increased organic carbon 

(OC) and higher cation exchange capacity (CEC) levels 

have been shown to reduce the availability and solubility 

of heavy metals, such as Pb, in contaminated soils. Climate 

change has also resulted in the loss of soil organic carbon 

(SOC) in agricultural topsoils worldwide. The 

implementation of agro-ecological practices such as 

conservation agriculture, organic agriculture, and the 

utilization of organic waste materials holds great potential 

to enhance SOC stocks and mitigate climate change 

impacts (33). The response of SOC mineralization to rising 

temperatures, reduced soil moisture, and  drying 

rewetting cycles emphasizes the need for a comprehensive 

understanding of SOC dynamics in the context of climate 

change (34) (Fig.4).  

Changes in climate patterns, including surface greening 

observed in China, have altered SOC dynamics in top soils, 

where carbon input from vegetation plays a pivotal role in 

mitigating the effects of climate change on SOC. 

Additionally, climate warming influences the soil carbon 

pool by increasing SOC content and affecting components 

of labile organic carbon. 

Heavy rainfall accelerates nutrient leaching, decreases soil 

pH, and reduces organic matter content, thereby 

impacting nutrient availability. Soil microorganisms play a 

vital role in transforming nutrients into forms readily 

accessible to plants. For instance, microorganisms can 

convert insoluble forms of phosphorus into soluble forms 

that plants can absorb. Since nutrient cycles are 

interdependent, imbalances in one nutrient can affect the 

availability and absorption of others. Balanced 

fertilization, influenced by soil pH, organic matter content, 

microbial activity, and CEC, is essential to ensure optimal 

nutrient availability and maintain soil health. 

Biological properties 

Climate change significantly impacts the diversity of soil 
organisms, potentially revealing new characteristics or 

species that are capable of adapting to these changes. The 

diversity and distribution of soil microorganisms play a 

critical role in regulating the biological properties and 

processes of soil (35). Variations in climate, such as 

heightened temperatures and increased greenhouse gas 

concentrations, can  affect the microbial communities 

residing in the soil (36). Additionally, soil moisture content 

influences the habitats of microorganisms, particularly 

fungal communities. By incorporating the dynamics of soil 

structure into models, more comprehensive predictions 

can be made regarding the impacts of climate change on 

the hydrological and biogeochemical cycles of soil.  

An increase in soil temperatures directly influences 

microbial metabolism. Optimal soil temperatures (around 

20-30°C) enhance microbial processes such as respiration 

and nutrient mineralization, while extreme temperatures 

(above 35°C or below 10°C) can inhibit microbial activity, 

impacting microbial diversity, nutrient cycling, 

decomposition, and ultimately soil fertility and plant 

Factor High Level Reference Low Level Reference 

Temperature Above 2°C over pre-industrial levels (80) Below 1°C over pre-industrial levels (81) 

Precipitation 20% above baseline/average (82) 20% below baseline/average (83) 

Moisture Content >30% relative humidity (84) <15% relative humidity (85) 

Sea Level > 3 mm/year rise (86) < 1 mm/year rise or fall (87) 

UV Radiation >295 m W/m2 (88) <285 m W/m2 (89) 

Greenhouse Gases >450 ppm CO2 equivalent (90) <350 ppm CO2 equivalent (91) 

Table 2. Effect of soil physical parameters with high and low levels of climatic variations 

Fig.4. A flowchart representation of soil organic carbon and its significance 
in agriculture  
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growth(37).This increased metabolic activity can impact 

carbon and nitrogen cycling within the soil. Studies have 

demonstrated a positive correlation between temperature 

and microbial respiration rates, indicating a heightened 

release of carbon dioxide as a by- product of microbial 

activity. The carbon content of microbial biomass in 

various soil types ranged between 3 and 349 mg/kg of soil 

(38). Climate change thus modifies the composition and 

activity of soil microbes.  

Temperature, moisture, and carbon dioxide levels 

significantly affect microbial diversity, abundance, and 

essential functions such as nutrient cycling and organic 

matter decomposition. Rising temperatures accelerate 

microbial metabolism, enhancing these processes, but 

exceeding optimal temperature ranges may harm 

beneficial microbes, reducing soil fertility. Changes in 

precipitation patterns impact soil moisture, with excess 

rainfall favoring anaerobic microbes and drought limiting 

microbial diversity and nutrient cycling. Increased CO2 

enhanced plant photosynthesis and microbial activity but 

may dilute nutrients and alter soil chemistry.  

Microbial diversity is essential for ecosystem resilience and 

functions like nutrient cycling and disease suppression. 

Climate change poses a threat to this diversity, 

jeopardizing soil health and ecosystem services, which 

calls for careful management. Soil microbes are highly 

sensitive to climate change, leading to shifts in microbial 

communities with implications for soil functions. Heat-

tolerant microbes may become dominant with rising 

temperatures, altering nutrient cycling and organic matter 

decomposition. Changes in precipitation and temperature 

also affect fungal communities, which are essential for 

nutrient cycling and plant interactions. Climate change 

thus impacts both fungal communities and overall soil 

biodiversity (39). Soil fauna, including earthworms and 

arthropods, are also affected by climate change, 

influencing nutrient cycling and soil structure. 

Furthermore, climate change alters biogeochemical 

processes in soil, such as nutrient availability and 

greenhouse gas emissions (40). These changes in 

environmental conditions create feedback loops that 

amplify the effects of climate change. Soil biodiversity 

plays a crucial role in soil biogeochemistry and climate 

change. 

Impact on soil organic matter decomposition 

The decomposition of soil organic matter is a critical 

process for nutrient cycling and carbon sequestration. 

Elevated temperatures can influence the rates of organic 

matter decomposition, with potential consequences for 

soil fertility (41) (Fig.5). Studies by (42) have observed an 

acceleration in the decomposition of soil organic matter 

under elevated temperature conditions, suggesting the 

potential release of stored carbon into the atmosphere. 

Soil microorganisms play a crucial role in regulating soil 

moisture dynamics, and changes in precipitation patterns 

significantly influence microbial activity, which in turns 

affects nutrient cycling and organic matter decomposition. 

Specific microorganisms, such as Pseudomonas and 

Bacillus bacteria, as well as Aspergillus and Trichoderma 

fungi, are particularly sensitive to variations in 

temperature and moisture. Pseudomonas bacteria 

enhance nutrient cycling by breaking down complex 

organic compounds, while Bacillus bacteria solubilize 

nutrients like phosphorus, making them available for plant 

uptake. Fungi like Aspergillus decompose lignocellulosic 

materials in wet conditions, facilitating nutrient release, 

and Trichoderma promotes plant growth by enhancing 

organic matter decomposition(43). It is important to 

emphasize the significance of understanding microbial 

responses to changing moisture conditions for predicting 

soil carbon dynamics and nutrient cycling in a changing 

climate.  

Soil Resilience 

Soil resilience plays a crucial role in addressing the effects 
of climate change on agriculture. Studies have 

demonstrated that high quality soils can mitigate the 

sensitivity of crop yield to climate variability, resulting in 

increased average crop yields and greater yield stability 

(44) (Table 3). Climate change impacts, such assoil erosion 

and alterations to environmental conditions, further 

complicate these challenges. Therefore, developing 

innovative and feasible solutions is imperative for 

fostering resilient landscapes amidst climate change (45).  

Microbial interventions have shown promise in enhancing 
soil resilience and promoting crop growth under changing 

Parameters Impact on soil health Building resilience Reference 

Higher temperatures Loss of organic matter, altered biolo-
gy 

Increase carbon inputs to soils, promote soil biological buffer-
ing of temperature increase (92) 

Changing precipitation Increased erosion, nutrient leaching, 
runoff Improve water infiltration, storage and cover crops (93) 

Rising co2 levels 
 Some positive impacts on C storage, 
but unbalanced nutrients, toxins 
may accumulate 

Nutrient management plans, controlled drainage (94) 

 Increase in extreme 
weather events 

Reduced soil structure, stability, loss 
of topsoil Cover crops, no/low till, soil organic matter management (95) 

Differential drying & 
wetting 

Disruption of soil aggregates, flow 
paths  Controlled drainage, frequent organic matter additions (96) 

Salinization in some 
regions 

Lower water infiltration, retention 
and nutrient imbalance 

Improved irrigation management, gypsum, organic amend-
ments (97) 

Acidification in some 
areas 

Aluminium toxicity, nutrient defi-
ciencies Liming, reduced acid rain deposits (98) 

Land use changes Massive soil disruption, loss of C 
stocks 

 Retention of natural areas, integrate buffer zones and field 
borders (99) 

Table 3. The impact of soil health and its resilience by parameters of climate change 
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climate scenarios. For example, biofertilizers containing 

Rhizobium and Azospirillum improved nitrogen fixation, 

resulting in a 15-20% yield increase in wheat during 

drought conditions in India. Mycorrhizal fungi like Glomus 

enhanced drought tolerance, boosting crop growth by 

30% in arid Australia, while plant growth-promoting 

rhizobacteria (PGPR) led to a 25% yield increase in 

soybeans under climatic stress in Brazil. These cases 

highlight the potential of microbial interventions to 

improve soil health and agricultural productivity amidst 

climate change(46).  

Soil quality is of utmost importance in agriculture under 

the influence of climate change, and enhancing soil quality 

can serve as a buffer against the adverse effects of climate 

change on crop yields (Fig.6).  

Carbon sequestration 

Carbon sequestration is essential for enhancing soil’s 

ability to withstand the impacts of climate change. It 

supports the preservation and augmentation of SOC 

stocks, which are indispensable for soil health and 

productivity. The effects of afforestation and reforestation 

on SOC stocks may vary depending on the soil type and 

tree species (47). Practices such as conservation tillage, 

agroforestry, residue management, and crop rotation also 

contribute to soil carbon sequestration. Biochar, a stable 

carbon source, can be administered to the soil to enhance 

long-term carbon sequestration and reduce greenhouse 

gas emissions (48). Increasing soil carbon content through 

carbon sequestration ameliorates soil structure, fertility, 

and nutrient availability, thus making the soil more 

resilient to climatic extremes and disturbances (49). These 

practices hold the potential to mitigate global warming, 

enhance environmental sustainability, and strengthen the 

overall resilience of agricultural systems in the face of 

climate change (50). 

Cover cropping 

Planting cover crops between main crops is sustainable 

agronomic practice that contributes to enhancing soil 

resilience in the face of climate change. During 

unproductive periods, such as fallow periods, farmers can 

cultivate cover crops to provide ecosystem services that 

aid in climate change mitigation and improve soil health 

(51). Cover crops can increase soil organic carbon levels, 

which plays a role in mitigating climate change by 

sequestering carbon dioxide from the atmosphere. 

Moreover, cover crops can enhance soil fertility, nutrient 

cycling, and water regulation all of which are crucial for 

the maintenance of soil health and productivity (52). 

Another benefit of cover crops is their ability to improve 

soil porosity and permeability, resulting in increased water 

infiltration and decreased runoff during periods of rainfall. 

This, in turn can help reduce the risk of flooding and 

improve water management in agricultural systems. Cover 

cropping is an essential practice that supports sustainable 

cropping systems, enhances soil resilience and contributes 

to global food security. 

Organic farming 

Organic farming is an effective strategy for enhancing soil 

resilience in the face of climate change. It helps conserve 

soil fertility and health, improves crop yield and quality, 

and reduces carbon concentrations in the atmosphere. 

Organic farming practices, such as the use of organic 

manures and amendments, crop rotations, mulching, non-

synthetic fertilizers, zero tillage, and integrated nutrient 

and pest management, contribute to the development of 

resilient soils. These practices enhance soil organic matter, 

which is crucial for improving soil fertility and crop 

productivity (53). SOC plays a key role in soil quality and 

resilience against climate change (54). Additionally, 

organic farming also promotes the activity of soil 

microorganisms, which are vital for nutrient cycling and 

other ecological processes in the soil. By adopting organic 

farming practices, farmers can build and maintain soil 

organic carbon stocks, leading to more resilient 

agricultural systems in the face of climate changes 

Traditional farming practices, such as biodiversity 

management, soil management, and water harvesting, can 

increase resilience and economic benefits in small-scale 

agriculture, while mitigating global warming. A farm 

transitioning to organic practices achieved improved food 

security and resilience while maintaining greenhouse gas 

intensity similar to regional averages, demonstrating 

global responsibility as biosphere stewards (55). 

Integrated Nutrient Management (INM) 

INM involves the utilization of a combination of all 

available sources of nutrients for plants in a holistic 

package for crop nutrition (56). Research has shown that 

SOIL MICROFLORA
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Fig.5. A schematic representation of soil micro flora as a biological indicator 

Fig.6. A schematic representation of soil resilience strategies to reduce the 
effects of climate change on soil health  
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INM significantly improves soil health and crop yields 

while reducing greenhouse gases emissions. It has been 

found that the application of INM significantly improves 

the overall health of the soil, as evidenced by decreased 

bulk density, increased porosity, and enhanced water-

holding capacity. INM can improve soil aggregates and 

microbiota by integrating organic manure and retaining 

residue, which further increase soil resilience (57). Soils 

plays a prominent role in driving global change, and the 

establishment of a global program for soil resilience is 

necessary to safeguard soil fertility and ecosystem services 

while acknowledging their pivotal role in supporting 

ecosystems and sustainable development (58). Integrated 

systems for managing plant nutrients that involve 

beneficial microorganisms enhance crop productivity, 

increase fertilizer efficiency, and improve resilience to 

environmental constraints. 

Nutrient cycle 

Climate change factors such as rising temperature, altered 

precipitation patterns, and intense rainfall events can 

significantly impact soil nutrient cycling processes. These 

changes also affect microbial communities, including soil 

bacteria and arbuscular mycorrhizal (AM) fungi, which play 

a significant role in nutrient cycling. Research has 

demonstrated that warming of soils during the winter 

seasons can accelerate nutrient cycling, resulting in 

greater nutrient availability and leaching (59). Moreover, 

climate change drivers can influence soil microbial 

communities, which, in turn, can affect nutrient storage, 

soil properties, and other ecosystem processes. It has been 

found that AM fungi reduce nutrient losses through 

leaching, improving soils' capacity to absorb nutrients and 

lessening the detrimental effects of increased 

precipitation on nutrient losses (60). While global change 

factors do impact soil biodiversity and nitrogen cycling in 

terrestrial ecosystems, there is limited evidence linking 

species richness to nutrient cycling efficiency (61). 

Advanced techniques, such as stable isotopes and tree ring 

analysis, enhance our understanding of carbon and 

nutrient cycling in forest ecosystems, addressing the long-

term impacts of climate change. 

Biodiversity 

Soil biodiversity is vital for maintaining ecosystem services 
such as organic matter breakdown and nutrient cycling. 

The various microbial populations present in soil, 

including bacteria, fungi, and viruses, are impacted by 

attributes such as pH, temperature, and organic carbon. 

Key soil bacteria like Pseudomonas aid plant growth and 

nutrient cycling, Bacillus enhances soil fertility and 

suppresses pathogens, and Rhizobium is known for 

nitrogen fixation in legumes. Fungi such as Aspergillus 

decompose organic matter, while Trichoderma promotes 

plant growth and suppresses soil-borne pathogens. 

Mycorrhizal fungi like Glomus improve nutrient and water 

uptake through symbiosis with plants, and viruses, such as 

bacteriophages, regulate bacterial populations and 

influence nutrient cycling(62). Changes in soil biodiversity 

can impact how plant communities respond to 

disturbances brought about by climate change. A decline 

in soil biodiversity can hinder the recovery of legumes and 

reduce plant diversity(63). Soil microorganisms, including 

biota, respond to changes in soil conditions and 

vegetation caused by climate change. Maintaining soil 

biodiversity is critical to mitigating climate change's 

impact on plant diversity and ecosystem function, 

especially in grasslands. Soil biodiversity, particularly 

through the involvement of mycorrhizal soil mutualism, is 

critical for the persistence of legumes and the 

maintenance of plant diversity in grasslands during 

environmental changes. Climate change has a significant 

impact on soil biodiversity and the services it provides, 

with the potential for intensified seasonal disturbances 

and an increase in extreme events. 

Crop rotation 

Crop rotation enhances soil durability by diversifying crops 

and reducing the depletion of soil nutrients. Conventional 

farming systems that heavily depend on excessive 

amounts of fertilizers and pesticides have a negative 

impact on the environment. Conversely, diversified crop 

rotations have been shown to increase  system resilience, 

enhance carbon storage, strengthen resistance against 

pests and diseases, improve the efficiency of water and 

fertilizer use, and optimize the health of the soil (64). The 

incorporation of pastures and crops, along with other 

ecologically-based practices, significantly enhances the 

content of organic carbon and nitrogen in the soil, leading 

to improved soil quality and environmental sustainability 

(65). The excessive use of mineral fertilizers and pesticides 

in modern agriculture has deteriorated the health and 

sustainability of soils, highlighting the need to provide 

fresh energy sources for soil biota to reduce reliance on 

mineral fertilizers. Sustainable and resilient management 

of organic matter in the soil is indispensable for viable 

agricultural development (66). 

Natural farming 

Soil resilience is a critically important aspect of 
sustainable agriculture within the framework of natural 

farming. The primary objective of natural farming 

practices is to preserve and enhance soil health, which is 

of utmost importance for the growth of plants and the 

stability of ecosystems. The conservation of soil and water 

resources, as well as the promotion of biodiversity, are 

fundamental components of natural farming (67). It is 

important to note that the health and nutrient cycling of 

soil are heavily dependent on the presence of healthy soil 

microbial communities, whose functional diversity is 

influenced by the management practices employed on 

farms (68). In achieve agricultural sustainability, it is 

crucial to adopt an integrative approach to the 

management of soil and water resources. Nature-based 

solutions can serve as effective means of improving soil 

resilience and mitigating the adverse effects of climate 

change. Soil resilience, in the context of natural farming, 

offers farmers valuable guidance for implementing 

practices that enhance the long-term productivity and 

sustainability of their agricultural systems. 

Future perspective 
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Land degradation, as highlighted by the 

Intergovernmental Panel on Climate Change (IPCC), ranks 

among the most urgent issues faced by humanity (69). 

Rising atmospheric CO₂ levels are expected to reduce crop 

yields and degrade the nutritional quality of food. 

Addressing climate change requires not only a shift away 

from fossil fuels but also a focus on carbon sequestration. 

SCO, which consists of carbon-based substances such as 

leaves, roots, and living organisms, plays a crucial role in 

this regard. Unfortunately, modern agricultural practices 

have led to soil degradation and a loss of organic carbon 

content. Globally, cropland soils have lost 20-60% of their 

original organic carbon content, with North American 

farmland losing approximately half of its natural soil 

carbon. This degradation is primarily driven by tillage and 

heavy fertilizer use, both of which release more carbon 

into the atmosphere. Investing in soil regeneration offers 

multiple benefits.  

Firstly, healthy soils sequester carbon, and by improving 
soil organic matter, their capacity to hold water is 

enhanced, allowing more rainfall to penetrate the ground. 

This facilitates crop sustenance, especially during drought-

stressed years, and reduces downstream flooding (70). 

Secondly, conventionally tilled soils erode over 100 times 

faster than they form, but restoring soil health through 

practices like cover cropping can significantly reduce 

erosion. For instance, farmers in the Midwest United States 

who implemented cover crops such as clover and rye 

reduced soil erosion by up to 50% compared to 

conventional tillage. These cover crops improve soil 

structure, enhance organic matter content, and increase 

biodiversity, contributing to better soil health and lower 

erosion rates.  

Thirdly, changes in forestry and agriculture can contribute 

significantly to climate solutions by reducing global 

emissions by 5% to 20%, thereby aiding in climate 

mitigation. Lastly, healthy soils improve resilience to 

extreme weather events such as hurricanes, floods, and 

droughts. Additionally, improved soil health supports 

biodiversity by providing a thriving habitat for various 

microorganisms, plants, and animals, contributing to 

ecosystem stability and resilience in the face of 

environmental stressors. 

While it is important to note that soil restoration alone will 

not solve the entire climate crises, it is a significant step 

towards addressing climate change. It is crucial to 

recognize that soil health is not only an agricultural 

concern but also a climate imperative. 

 

Conclusion 

As climate challenges intensify, resilient soils are vital for 

sustainable agriculture and ecological stability. Healthy 

soils not only support food systems but also play a crucial 

role in combating climate change, as soil degradation 

leads to declining crop yields and biodiversity loss. The 

intricate connections between soil health, nutrient 

dynamics, and microbial communities highlight the need 

for proactive soil management. Practices such as 

integrated nutrient management, organic farming, and 

cover cropping can revitalize soils, increase organic carbon 

content, and improve nutrient availability, thereby 

boosting agricultural productivity and ecological health. 

Continued research is essential to identify innovative soil 

management practices that can adapt to changing climate 

conditions, helping to understand the best techniques for 

restoring soil health and improving resilience. 

Additionally, investigating the long-term effects of various 

restoration practices will provide valuable insights into 

enhancing soil biodiversity and overall functionality. 

Prioritizing soil health today ensures resilient ecosystems 

and secures food systems for future generations. 
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