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Abstract
Post-traumatic stress disorder (PTSD) continues to be one of  the most  common mental  health
disorders in the United States and may occur in response to traumatic experiences. Currently,
there are no interventions that prevent the development of  PTSD. L-Theanine (L-Th), a major
compound in green tea has been found to decrease anxiety and prevent memory impairment and
may  have  potential  effects  in  the  prevention  of  PTSD.  Sixty  rats  were  divided  into  six
experimental groups: control vehicle, control L-Th, control naïve, PTSD vehicle, PTSD Pre-L-Th
(prophylactic),  PTSD Post-L-Th  (non-prophylactic).  PTSD was  induced  by  a  3-day  restraint/tail
shock stress model. The effects of L-Th on neurobehavior were evaluated by Elevated Plus-Maze
(EPM), Morris Water Maze (MWM), and Forced Swim Test (FST). Our study found that the total
food intake weight of PTSD Pre-L-Th (prophylactic) rats were significantly increased compared to
that of PTSD vehicle rats (p = .04). Administration of L-Th 24 hours before the initial PTSD event or
for 10 days following the last  PTSD stress event  did not statistically  improve mean open arm
exploration  on  the  EPM,  spatial  memory,  and  learning  in  the  MWM  or  behavioral  despair
measured by the FST (p > 0.05). Although the 3-day restraint/tail shock stress model caused stress
in the rodents, it did not produce reported PTSD-like anxiety and depression or spatial memory
loss. The effect of Pre-L-Th or Post-L-Th treatment, on the neurobehavioral functions could not be
effectively evaluated. However, this study provides a foundation for future studies to try different
rodent  PTSD  models  to  induce  PTSD-like  neurobehavioral  impairments  to  explore  dosage,
frequency, as well as the duration of L-Th administration before and/or after the post-traumatic
event.  The 3-day restraint/tail shock stress model caused stress in the rodents, Pre-L-Theanine
treatment preconditioned the PTSD rats to endure stress.
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Introduction

Post traumatic stress disorder (PTSD) may happen
after exposure to traumatic events, which is one of
the most prevalent mental health disorders in the
United States  (1).  PTSD  can run a  chronic  course

with  many  debilitating  symptoms.  While  the
reported lifetime prevalence of PTSD in the US is
about 8.3% (2), higher prevalence rates of PTSD are
reported  in  veterans  who  served  in  different
combat  events.  PTSD  prevalence  in  Iraq  and
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Afghanistan  veterans  was  estimated  as  high  as
20%  to  30%  (3).  Longitudinal  studies  found  that
many  trauma  exposed  subjects  experienced
delayed-onset  PTSD,  which  could  evolve  into  a
chronic mental health condition (4). A recent study
found  that  40  years  after  the  Vietnam  War,
veterans were still experiencing current full PTSD
symptoms  (5).  PTSD  is  also  quite  prevalent  in
civilian  populations.  In  a  study  with  5,692
respondents in the US,  82.7% indicated they had
experienced  exposure  to  severe  and  potentially
traumatic  events,  and  8.3%  of  those  exposed  to
trauma  were  diagnosed  with  lifetime  PTSD.
Furthermore,  across  24-nations  study  found that
as  high  as  65%  of  surveyed  subjects  reported
exposure  to  traumatic  events,  and  12%  of  these
subjects eventually developed PTSD (6, 7).

Many symptoms are used for diagnosis of
PTSD include  recurrent  distressing  and intrusive
memories  and  disturbing  nightmares  of  the
traumatic event, hyper arousal, sleep disturbance,
inability  to  concentrate,  emotional  dissociation,
and  avoidance  of  anything  associated  with  the
traumatic  occurrence  (8). Negative  changes  in
cognition and mood are also part of the diagnostic
criteria, including negative beliefs about oneself or
the  world,  negative  emotions,  and/or  impaired
memory  (9).  Many  studies  found  that  PTSD  is
associated with neurocognitive dysfunctions such
as  verbal  learning,  working  memory,  attention,
and processing speed  (10-12). Many studies have
indicated  the  strong  correlation  of  PTSD  with
dysfunction in the fronto-limbic networks (i.e., the
amygdala, hippocampus, and cingulate cortex) (11-
15).

The  amygdala  and  hippocampus  play
important roles in processing emotional memory
and the amygdala is especially linked to negative
emotional responses (16). Decreased volume in the
hippocampus,  anterior  cingulate  cortex,  and
amygdala  have  been  identified  in  many  PTSD
studies (15, 17-20).

The  evolvement  of  PTSD  tends  to  be
gradual and lasts for a long period of time. Many
behavioral  and  cognitive  disabilities  severely
compromise the quality of work, family, and social
life;  and  these  pathological  changes  and
debilitating  comorbidities  may  also  turn  into
irreversible outcomes  (21, 22).  There is an urgent
need  to  explore  new  pharmacological  and
nutraceutical  interventions  for  PTSD. Due  to  the
difficulty  of  obtaining  clinical  samples,  animal
models  have  been  widely  used  to  do  PTSD
research.  Animal  models  can  be  developed   to
mimic  core  features  of  human  PTSD,  such  as
susceptibility  to various stressors (23),  avoidance
(24),  hyperarousal  (25),  fear  dysregulation
(generalization  and  deficient  extinction)  (25,  26)
and hippocampal dysfunction  (27, 28). Thus, well-
validated rodent experimental models are a great
tool  to  translate  the  rodent  data  to  the  human
physiology and neurochemical changes associated

with  anxiety,  depression,  spatial  learning,  and
memory formation. 

Although  progress  has  been  made  in
understanding  and  treating  symptoms  of  PTSD
during  the  past  few  decades,  more  effective
pharmacological and nutraceutical compounds are
still  needed  because  of  the  pathophysiological
complexity  of  PTSD.  One  such  medication
compound  is  L-Theanine  (L-Th).  Sakato  first
discovered and isolated the glutamic  acid analog
and non-protein forming amino acid,  L-Th,  from
green tea in 1949 (29). L-Th is also an analog to the
excitatory  neurotransmitter  glutamate  and
glutamine. Because of its ability to cross the blood
brain  barrier  (30),  L-Th  had  been  shown  to
decrease anxiety by enhancing the production of
the  inhibitory,  relaxing  neurotransmitter  GABA,
while  blocking the excitatory glutamate receptors
in the brain (31). Our early study showed that L-Th
affects the  expression  of  genes  in  brain  areas
responsible  for  fear  and  aggression  (amygdala)
and  memory  (hippocampus),  helping  to  balance
the behavioral responses to PTSD (32). L-Th is also
neuroprotective  by  preventing  memory
impairment (33, 34). A rodent model study showed
pre-stress treatment with  L-Th  not only reversed
cognitive impairment and oxidative damage,  but
also  reversed  the  abnormal  levels  of  stress
hormones  (35).  We were interested in evaluating
the effects of L-Th as a prophylactic treatment and
as  a  post-traumatic  stress  event  treatment  in  a
well-established rodent model.

Material and Methods

Animals

The study used 200-249 grams adult male Sprague-
Dawley rats (Envigo, Houston, TX). Handling of the
animals  was  only  for  weighing,  drug
administration,  and  cleaning  of  cages.  After  the
acclimation period, body weight, food, and water
consumption were measured daily up to the first
day  of  neurobehavioral  testing.  Rats  were
randomly  assigned  to  the  non-stressed  group  or
the 3-day  restraint  shock  PTSD group.  The  three
non-stressed  subgroups  consisted  of:  control
vehicle, control L-Th, and control naïve. The three
stressed  groups  consisted  of  PTSD-vehicle,  PTSD
Pre-L-Th,  and  PTSD  Post-  L-Th.  Each  animal
received a subcutaneous injection of either saline
(vehicle) or L-Th 10mg/kg in saline (L-Th Catalog #
459340050  was  purchased  from  Acros  Organics,
New Jersey) twice per day (0700 hrs and 1900 hrs).
The Pre-L-Th animals were given their first dose 24
hours  before  the  3-day  restraint/shock  stress
model  began,  while  the  Post-L-Th  animals  were
given their first  dose of  L-Th following the third
day of the restraint/shock. All animal experiments
were  performed  in  accordance  with  the
Association  for  Assessment  and  Accreditation  of
Laboratory  Animal  Care  (AAALAC  International)
directives after obtaining the approval from the US
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Army  Institute  of  Surgical  Research  Institutional
Animal  Care  and  Use  Committee  (IACUC).  The
IACUC  at  the  US  Army  Institute  of  Surgical
Research,  Fort  Sam  Houston  approved  of  this
research protocol. Protocol #A-15-037. 

Three-day  Restraint/tail  Shock  PTSD  Stress
Model

Stress exposure consisted of one two-hour session
per  day  of  immobilization  and  tail-shocks,  as
previously described in our work (36). Rats were
restrained in a transparent acrylic glass tube and
40 electric shocks (2 mA, 3s duration) were applied
at  random  intervals  (140  -  180s).  Commercial
hardware and software controlled the timing and
amplitude  of  the  stimulus  (Precision  Animal
Shocker, Coulbourn Instruments, Columbus, Ohio,
USA).  Rats  were  stressed  for  three  consecutive
days at approximately the same time each day. It
has  been  demonstrated  that  repeated  stress
sessions  are  more  effective  than  a  single  stress
session in producing physiological and behavioral
abnormalities  such  as  acoustic  startle  response
and  reduced  body  weight  consistent  with  PTSD
(37).  After  the  3-day  restraint/tail  shock  stress
model was completed,  all  rats  except the control
naïve  rats  were  given  subcutaneous  injections
based on their body weight twice daily for a period
of ten days. This allowed for the development of
PTSD-like symptoms, as demonstrated by previous
studies (37). 

Elevated Plus Maze (EPM)

The  EPM  is  a  widely  utilized  and  validated
instrument  to  measure  anxiety  in  the  rodent
model (38). As cited in our previous manuscript
(36), the EPM is made entirely of Plexiglas® and
consists of a set of opposing open arms and a set
of opposing closed arms (50cm X 10cm). The two
open arms are lined with 1 cm high Plexiglas® on
the  sides  to  avoid  falls.  The  maze  is  placed  50
centimeters above the floor and surrounded by
screens  to  minimize  any  room  cues  or
influences.  The  walking  surface  of  the  EPM  is
Plexiglas® to  avoid  excess  stimulation  and
provide  a  waterproof  surface  when exposed  to
urine and feces.  The maze is  in  the shape  of  a
cross (+),  with the intersection of the four arms
measuring  10  x  10  cm.  Each  experimental
session  was  recorded  for  five  minutes  by  the
AnyMaze® software  where  mean  speed
(centimeters  per  second),  mean  time  mobile
(seconds), and open-arm time ratio (%) were the
main  data  points  investigated.  Open  arm  time
ratio was calculated by taking the time spent in
the open arm divided by the total recorded time
and multiplying by 100 to get a percentage.  An
increase in  the percentage of  time spent in  the
open arms reflects an anxiolytic effect (38).  The
EPM  was  cleansed  between  each  testing  with
non-fragrant  soap  and  water  and  thoroughly
dried. After the EPM test, animals were taken to
the Morris water maze room.

Morris Water Maze (MWM)

After  completion  of  the  five-minute  EPM,  the
animals were taken to the MWM for testing. The
water maze task has been most extensively used to
investigate specific aspects of spatial memory. This
task is based upon the premise that animals have
evolved  an  optimal  strategy  to  explore  their
environment  and escape  from  the  water  with  a
minimum  amount  of  effort  -  i.e.,  swimming  the
shortest distance possible (39). The time it takes a
rat to find a hidden platform in a water pool after
previous  exposure  to  the  setup,  using  only
available  external  cues,  is  determined  as  a
measure of spatial memory  (40). The water maze
test,  as  described  previously  with  minor
modifications,  was  used  on  all  animals  (41,  42).
The setup consisted of a circular tank (190 cm in
diameter)  filled  with  water  (up  to  30  cm  deep;
temperature: 22 ± 2 °C) and made opaque by the
addition of a non-toxic dye. The pool was divided
into four zones. A platform (18 cm × 18 cm) was
submerged 2 cm below the water surface in zone
1.  The  pool  was  placed  in  a  small  room  with
external  cues,  kept  constant  throughout  the
experiments.  The  data  were  recorded  and
analyzed  with  an  overhead  video-camera
connected to the AnyMaze® software. For training,
all rats were exposed six times per day to the setup
for two consecutive days,  for a total  of 12 trials.
Each  rat  was  given  60  seconds  to  randomly
explore the water maze. If the animal did not find
the  platform  in  this  period  by  chance,  it  was
guided to  it  and allowed to  remain  there  for  10
seconds to familiarize itself with the location of the
platform relative to  the visual  cues in  the maze.
Formal data recording consisted of the probe test
and  commenced  on  the  third  day  of  MWM
exposure.  The  probe  test  involved  removing  the
platform and the rats undergoing a single trial of
60  seconds  (probe  trial).  The  percentage  of  time
spent  in  each  zone  and  the  area  where  the
platform  was  previously  located  was  recorded.
After the end of the probe test, animals were taken
to the forced swim test room.

Forced Swim Test (FST)

After testing in the MWM, animals were carried to
a separate room and evaluated in the FST. The FST
is  a  validated  test  of  behavioral  despair  in  the
rodent model (43). In two sessions separated by 24
hours,  rats  were  forced  to  swim  in  a  narrow
cylinder  from  which  they  cannot  escape.
Transparent glass cylinders (20.32 cm × 71.12 cm)
contained water (25 ± 2°C) at a depth sufficient to
prevent the rat  from touching the bottom of the
cylinder.  A  15  minute  training  session  was
conducted  24  hours  prior  to  data  collection  and
without  behavioral  recording.  The  initial  15-
minute  session  was  conducted  to  habituate  and
acclimate  the  rats  to  the  test  situation,  thereby
providing a stable, high level of immobile behavior
during  the  five-minute  recorded  test  session  24
hours later.  The AnyMaze®  software was used to
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video record the five-minute test session. The de-
identified videos were independently reviewed by
three investigators and the amount of time the rats
were  immobile  was  the  mean  of  the  three
investigators’  times.  The  measurement  of  the
duration of immobility when rodents are exposed
to an inescapable situation (FST) is a reflection of
behavioral despair or learned helplessness. In this
rodent  model  of  depression,  the  longer  the
duration of immobility, the greater the behavioral
despair or depression. The amount of immobility
time was statistically analyzed between groups.  

Statistical analysis

Each group consisted of 10 subjects (n=10). For this
design, a one-way ANOVA was conducted for each

of  the  outcome  variables,  where  the  means  (M)
and  standard  error  of  the  means  (SEM)  are
reported.  All  assumptions  were  examined
including homogeneity of error variances (via the
Levine  test)  and  normality.  The  eta-squared  (η2)
effect  size  is  reported.  Though  interpreting  and
casting  judgment  as  to  what  constitutes  a
small/medium/large  effect  size  is  context-
dependent (Pek & Flora, 2018) (44) using Cohen’s
(1988)  taxonomy  .01/.059/138  will  be
small/medium/large  (45).  All  outliers  and  data
anomalies  were  examined  and  addressed
accordingly (e.g.,  transformations,  nonparametric
options, etc.). In the event of a significant result (α
= .05), post-hoc tests (e.g., LSD) were performed. 

Results

Total body weight

Measurements  of  the  rodents’  total  body  weight
before  the  PTSD  shock  treatment  and  before
sacrifice  were  taken  and  compared  between
groups. For the 6 x 2 (group x time) design (n = 60),
a significant 2-way interaction was found: F(5, 54)
= 21.67, p< .001 (η2 = .667). The pre-shock stage the
PTSD-vehicle  group  had  the  highest  mean  (M =
302.8  grams)  and the  PTSD-post-treatment  group
had the lowest (M = 296.3 grams), whereas for the
subsequent  temporal  outcome  (10  days  after
restraint/shock)  the  control-naïve  group  had  the
highest mean (M = 340.6 grams) and the PTSD-post-
treatment group (again) had the lowest (M = 301.3
grams) (Table 1).

When  compared  to  the  mean  total  body
weight of post PTSD shock, the PTSD-vehicle group

(M = 313.3 grams) was significantly lower (p < .05)
than  that  of  the  control-naïve  group  (M =  340.6
grams),  but not different from the  control-vehicle
group  mean  weight  (M =  327.6  grams).  When
examining  the  pairwise  differences  via  the  LSD
hoc test,  the mean total body weight of  the PTSD-
Pre-L-Th  group  or  the  PTSD-Post-L-Th  treatment
group  was  not  different  from  that  of the  PTSD-
vehicle group (Table 1).

Total water intake

For  the  total  water  intake  weight  outcome
(summed  total  score),  a  significant  difference
between the six groups was found: F(5, 54) = 3.7, p
= .006 (η2 = .255). The control-naïve group had the
highest  mean  (M =  657.2,  SEM =  26.5)  and  the

PTSD-post-treatment group the lowest (M = 517.6,
SEM = 23.7).  The PTSD-vehicle group water intake
weight  (M =  537  grams,  SEM  =  31.5) was
significantly lower than that  of the control-naïve
group (M = 657.2 grams, SEM = 26.5) (p = .002), but
not different from that of the control-vehicle group
(M = 605.6 grams,  SEM = 10.5).  When examining
the pairwise differences via the LSD hoc test, the
total  water  intake  weight  of  the  PTSD-Pre-L-Th
group or the  PTSD-Post-L-Th treatment group was
not different from that of the  PTSD-vehicle group
(Table 2).

Table 2. Total water intake

Group Mean Gram Weight +SEM
Control-vehicle 605.6+ 10.5
Control-L-Theanine 587.8 +7.30
Control-naïve 657.2 +26.5
PTSD-vehicle* 537.0 +31.5
PTSD-Pre-L-Theanine 594.6 +40.8
PTSD-Post-L-Theanine 517.6+23.7

Total food intake

For  total  food  intake,  a  significant  difference
between the six groups was found: F(5, 54) = 2.78,
p = .026 (η2 = .205). The PTSD-vehicle group had the
lowest food intake weight (M = 323.8 grams, SEM =
3.5).  It  was  significantly  lower  than  that  of  the
control-naïve  group  (p =  .002),  but  not  different
from that of the  control-vehicle group (M = 381.2
grams,  SEM = 9.5). When examining the pairwise
differences via the LSD post hoc, the  PTSD-Pre-L-
Th  group food  intake  weight  (M  =  360.0  grams,
SEM = 18.8) was significantly higher than that of
the PTSD-vehicle group (p = .04) (Table 3).
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Table  1. Total body weight pre and post restraint shock

Group Pre-Shock (M) Post-Shock (M) Mean Difference Cohens d η2

Control-vehicle 298.5 327.6 29.1 4.67 0.66
Control-L-Theanine 297.6 328.6 31.0 4.17 0.68
Control-naïve 302.2 340.6 38.4 5.32 0.77
PTSD-vehicle* 302.8 313.3 10.5 2.01 0.20
PTSD-Pre-L-Theanine 297.5 310.9 13.4 1.02 0.29
PTSD-Post-L-Theanine 296.3 301.3 05.0 0.41 0.05
M = Mean; *p< .05
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Elevated plus maze

There were no significant differences between the
groups  pertaining  to  mean:  distance,  mobile
episodes,  time  mobile,  mean  speed,  maximum
speed, or open arm entries.  Analysis  of the ratio
for open arm time versus total time spent in the
elevated  plus  maze:  although  the  mean  ratio  of
PTSD-vehicle  group  was  significantly  lower  than
that of the control-naïve group (p = .046), but not
different from that of the control vehicle group. No
difference was found in the ratio of open arm time
versus total time spent in the elevated plus maze
when comparing the PTSD-pre-treatment group or
the PTSD-post-treatment group to the PTSD-vehicle
group (Fig 1).

Table  3. Total food intake

Group Mean Gram Weight + SEM
Control-vehicle 352.2 +05.7
Control-L-Theanine 347.0+11.5
Control-naïve* 381.2 +9.5
PTSD-vehicle*# 323.8 +3.5
PTSD-Pre-L-Theanine# 360.0 +18.8
PTSD-Post-L-Theanine 333.2 +16.3

SEM = Standard Error of the Mean; *p = .002; #p = .04

Morris water maze

When  analyzed  the  test  result  from  the  Morris
water maze, no statistically significant differences
were  found  when  comparing  distance  traveled,
mean speed, max speed, zone 1 distance traveled,
zone 1 latency to first entry, zone 1 max speed, and
entries to the platform area in zone 1 (the platform
zone) between groups. Similarly, the Time in Zone
1  (Platform  Zone)  Time  outcome,  no  significant
difference was found between the six groups:  F(5,
54) = .78, p = .567 (η2 = .067) (Fig 2).  

Forced swim test

For  the  forced  swim  test,  one  subject  was
eliminated  from  the  L-Th  control  group  (n =  9)
because of weakness and the inability to complete
the FST 15 minute trial. There was not a significant
difference between the six groups: F(5, 53) = 1.27, p
= .291 (η2 = .107) in term of the Mean Time Mobile
outcome. When examining the pairwise differences
via the LSD hoc test, the PTSD-pre-treatment group
had a significantly higher mean (M = 48.17,  SEM =
9.26)  than  that  of  the  control-  naïve group  (M =
28.53, SEM = 6.69) (p = 0.044) (Fig 3).

Discussion

PTSD  continues  to  be  a  devastating  psychiatric
disorder of high prevalence. The goal of this study
was to evaluate if L-Th, given to stressed rats in a
rodent  model  of  PTSD,  before  and  after  the
induction  of  PTSD,  has  neurobehavioral  effects.
The prophylactic and non-prophylactic effects of L-
Th,  on  PTSD-like  symptoms  such  as  anxiety,

behavioral despair, and alterations in learning and
spatial memory were evaluated.

Due  to  the  difficulty  of  obtaining  PTSD
patient samples,  animal models have been widely
used to compensate for the need for PTSD human
disease  research.  Many  different  animal  models
have been developed to delineate the underlying
neurobiological  abnormalities  of human PTSD.  A
physical  stressor  inducing PTSD  is  one  of  the
common rodent PTSD models. Our study used both
restraint and shock to induce PTSD, studies have
showed  the  stress  caused  by  this  modeling  can
closely parallel the depression, anxiety, and fear in
PTSD patients (46, 47). These physical stressors can
induce  neuro-structural  and  function  changes  in
the  hippocampus  and/or  amygdala  which  are
responsible for these PTSD abnormalities (48). Our
study found that rats exposed to PTSD stress lost
weight,  compared  to  non-stressed  rodents,  the
PTSD group also had lower water and food intake
compared  to  that  of  the  non-stressed  rodents,
indicating that  the rats in the PTSD groups were
under  chronic  stress  as  shown  in  our  previous
work (36).  Administration  of  L-Th  prior  to  PTSD
events  prevented  the  decrease  in  food
consumption,  significantly  increased  food  intake
compared to that of the PTSD-vehicle group. This
suggests  that  administration  of  L-Th  prior  to
rodent exposure to PTSD shock preconditioned the
rodents to endure stressful events. 

The  EPM  has  been  a  standard
measurement of rodent anxiety by measuring the
time  of  the  rodent’s  exploration  of  novel  and
unprotected environments. It has been shown that
L-Th can  cross the blood-brain barrier easily and
quickly and L-Th reached its peak concentrations
in mammals after 30 to 120 min after ingestion (49,
50). Similarly,  L-Th can be absorbed very quickly
in various resource formats, and reach maximum
concentration in humans within 50 minutes after
ingestion (51). Several human studies found that L-
Th  was  beneficial  for  reducing  anxiety  and
improving negative moods caused by high blood
pressure  or  cancer  (52-54).  So  it  is  hypothesized
that L-Th may be protective to reduce PTSD related
stress. Although the PTSD group showed anxiety-
like behavior by having a decrease in mean open
arm time compared to  non-stressed rodents,  our
model  did  not  produce  severe  anxiety  stress  as
reported  after  rodents  were  exposed  to  1-hour
restraint  stress  in  a  14  day  consecutive  stress
model  (55);  or  by  exposing  rats  to  under  water
stress  to  induce  an  occurrence  rate  of  53%  of
extreme  anxiety  (56).  We  did  not  see  any
protective effect from pre or post-treatment of L-
Th because of the lack of severe anxiety symptom
in our rodents. A prolonged repeat stress model or
a different stress model may be needed to evaluate
L-Th effects.

In  a  rat  model  of  repeated  cerebral
ischemia,  theanine was  administered
intraperitoneally  after  the  first  ischemic  insult
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which reversed the impairment of spatial memory
caused  by  the  ischemic  event  (33).  A  study
evaluated the effect  of  the combination of green

tea  and  L-Th  on  patients  with  mild  cognitive
impairment  and  found  that  the  green  tea/L-Th
combination significantly  increased memory and
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Fig. 1. ANOVA of mean open-arm time ratio from elevated plus-maze (EPM) and standard error of the mean (SEM). Each of the
main two groups (Stressed and Non-stressed) had three subgroups: non-stressed: control vehicle, control L-Th, control naive, and
stressed:  Posttraumatic  stress  disorder  (PTSD)  vehicle,  PTSD Pre-L-Th (prophylactic),  PTSD Post-L-Th (non-prophylactic).  Mean
Open-Arm Time Ratio is reported with the SEM. Asterisks denote statistical significance at p < .05.

Fig. 2. ANOVA of time in zone1 (Platform Zone) from Morris water maze (MWM) and standard error of the mean (SEM). Each of the
main two groups (Stressed and Non-stressed) had three subgroups: non-stressed: control vehicle, control L-Th, control naive, and
stressed: Posttraumatic stress disorder (PTSD) vehicle, PTSD Pre-L-Th (prophylactic), PTSD Post-L-Th (non-prophylactic). Mean time
(seconds) in Zone 1 (Platform Zone) is reported with the SEM. There was not a significant difference between the six groups.
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attention  of  these  patients  (57).  PTSD  is  a  very
complex  disorder,  many  rodent  PTSD  models
showed  that  trauma  induced  behavioral  and
memory deficits can occur both immediately and
weeks  after  the traumatic  events  (58,  59). It  has
been  shown  that  the  MWM  measured  memory
deficit  in  the  rats  with  a  PTSD-like  underwater
trauma, could have an onset as late as three weeks
after the PTSD trauma (46). The 3-day restraint/tail
shock stress rat PTSD model used in our study did
not significantly impair the memory of rodents in
the PTSD group measured by the MWM. Another
stress  model  such  as  the  underwater  trauma
model  (59, 60) may be used to produce the PTSD-
like memory loss, and different lengths of pre and
post treatment can be implemented to assess the
prophylactic and non-prophylactic effects of L-Th
on spatial memory and learning.

Depression is one of the major symptoms
of  PTSD.  Learned  helplessness  has  been  widely
used as a rodent model of depression (61). When
the rodents were exposed to uncontrollable shock,
rodents became inactive and passively tolerant of
stress.  The  learned  inactivity  or  helplessness  is
parallel to symptoms of depressed patients, so the
learned helplessness  has  been  modeled  to  study
the cognitive deficits related to depression (62). In

our study, we used the forced swim test to assess
depression-like  behavioral  despair  and the effect
of  L-Th  in  the  prevention  and  treatment.  A  rat
model of exposure to even a 15 minute session of
inescapable  foot  shocks  could result  in  impaired
mobility  and attention  lasting  for  weeks  (63).  In
the  inescapable  foot  shock  model,  animals  also
showed  learning  impairment,  and  this  learning
impairment  was  evident  even  28  days  after  the
rats’ exposure to electric foot shock (64). Our 3-day
restraint/tail  shock  stress  model  did  not  cause
significant learned helplessness (LH) or depression
in  rodents  of  the  PTSD  group  measured  by  the
forced  swim  test.  We  may  need  to  use  an
alternative PTSD model to induce significant LH or
depression to evaluate L-Th effects.

Elevated  Plus-Maze,  Morris  Water  Maze,
and  Forced  Swim  Test  were  used  to  assess  the
effects of L-Th on neurobehaviors in our rat model
of PTSD. Our study indicated that Pre-L-Theanine
treatment preconditioned the PTSD rats to endure
stress, but did not improve their neurobehavioral
functions.  However,  this  study  provides  a
foundation  for  future  PTSD  treatment
explorations. There is no single model of PTSD that
can  mimic  all  behavioral  symptoms  of  PTSD.
Future  studies  may  be  designed  to  use  multiple
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Fig 3. ANOVA of mean time mobile from forced swim test (FST) and standard error of the mean (SEM). Each of the main two groups
(Stressed  and  Non-stressed)  had  three  subgroups:  non-stressed:  control  vehicle,  control  L-Th,  control  naive,  and  stressed:
Posttraumatic stress disorder (PTSD) vehicle, PTSD Pre-L-Th (prophylactic), PTSD Post-L-Th (non-prophylactic). Mean time mobile is
reported  with  the  standard  error  of  the  mean  (SEM).Asterisks  denote  statistical  significance  at  p  <  .05.  PTSD-Pre-L-Th  was
significantly higher than the control naive.
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rodent PTSD models to induce different PTSD-like
neurobehavioral  impairments  to  explore  dosage,
frequency,  and  duration  of  L-Theanine
administration  before  and/or  after  the  post-
traumatic  event.  Furthermore,  biomarkers  and
gene expression profiling may assist in correlating
and identifying potential treatment approaches.

Conclusion

The 3-day restraint/tail shock stress model caused
stress in the rodents, our study found that the total
food intake weight of PTSD Pre-L-Th (prophylactic)
rats had significantly increased compared to that
of PTSD vehicle rats (p = .04). This indicated that
Pre-L-Theanine  treatment  preconditioned  the
PTSD  rats  to  endure  stress.  Because  the  3-day
restraint/tail  shock stress  model  did  not  produce
PTSD-like  anxiety,  depression  or  spatial  memory
loss,  the  effect  of  L-Th  on  the  neurobehavioral
functions could not be effectively evaluated.
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	Measurements of the rodents’ total body weight before the PTSD shock treatment and before sacrifice were taken and compared between groups. For the 6 x 2 (group x time) design (n = 60), a significant 2-way interaction was found: F(5, 54) = 21.67, p< .001 (η2 = .667). The pre-shock stage the PTSD-vehicle group had the highest mean (M = 302.8 grams) and the PTSD-post-treatment group had the lowest (M = 296.3 grams), whereas for the subsequent temporal outcome (10 days after restraint/shock) the control-naïve group had the highest mean (M = 340.6 grams) and the PTSD-post-treatment group (again) had the lowest (M = 301.3 grams) (Table 1).
	When compared to the mean total body weight of post PTSD shock, the PTSD-vehicle group (M = 313.3 grams) was significantly lower (p < .05) than that of the control-naïve group (M = 340.6 grams), but not different from the control-vehicle group mean weight (M = 327.6 grams). When examining the pairwise differences via the LSD hoc test, the mean total body weight of the PTSD-Pre-L-Th group or the PTSD-Post-L-Th treatment group was not different from that of the PTSD-vehicle group (Table 1).
	For total food intake, a significant difference between the six groups was found: F(5, 54) = 2.78, p = .026 (η2 = .205). The PTSD-vehicle group had the lowest food intake weight (M = 323.8 grams, SEM = 3.5). It was significantly lower than that of the control-naïve group (p = .002), but not different from that of the control-vehicle group (M = 381.2 grams, SEM = 9.5). When examining the pairwise differences via the LSD post hoc, the PTSD-Pre-L-Th group food intake weight (M = 360.0 grams, SEM = 18.8) was significantly higher than that of the PTSD-vehicle group (p = .04) (Table 3).
	There were no significant differences between the groups pertaining to mean: distance, mobile episodes, time mobile, mean speed, maximum speed, or open arm entries. Analysis of the ratio for open arm time versus total time spent in the elevated plus maze: although the mean ratio of PTSD-vehicle group was significantly lower than that of the control-naïve group (p = .046), but not different from that of the control vehicle group. No difference was found in the ratio of open arm time versus total time spent in the elevated plus maze when comparing the PTSD-pre-treatment group or the PTSD-post-treatment group to the PTSD-vehicle group (Fig 1).
	Table 3. Total food intake

