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Abstract   

This study examines the spatial variability of soil properties and classifies the 

soil in the Sirumugai Reserved Forest range, located in the Western Ghats, India. 

A systematic soil survey and profile studies were conducted, using landforms as 

the basis for investigation within the study area. Horizon-wise soil samples were 

analysed for key soil parameters, including pH, electrical conductivity (EC), soil 

organic carbon, phosphorus, and potassium. The results revealed significant 

variations in soil properties across different locations, primarily influenced by 

elevation. The coefficient of variation for phosphorus was 0.87, while for 

potassium, it was 0.48. The analysis also encompassed assessments of 

skewness and kurtosis. pH (0.15) and phosphorus (0.75) exhibited kurtosis 

values close to 1, indicating relatively normal and flatter distributions. 

Conversely, sodium (27.10), elevation (3.91), and calcium demonstrated high 

kurtosis. Most soil properties were found to be right-skewed, while bulk density 

(0.09) was left-skewed.. Geostatistical analysis in the Sirumugai Reserved Forest 

revealed considerable spatial variability in soil properties, particularly in EC and 

organic carbon. Elevation emerged as a strong influencing factor   for soil 

properties, coupled with soil depth and nutrient leaching,  which were 

prominent at higher altitudes. Ordinary kriging provided accurate spatial 

predictions, offering valuable insights for land management and conservation 

strategies tailored to the region. 
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Introduction 

Soil quality along the Western Ghats exhibits significant variability due to 

differential pedogenic processes influenced by geology, elevation, and climate. 

Forest soils from the foundation of the forest ecosystem, where complex and 

long-term interactions between trees, soil animals, and microbial populations 

results in soil development that is markedly distinct from agricultural soils. In 

most forest ecosystems, rainfall plays a pivotal role in promoting plant growth, 

which subsequently enhanced soil organic carbon content levels through the 

incorporation of plant residues. However, monoculture vegetation such as 

Malapari (Pongamia pinnata), rubber plantation (Hevea brasiliensis), and teak 

(Tectona grandis)  adversely impact organic carbon content (OC) (1). Natural 

forest soils are nutrient-rich due to the breakdown of plant litter,  leading to 
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highly productive and sustainable soils in mountainous 

regions.  

Scientists studying forested areas  often utilize altitude to 

examine how climatic factors influence soil organic matter 

dynamics.   Studies (2) identified key factors such as summer 

precipitation, forest stand age, parent material alkalinity, and 

edaphically dry conditions as  critical drivers of organic 

humus accumulation in mountainous regions. Another study 

(3)  highlighted that forest restoration protects soil in semi-

arid environments while trees mitigate salinization. Forests 

play a vital role in minimizing soil degradation in 

mountainous areas; however, challenges such as steep 

slopes and shallow soils persist. Additionally, forests are 

crucial for watershed  management, clean water supply,, and 

the sustainable  preservation of sensitive soil ecosystems (4).  

Geostatistical approaches have been widely employed to 

analyze the spatial distribution and variability of soil data, 

considering factors such as the scale of the study region, the 

distance between sampling locations, and spatial patterns 

utilized to generate semivariograms. These methods 

effectively assess correlations and geographic variability of 

soil properties', including physical, chemical, and biological 

attributes (5). Cross-validation of variogram models using 

Ordinary Kriging (OK) indicated that spatial prediction of soil 

attributes is more accurate than relying on mean observed 

values at unmeasured locations.  

Variogram modelling enables the examination and 
quantification of spatial autocorrelation, a process referred to 

as spatial modelling, structural analysis, or variography in 

geostatistics (6). Most natural phenomena exhibit variability 

across both space and time, as evidenced by the high 

variability observed within short distances on a topographic 

surface. This variability is deterministic, resulting from natural 

processes, although the exact conditions under which these 

processes occur are not always fully understood (7). 

The ArcGIS Geostatistical Analyst tool provides a user-friendly 

interface for performing advanced geostatistical analyses, 

including variogram modelling, kriging, inverse distance 

weighting (IDW), and cross-validation. 

The objective of this study is to evaluate the factors 

influencing soil quality in forest ecosystems by analyzing the 

spatial variability of soil properties in the Sirumugai Reserved 

Forest. This investigation focuses on soil nutrients, soil depth, 

and other critical soil attributes, while examining how factors 

such as elevation, soil structure, and leaching interact. 

Geostatistical methods will be applied to model and predict 

soil characteristics across different physiographic units, 

providing valuable insights for improved land management 

and conservation strategies. 

 

Materials and Methods 

Study area  

The study area, Sirumugai Reserved Forest range, is located 

in the Coimbatore district of Tamil Nadu, India, and forms 

parts of the Western Ghats. Geographically, it lies between 11°

27'46.06" and 11°20'1.06" Nlatitude and 77°3'42.56" and 76°

54'12.92" E longitude, approximately 40 km north of  

Coimbatore city. The forest spans an area of 128 km2. 

According to the India Meteorological Department, the region 

receives an average annual rainfall of 689 mm and 

experiences a semiarid climate with temperature ranging 

from 14° to 40 °C during summer and winter.  

Geomorphologically, the research area features a piedmont 
slope and a weathered  pediplain with a regional slope 

predominantly oriented southward. Over time, the west-to-

east regional slope has influenced the shifting channels and 

courses of rivers. The area is categorized into six basic 

physiographic units based on a regional slope: 

i) Western Ghats hills top 2 (Wh2),  

ii) Western Ghats hills 6 (DWh6),  

iii) Western Ghats side slopes 1(Wl1),  

iv) Western Ghats foothills (Wr5),  

v) Rolling lands (G 3.1) and, 

vi)  Undulating lands.  

The elevation within the study area varies significantly, 

ranging from 300 to 1000 meters above mean sea level. The 

soils in this region are primarily derived from unconsolidated 

sediments of the Quaternary epoch, reflecting the area's 

complex geomorphic and pedogenic history.  

Soil sampling  

A comprehensive survey was conducted to achieve the 
research objectives. Thirty-three soil profiles were chosen 

based on soil morphological observations, with sample site 

distribution tailored to align with the physiographic units of 

the study area. The locations of soil samples were recorded in 

the field using GPS and subsequently mapped (Fig. 1). The 

profile studies were undertaken as per the soil survey manual 

guidelines. Relevant site characteristics and morphological 

featured were throughly documented (8). Horizon-wise soil 

samples werecollected from all profile points,  transported to 

the laboratory, processed, and conserved for further 

laboratory examination.  

Laboratory analysis 

Soil pH was measured in a 1:2.5 soil-water suspension using a 

digital pH meter at 25 °C, as outlined by (9). Electrical 

conductivity (EC), representing soil salinity, was determined 

in the same suspension using a conductivity meter (9). 

Available phosphorus (10) was extracted using the Bray 1 

technique and analysed calorimetrically. Potassium (K) was 

extracted with 1 N ammonium acetate (pH 7.0) and 

quantified by flame photometry (11). Exchangeable calcium 

(Ca) and magnesium (Mg) were extracted with ammonium 

acetate and analysed using atomic absorption 

spectrophotometry (12), while sodium (Na) was quantified 

using a flame photometer. Cation exchange capacity (CEC) 

was determined via the ammonium acetate method, where 

ammonium was replaced with potassium and subsequently 

quantified through distillation, as described in (9). Bulk 

density was assessed using the core method described in 

(13), and organic carbon (OC) was quantified using the 

Walkley-Black method, which involves oxidation with 

potassium dichromate (14). 
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                Fig. 1. Study area map 
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Statistical Analysis  

Descriptive statistics of the analysed soil data, including 

minimum, maximum, mean, standard deviation, coefficient 

of variation, and skewness, were computed. Pearson 

correlation coefficients were utilized to determine the 

relationships among the variables. A matrix of correlation 

coefficients was created by estimating these coefficients for 

all possible pairing of the response variables. 

Geostatistical Analysis 

Geostatistics methods were employed to assess the spatial 

variability patterns of soil properties in the study area. Spatial 

interpolation and GIS mapping techniques were applied to 

create spatial distribution maps of the analyzed soil 

properties. Kriging in ArcGIS was utilized to minimize 

prediction errors while effectively representing spatial 

variability and enabling the generation of various map 

outputs (15). Since the semi-variogram model dictates the 

interpolation function, semi-variogram analysis was 

conducted prior to applying ordinary kriging interpolation. 

The semi-variogram was calculated using the equation 

provided in (7) to evaluate the structure of spatial variability 

(Eqn. 1). 

2       
(Eqn. 1) 

 

where γ(h) represents the semivariance at a given distance h; 

z(Xi) is the value of the variable Z at location Xi, and N(h) is the 

number of sample points pairs separated by the lag distance 

h. (6) Semi-variogram models, including spherical and 

circular models, were evaluated based on multiple criteria in 

the present study. For each soil property dataset, the semi-

variogram models were verified.  

The method of cross-validation was used to determine which 

model provides the most accurate predictions. Cross-

validation was used to evaluate the accuracy of prediction 

performance through a comparative analysis of the likely 

error values associated with each model. Equations from 

(Eqn. 2) were used to compute prediction errors, which 

included the root mean square error (RMSE). The RMSE 

evaluates a model’s ability to predict observed values and 

provides an estimate of the residuals' standard deviation. 

Smaller RMSE values indicate more accurate predictions and 

lower degrees of error (16). 

To characterize various forms of spatial dependence for the 

soil properties, the nugget variance was applied. The spatial 

dependence was classified as highly spatially dependent (S) if 

the nugget-to-sill ratio (N:S) was less than or equal to 0.25, 

moderately spatially dependent (M) if the ratio ranged 

between 0.25 and 0.75, and weakly spatially dependent (W) if 

the ratio exceeded 0.75 (17). Regardless of the nugget ratio, a 

variable was considered randomly distributed (R) if the slope 

of the semi-variograms was close to zero. 

    
 (Eqn. 2) 

In the equation,   represents the number of observations, z

(xi) denotes the observed value at location or instance  , and 

the second  (  ) indicates the predicted value at the same 

location. 

 

Results 

Descriptive statistics of soil parameters  

Table 1 presents the descriptive statistics of soil parameters, 
with variability assessed using the coefficient of variation 

(CV). Parameters were classified into different variability 

levels: least variable (CV < 15%), moderately variable (CV 15–

35%), and most variable (CV > 35%)(18). The mean values of 

the soil properties were as follows: electrical conductivity (EC) 

at 0.05 dS/m, pH at 8.80, available phosphorus (P₂O₅) at 72.5 

kg ha–1, and organic carbon (OC) at 0.81 %. The standard 

deviation ranged from 0.04 for EC to 39.78 for phosphorus 

(P₂O₅), indicating notable variability in the dataset.  

Soil depth varied between 7 and 42 cm, with an average 
depth of 18 cm. Electrical conductivity ranged from 0.01 to 

0.178 dS/m, while pH values ranged from 4.5 to 8.8,  with a 

mean of 6.3. The concentration of phosphorus  exhibited a 

high range, varying from 5.38 to 72.58 kg ha−1 (CV = 0.87). 

Potassium concentration also varied, though to a moderate 

extent (CV = 0.48), with values ranging between 14.37 and 

S. No Parameter Minimum Maximum Mean Standard  
Deviation CV Skewness Kurtosis 

1 Soil depth 7 42 18.91 7.65 0.40 0.79 0.66 

2 Elevation 283 1080 419.91 213.58 0.50 2.27 3.91 

3 EC 0.01 0.17 0.05 0.04 0.78 1.32 1.42 

4 pH 4.60 8.80 6.39 0.89 0.14 0.33 0.15 

5 P 5.38 72.58 22.04 19.11 0.87 1.34 0.75 

6 k 40.00 205.00 82.82 39.78 0.48 1.20 1.04 

7 ca 2.00 46.50 10.05 7.66 0.76 3.41 13.85 

8 Mg 1.50 66.00 17.03 13.56 0.80 1.67 3.40 

9 Na 6.50 75.00 10.31 11.70 1.14 5.35 27.10 

10 CEC 10.05 68.05 22.06 12.12 0.55 1.83 4.40 

11 OC 0.14 2.44 0.81 0.62 0.77 1.19 0.53 

12 BD 1.12 1.41 1.26 0.08 0.06 0.09 -0.61 

Table 1. Descriptive statistics of soil characteristics in the study region (n = 33)  
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298.47 kg ha−1. OC content ranged from 0 to 14%, with a 

standard deviation of 0.62, and was further classified into 

broader ranges from 2 to 44%.  

Cation exchange capacity (CEC) ranged from 10.05 to 68.05 

cmol/kg, showing low variability. Sodium content exhibited 

significant variability (CV = 1.14). Most soil parameters 

displayed positive skewness, with minimum and maximum 

values  ranging from 0 to 5 and the kurtosis values varying 

from -0 to 27. The variability in soil depth, ranged from 7 to 42 

cm on average (Table 1).  

Skewness and Kurtosis 

The skewness values of the soil properties were positive, 

indicating an asymmetric distribution of data. Outliers, 

especially for sodium, contributed to the high kurtosis value 

(27.10), suggesting the presence of potential outlier in the 

dataset. Bulk density exhibited low variability (CV = 0.06), 

reflecting a relatively consistent soil structure. 

The correlation coefficients matrix of soil attributes 

A negative correlation (r = -0.41) was observed between 

elevation and soil depth. Table 2 shows the correlation 

coefficients relating soil qualities to elevation. These findings 

align with previous research by (19), which reported that 

higher elevation soils tends to have shallower textures due to 

increased runoff and erosion.  

Phosphorus availability demonstrated a strong  association 

with soil salinity and acidity, as evidenced by its positive 

correlations with pH (r = 0.37) and electrical conductivity (r = 

0.46). Table 2 also highlights a positive correlation (r = 0.39) 

between soil organic carbon and elevation. However, 

contrary findings by (20) indicated that organic content 

decreases with increasing elevation.  

A significant negative correlation (r = -0.41) was noted 

between soil pH and elevation, suggesting that soils at higher 

altitudes are generally more acidic. Furthermore, sodium 

concentration was shown to decrease in more acidic soils, as 

evidenced by the negative correlation between sodium (Na)  

and pH (r = -0.33). Elevation exhibited a weak negative 

correlation with sodium (r = -0.12), likely due to nutrient 

erosion and leaching being more pronounced at higher 

altitudes. .  

Additionally, there was a modest positive correlation (r = 0.39) 

between soil depth and magnesium (Mg), and a stronger 

positive correlation (r = 0.50) was also observed between 

these two parameters. These correlations underline the 

intricate interactions between soil properties and 

topographical factors. 

Semi variogram of soil parameters 

Fig.2 exhibits the spatial variability of soil parameters, 

evaluated using semi-variograms, which revealed varying 

levels of  spatial dependence across different soil 

characteristics. The spatial structure for each parameter was 

defined by calculating the values of the nugget effect, partial 

sill, and sill, as shown in . EC demonstrated significant spatial 

dependence with a nugget-to-sill ratio N = 0.26, indicating 

that EC variations have a strong spatial correlation and 

exhibit a clearly defined spatial structure across the 

landscape. Similarly, P also showed significant spatial 

dependence with an N ratio of 0.28, and CEC displayed 

significant spatial dependence (N = 0.29). These results 

suggest that EC, P, and CEC are strongly influenced by 

landscape features and follow similar spatial patterns.  

Nugget-to-sill ratios for other soil properties, such as pH, 
magnesium (Mg), organic carbon (OC), and sodium (Na), 

ranged from 0.34 to 0.69, indicating moderate spatial 

dependence. This suggests that the distribution of these 

parameters is controlled by both intrinsic soil properties and 

external factors such as vegetation and topography. The N 

ratio for pH was 0.35, indicating that the variability in pH is 

influenced by both soil characteristics and environmental 

conditions. .  

On the contrary, potassium and bulk density exhibited lesser 

spatial dependence, with respective N ratios of 0.69 and 0.85. 

Among all variables studied, Ca exhibited the least spatially 

dependence, with an N ratio of 0.81. This trend suggests that 

Ca distribution is more erratic, likely influenced by localized 

processes such as litter decomposition and uptake by plants.  

 Soil depth Elevation EC pH P k ca Mg Na CEC OC BD 

Soil depth 1.00            

Elevation -0.41 1.00           

EC 0.25 -0.29 1.00          

pH 0.28 -0.41 0.58 1.00         

P 0.04 -0.26 0.46 0.37 1.00        

k 0.03 0.12 -0.09 -0.21 -0.28 1.00       

ca 0.17 -0.02 0.36 0.43 0.36 -0.16 1.00      

Mg 0.50 -0.31 0.43 0.43 0.50 0.08 0.70 1.00     

Na 0.04 -0.12 -0.11 -0.33 -0.15 0.39 -0.13 -0.13 1.00    

CEC 0.39 -0.18 0.43 0.41 0.51 0.04 0.76 0.93 -0.15 1.00   

OC -0.21 0.39 0.08 0.06 0.16 0.11 0.33 0.06 -0.06 0.15 1.00  

BD 0.15 -0.16 0.35 0.30 0.34 0.03 0.15 0.37 -0.17 0.18 0.01 1.00 

Table 2. The correlation coefficients matrix of the studied soil attributes 
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Understanding these differences in spatial dependence is 

crucial for a better understanding of the distribution of soil 

characteristics across the landscape. These insights can 

inform more effective management practices in forestry and 

land-use planning, contributing to sustainable land 

management.. 

Models cross-validation 

This study evaluates the effectiveness of numerous semi-

variogram models—including exponential, tetra-spherical, 

circular, and spherical models—applied to various soil 

parameters. Through cross-validation, the performance of 

these models was assessed, with the  

Root Mean Square Error (RMSE) being considered a key 

performance metric. No single model provided the best fit for 

all soil factors under investigation, as evidenced by the 

differences between the best-fitting models for each 

parameter. Table 4 presents the best-fit models for each 

specific soil property, showing that different models yield 

better results for different soil attributes. The table further  

Fig. 2 a)- EC, b)-pH, c)-K, d)-P, e)- BD, f)-OC, g)-ca, h)-mg, i)- Na, calculated semi variograms of soil properties with the lines indicating selected best fit 
model based on RMSE and r2values. 

Soil Parameters Nugget (Co) Partial sill (C) Sill Co + C N:S ratio Spatial dependence 

EC 0.039 0.11 0.149 0.26 Strong 

pH 0.096 0.176 0.272 0.35 Moderate 

P 0.352 0.89 1.242 0.28 Strong 

k 0.467 0.21 0.677 0.69 Moderate 

ca 0.289 0.067 0.356 0.81 Weak 

Mg 0.172 0.33 0.502 0.34 Moderate 

Na 0.369 0.193 0.562 0.66 Moderate 

CEC 0.14 0.35 0.49 0.29 Strong 

OC 0.277 0.536 0.813 0.34 Moderate 

BD 0.282 0.049 0.331 0.85 Weak 

Table 3. Semi variogram parameters of soil parameters 

Parameters Best fit model R² RMSE 

EC Circular 0.70 0.670 

pH Spherical 0.56 0.437 

P Stable 0.59 0.346 

k Tetra spherical 0.48 7.860 

ca Exponential 0.49 2.85 

Mg Rational Quadratic 0.31 4.365 

Na Rational Quadratic 0.32 1.000 

CEC Circular 0.82 10.719 

OC Hole Effect 0.53 3.856 

BD J-Bessel 0.56 0.644 

Table 4. Calculated semi variograms of soil properties with the lines indicat-
ing the selected best-fit model based on RMSE and r2 values. 
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Fig.3. Spatial maps showing soil property variability map of  pH, EC, available phosphorus (P), potassium (K), calcium (Ca), magnesium (Mg), 
sodium (Na),CEC (Cation exchange capacity) organic carbon (OC) and Bulk density (BD) across the study area. Hotspots distribution 



JAYASURIYA  ET AL  8     

https://plantsciencetoday.online 

emphasizes the importance of selecting the appropriate 

model to ensure accurate spatial prediction and mapping of 

soil characteristics. 

Additionally, Table 4 includes the R² and RMSE values for 

each soil parameter, providing a quantitative assessment of 

the performance of the semi-variogram models. Models that 

explain a significant proportion of variation with relatively 

low errors include the circular model for electrical 

conductivity (EC) (R² = 0.70, RMSE = 0.670) and the circular 

model for cation exchange capacity (CEC) (R² = 0.82, RMSE = 

10.719). These models performed well in capturing the spatial 

variability of these parameters. The stable model for 

phosphorus (P) also demonstrated good accuracy. In 

contrast, the performance of models for potassium (K) (tetra-

spherical), magnesium (Mg) and sodium (Na) (rational 

quadratic), and bulk density (BD) (J-Bessel) was poorer, as 

evidenced by their higher R² and RMSE values. This suggests 

that further refinement or the use of alternative models may 

be necessary to improve their predictive accuracy. 

 

Discussion  

Descriptive statistics and distribution of soil parameters 

As illustrated in Table 1, soil characteristics exhibited 

significant variability across various factors. Electrical 

conductivity (EC) and organic carbon (OC) displayed low 

standard deviations, indicating that data points were 

closely clustered around the mean. In contrast, 

phosphorus (P) and potassium (K) exhibited high 

heterogeneity, likely influenced by localized nutrient 

cycling and vegetation patterns. Sodium (Na) showed 

substantial variability (CV = 1.14), suggesting that localized 

factors, such as proximity to water bodies, contribute to 

soil salinity in forest ecosystems. The average soil depth 

was 18 cm, which is consistent with previous studies (21). 

The broad pH range (4.5–8.8) reflects the diversity in soil 

chemistry, driven by parent material and plant influence. 

Soil pH plays a critical role in regulating the populations of 

soil organisms. Certain microorganisms, such as nitrifying 

bacteria, can only function within specific pH ranges. 

Consequently, their activity and the associated material 

transformations occur only under suitable pH conditions. 

Moreover, the structure and solubility of many chemical 

compounds in forest soils are pH-dependent. For example, 

in acidic soils, elements such as manganese, copper, and 

zinc become more mobile, and the solubility of 

phosphorus is significantly affected by pH. In the rooting 

zone, soil pH can influence the availability of essential 

nutrients. 

While variations in EC were linked to elevation changes across 

the landscape, fluctuations in organic carbon were moderate, 

likely due to differences in plant litter decomposition and 

microbial activity, as similarly observed by (22). The 

significant variability of calcium and magnesium (23) 

suggests the importance of weathering and parent material 

in nutrient cycling. The notable kurtosis of sodium indicates 

the presence of extreme outliers, which may negatively 

impact soil structure and warrant management intervention. 

Cation exchange capacity (CEC) showed moderate 

heterogeneity, reflecting changes in the soil's ability to retain 

nutrients, which is critical for forest productivity. Bulk density 

exhibited low variability, indicating a homogeneous soil 

structure conducive to root growth and water movement, 

which supports overall forest health. These findings 

underscore the diversity of soil properties and their 

implications for the nitrogen cycle and forest management 

(24). 

Forest environments are largely shaped by litter fall and root 

decomposition, which provide a continuous influx of organic 

matter to the soil. Additionally, the tree canopy and shading 

enhance moisture retention and maintain cooler soil 

temperatures, thereby promoting decomposition and 

nutrient availability. Trees participate in nutrient cycling by 

absorbing soil nutrients, which are then returned to the soil 

through the decomposition of fallen leaves and branches, 

thereby sustaining soil fertility as discussed by (25). Forest 

ecosystems are inherently sustainable and capable of 

withstanding global changes. However, increasing pressures 

from cultural, nutritional, and climatic factors pose significant 

risks to chemical fertility. Many forest soils are becoming 

more acidic, and atmospheric deposition of nutritional 

cations has decreased over the past few decades. Both clay 

minerals and organic compounds, particularly those of a 

colloidal nature, carry a net negative charge. 

The relationship among soil properties with elevation 

The study demonstrates the intricate connections between 
soil characteristics and elevation in forest ecosystems, 

demonstrating how elevation influences pH, electrical 

conductivity, organic carbon, and cation exchange capacity.  

Asaltitude increases, precipitation and leaching also increase, 

leading to lower pH values due to the loss of base cations 

(Ca²⁺, Mg²⁺, K⁺), as reported by (25).. Additionally, higher 

elevations are associated with higher OC levels, owing  to 

increased organic matter accumulation and slower 

decomposition rates, while lower elevations tends to have  

lower OC levels due to disturbances such as grazing, erosion, 

and changes in vegetation (26). EC values show variation 

along the elevation gradient; (27) reported higher EC values at 

lower elevations due to the accumulation of basic cations, 

while soils at medium elevations exhibit lower EC value due 

to the erosion and leaching of these nutrients. Similarly, the 

increase in  CEC at higher elevations is connected with the 

buildup of clay and organic matter, which act as a reservoir 

for important cations. In contrast,  sandy soils at lower 

elevations, with less organic matter, tend  to have lower CEC 

(28). Phosphorus availability showed moderate associations 

with EC, pH, and CEC, suggesting that soil salinity and acidity 

influence P retention, with higher salinity  reducing P  

solubilisation (29).  

Soil depth and  elevation are negatively association, with 

flatter soils occurring at higher elevations due to greater 

erosion and runoff (19).Mineral weathering at higher 

elevations contributes to increased magnesium 

concentration, while the positive correlation between soil 

depth and CEC suggests that deeper soils have a greater 

nutrient storage capacity, which is essential for forest 

productivity. Acidic soils at higher elevations, which are more 
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leached, lead to greater nutrient depletion, and as acidity 

increases, sodium (Na) concentration decreases (30, 31). In 

tropical forests such as those in the southern Western Ghats, 

higher elevations receive more rainfall than plain area; 

consequently, as the slope descends towards the west, salts 

and other compounds may leach from the soil,  especially 

sodium, resulting in nutrient depletion and accelerated soil 

acidification (32). It was found that less leaching at lower 

elevations can lead to the accumulation of soluble ions, 

including potassium (33). 

Spatial pattern of soil properties 

The soil parameters exhibit geographical variability, reflecting 

both the inherent soil qualities and external environmental 

influences, such as vegetation, topography, and hydrological 

processes.. Consistent with the findings of (34), the 

substantial spatial dependence observed for EC, P, and CEC 

implies that topographical features and water movement 

play a significant role in shaping these parameters. This aligns 

with the work of (35), which highlighted the importance of 

elevation gradients in structuring forest ecosystems and 

influencing species diversity and persistence across tropical 

rainforests.. Similarly, (36) emphasized the role of elevation 

as both a regional and local environmental factor, serving as a 

key predictor for the spatial distribution of plant litter in 

certain areas.  

Potassium and calcium, which exhibit shorter spatial ranges 

and weaker spatial dependence, are likely influenced by 

localized biological processes such as plant uptake and 

decomposition. In forest ecosystems, potassium is rapidly 

cycled due to its mobility and its essential role in plant 

metabolism, whereas calcium tends to accumulate through 

the decomposition of leaf litter and woody debris, as defined 

by (37). These processes contribute to the formation of 

localized spatial patterns within forest soils, where nutrient 

recycling is closely linked with vegetation distribution. The 

lower phosphorus availability in forest systems compared to 

coffee systems indicates that the soils in this region are 

phosphorus-deficient (35). 

The variations in pH were influenced by factors such as 

vegetation type and organic matter decomposition, as 

reflected in their moderate association with geographical 

patterns. Similarly, the modest geographical dependence of 

sodium corresponds with previous studies indicating the 

dynamic nature of sodium concentration in response to 

variations in soil pH and salinity (38). 

Spatial variability mapping 

Fig. 3 illustrates the northeastern and central regions of 

Sirumugai (39). The results show that the soil organic carbon 

(SOC) level in the 0–5 cm soil depth was highest in mixed 

forests, while the chemical stability of SOC was highest in 

forests. The areas showed in red and dark blue exhibit the 

highest concentrations of organic carbon, reflecting 

improved soil health, minimal disturbance, and dense 

vegetation cover. Moderate organic carbon levels, 

represented by blue and green hues, are observed in the 

outlying areas, particularly in the northeast and south. In 

contrast, the southern and northern regions, depicted in 

orange and yellow, show reduced organic carbon levels, likely 

due to soil erosion, degradation, or sparse vegetation, which 

severely impacts soil structure and nutrient cycling. The grey 

areas, mainly in the southwest, may represent barren land or 

excluded zones, such as stony terrains or urbanized regions 

with negligible organic carbon content. A clear geographical 

trend is evident, with organic carbon levels decreasing from 

the forest core towards the outer edges, indicating a healthier 

ecosystem at the center. 

Conservation and restoration strategies such as erosion 

control, reforestation, and the addition of organic 

supplements are necessary to preserve or improve soil health 

in low-carbon areas. A similar observation of pH was made in 

a Quercus frainetto woodland in Turkey (40), where 

significant changes in soil pH, particularly under high-

intensity conditions, were attributed to the addition of base 

cations from the decomposition of organic materials and the 

breakdown of organic groups from organic matter. The pH 

and EC maps of the Sirumugai Range highlight critical soil 

variables impacting plant development. The pH map shows 

sections in the west and central regions that are neutral to 

slightly alkaline (light yellow/green), which are favorable for 

microbial activity and nutrient availability. The very acidic 

zones (red) in the central and northeastern regions signal 

potential nutritional deficits. Meanwhile, the southwest's 

somewhat acidic soils (light blue) may indicate leaching or 

organic matter accumulation. 

The EC map reveals excessive salinity (red) in the center and 

northeastern areas, which could be detrimental to plants due 

to salt stress. Given the considerable prevalence of EC 

(orange), continuous monitoring is recommended. Lower EC 

readings (yellow/blue) in the southwest suggest healthier 

soils. The spatial trends in the center and northeastern 

regions point to compounded issues of acidity and salinity. 

Studies by (41) show considerable variation in the 

distribution of calcium concentrations. The western and 

northeastern regions, which feature higher green and blue 

calcium zones, might be affected by leaching, acidic soils, and 

calcium-poor bedrock material. The calcium levels are 

medium to high (yellow/orange/red) in the central and 

southern sections, where retention is influenced by terrain, 

parent material, and drainage. 

In forest trees, magnesium (Mg) in nitrophilous vegetation 

contributes to nutrient fluxes due to mineral weathering (42, 

43). The map illustrates the regional distribution of accessible 

magnesium in the Sirumugai Reserve Forest. Significantly 

elevated areas (3.4 to 4.1 cmol P+ kg–1) are found in the 

center (43), indicating fertile soils high in nutrients, which are 

suitable for plant growth. These are surrounded by regions 

with low concentrations (2.7 to 3.3 cmol P+ kg–1), which 

function as buffer zones with diverse soil compositions. The 

lowest concentration regions (0.8 to 2.0 cmol P+ kg–1), 

primarily in the western and northeastern parts, could be due 

to leaching from significant rainfall, limiting plant growth. 

Management practices such as selective cutting or organic 

matter amendments can be implemented in magnesium-

deficient areas to improve magnesium levels. 

According to (44), regional evaporation and associated acidity 

values (purple/brown) are high in the northeast and central-

east regions. High sodium levels are prevalent in most of the 
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region, with areas marked in yellow and light brown requiring 

observation to prevent deterioration. In the southwest and 

northwestern areas, where very low sodium levels prevail, 

soil quality is likely to be high, and vegetation is presumably 

healthier. This may be attributed to geography or water flow, 

as sodium levels seem to increase from the west towards the 

east. Regions with high sodium levels should be closely 

monitored. The application of forest ecosystem management 

should consider discouraging monoculture and promoting 

mixed forests instead. 

Although individual forest soils have shown significant 

variation in cation exchange capacity (CEC), the map displays 

classifications of CEC, with fertile soils found in the eastern 

regions characterized by elevated trees (45). Higher CEC 

values are absent in soils in the yellow and brown regions to 

the south and west, suggesting that these soils are less fertile 

and require increased management practices. The central 

regions show moderate levels of fertility, which can be 

attributed to the types of soils found in these areas (46). 

Depths, in g/cc, indicate CEC levels in high-density dark 

brown soils in the southeast and central regions, which could 

impede root growth and drainage. In the northern region, low

-density blue/green soils are found, which encourage better 

infiltration. Moderate densities in the yellow/brown areas 

provide adequate conditions for a variety of land uses. 

 

Conclusion 

The identification of soil properties  was aimed at similar 
objectives but resulted in different prediction accuracies due 

to characteristics of the landscape. Specifically, land uses, 

primarily bedrock and rock outcrops, are key factors that 

impede terrain formation. In light of these findings, the 

research on the spatial variability of soils within the 

Sirumugai Reserve Forest plays a crucial role in 

understanding the dynamics between elevation, soil 

properties, and other environmental drivers. The results 

indicated that elevation gradients significantly affect soil 

properties, with shallower soils found at higher elevations, 

which experienced greater nutrient leaching. Additionally, the 

role of soil salinity, pH, and cation exchange capacity were 

found to be linked to phosphorus availability, showing 

moderate correlations.  

The statistical analysis revealed high variability in 

phosphorus and potassium, while electrical conductivity and 

organic carbon exhibited low variability. Further details were 

provided by the examination of skewness and kurtosis.  

Considerable focus was also placed on semivariograms 

modeling in conjunction with ordinary kriging, which was 

employed to perform geostatistical analysis. Results from the 

analysis of variance indicated that spatial variability in 

predictions was dependent on the elevation range. Cross-

validation demonstrated that the mean within the study area 

was less robust than spatial predictions.  

These  findings are valuable for understanding soil nutrient 
availability, thereby promoting sustainable land use and 

management practices in tropical forest ecosystems. The 

approach and model presented here may also be applied to 

the reconverted terrain of the scarp lands of the Western 

Ghats,  given the usability of feature space covariates in 

various landscapes. For further research, conducting 

comparative geostatistical analyses across the Western Ghats 

is recommended to identify broader soil variability patterns. 

Additionally, assessing microbial communities, organic 

matter decomposition, and other biological indicators 

alongside physical and chemical properties would provide a 

more comprehensive understanding of soil fertility, 

particularly in biodiversity-rich regions. The integration of 

biological factors can offer deeper insights. Advanced 

machine learning techniques, such as random forests or deep 

learning, should be employed to develop high-resolution 

predictive models for soil properties based on geostatistical 

data.   
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