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Abstract   

The utilization of foliar nanofertilizers in vegetable crop enhancement has garnered 

significant attention in recent agricultural research. This review delves into the 

significant role of foliar nanofertilizers in augmenting the productivity and resilience 

of vegetable crops. Beginning with the introduction of this concept, it elucidates the 

vital need for nanofertilizers in modern agriculture. This paper outlines the 

numerous advantages of nanofertilizers over conventional fertilizers, emphasizing 

their potential to revolutionize agricultural practices. It discusses various modes of 

nanofertilizer application, with a particular focus on their efficacy as foliar sprays. 

Furthermore, this review examines the intricate mechanisms underlying the foliar 

application of nanofertilizers, elucidating how these nanomaterials interact with 

plant physiology to enhance nutrient uptake and utilization. By analyzing empirical 

studies, it evaluates the effects of foliar nanofertilizers on vegetable growth and yield 

highlights their efficacy in optimizing crop performance. Additionally, this review 

highlights the application of foliar nanofertilizers in mitigating abiotic and biotic 

stresses in vegetable crops and their role in improving resilience to adverse 

environmental conditions and pest infestations. It also addresses the challenges 

and limitations associated with the broader adoption of nanofertilizers, including 

regulatory concerns and potential environmental impacts. Finally, this article 

provides insights into the prospects and research directions in the field of foliar 

nanofertilizers, underscoring the importance of continued innovation to harness 

their potential for sustainable agriculture. 
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Introduction   

The global population is rapidly expanding, leading to a growing need for 

agricultural products. However, traditional fertilizers have significant drawbacks 

such as pollution and soil degradation. Traditional fertilization methods often 

encounter challenges, such as nutrient loss through leaching or volatilization, 

inefficient nutrient uptake by plants and environmental pollution (1). The pervasive 

use of chemical fertilizers damages the soil structure, disrupts mineral cycles, kills 

soil microbes, harms plants and disrupts food chains in ecosystems, ultimately 

affecting future generations. Nanotechnology fertilizers offer a promising solution 

for addressing these challenges more effectively and sustainably. Nanofertilizers, a 

subset of agricultural nanotechnology, have demonstrated considerable potential 

in enhancing crop growth and yield (2). These fertilizers are designed to dispense 
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nutrients to plants more efficiently and precisely, thereby 

reducing the need for fertilizer use and minimizing nutrient 

runoff into the environment. 

 Nanofertilizers are substances typically composed of  
nanoparticles at the nanometer scale, designed to contain both 
macro- and micronutrients for controlled delivery to crops (3, 4). 
Nanofertilization methods can be categorized based on how 
nutrients are taken up by the crop, including seed priming, soil 
application and foliar application. Nanofertilisers composed of 
nanoparticles which interact with the soil through various 
reactions and alter their physicochemical properties. 
Nanofertilisers formulated with silica nanoparticles which can 
improve soil structure by enhancing the aggregation of soil 
particles. This can reduce soil compaction, improve porosity and 
increase air and water movement within the soil. Similarly, metal 
oxide nanoparticles (such as titanium dioxide or zinc oxide) can 
influence the soil pH and act as buffers by either lowering or 
raising soil pH depending on their composition;  slight pH shift can 
make certain nutrients more bioavailable to plants which makes 
an  impact on plant nutrient uptake (5). Foliar applications, in 
particular, transport nutrients directly to the intended plant 
organ, aiding in alleviating stress-related issues (6). Furthermore, 
foliar nanofertilizers are deemed suitable for field applications 
because of  their ability of gradual delivery of nutrients to plants at 
a controlled pace, thereby minimizing the potential toxicity 
symptoms associated with fertiliser application to the soil(7). 
Foliar application of ZnO nanoparticles at 40 mg L-1 twice on 
carrot cv. Fire Wedge F1 resulted in the highest root length 22.8 
cm, the largest root volume 330.0 cm³ and the largest root 
diameter 6.44 cm (8). The application of nano fertilizer (Super 
Micro Plus), liquid seaweed fertilizer and a hypertonic plant 
growth regulator resulted in significantly higher yields than other 
treatments in a study conducted on potatoes (9). This 
combination led to notable increase in fresh tuber yield (32.76 Mg 
ha-1), dry tuber yield (7.280 Mg ha-1), vegetative yield (2.194 Mg ha-1) 
and biological yield (10.110 Mg ha-1). 

 Additionally, foliar application is a more straightforward 
and cost-effective method than  incorporating nanofertilizers into 
the soil (10). Vegetables play a significant role in Indian agriculture 
and nutritional sustainability because of their short growth cycle, 
high productivity, nutritional value, economic feasibility and the 
capacity to create both on-farm and off-farm employment 
opportunities. India benefits from diverse agro climates 
characterized by distinct seasons, enabling the cultivation of a 
wide variety of vegetables. Although nanofertilizers have not been 
widely adopted so far, some studies have demonstrated the 
positive impact of foliar nanofertilizers on the increased yield of 
vegetable crops, such as potato. The combination of two foliar 
sprays of nano-urea, along with a 50% less fertilsers used in the 
farmers' fertilizer practices, resulted in a yield increase of 6-16% in 
potatoes, compared to the yield from farmer fertilizer practices, 
across the different regions where the experiments were 
conducted (11). 

  Foliar application of nanofertilizers is a promising 
method for enhancing the growth, yield and quality of vegetable 
crops. This technique involves applying nanoparticles loaded 
with nutrients directly onto the leaves, facilitating effective 
nutrient absorption and utilization by plants. This study aimed to 
explore the role of foliar nanofertilizers in vegetable crop 
improvement.  

Need For Nanofertilizers 

Chemical fertilizers are employed to enhance crop productivity; 

however, they have detrimental effects on soil fertility and 

disrupt mineral quality. The long-term use of these fertilizers can 

harm soil structure, mineral cycling, microbial communities and 

plant health. Nanotechnology is a rapidly growing field that  is 

being utilized in agriculture and plant science for  the 

development of nanofertilizers. Nanoparticles used as fertilizers 

aim to mitigate the negative effects of conventional chemical 

fertilizers, such as polluting water sources through leaching, 

negative impact into the surroundings (12). 

Advantages of Nanofertilizers 

Nanofertilizers have numerous advantages for sustainable and 

environmentally friendly crop production (13). Some of its 

advantages are as follows: 

1. Nanofertilizers enable efficient incorporation and 

consumption of nutrients without experiencing elevated 

losses. 

2. Nanofertilizers help mitigate the risk of environmental 

contamination by minimizing nutrient loss through leaching. 

3. Nanofertilizers generally exhibit greater diffusion and 
solubility than traditional synthetic fertilizers do. 

4. Nanofertilizers provide a controlled and gradual release of 

nutrients to crop plants, in sharp contrast with the rapid and 

spontaneous nutrient delivery associated with chemical 

fertilizers. 

5. Plants can readily absorb nanoparticles through nano-sized 

pores, molecular transporters and root exudates. The uptake 

of nanoparticles by plants enhances nutrient absorption 

through a variety of ion channels. 

6. A smaller quantity of nanofertilizers is required for 

application than  synthetic fertilizers because of their 

minimal nutrient loss characteristics. 

7. Polymer-coated fertilizers inhibit premature exposure to 

water and soil, thereby minimizing nutrient loss. 

8. Nanofertilizers enhance soil fertility and establish optimal 

conditions to support the proliferation of microorganisms 

(14). 

Modes of Nanofertilizers Application 

Soil Application 

Nanofertilizers are typically applied to soil either as suspensions 
or as dry powders. These nanofertilizers contain nanoparticles of 

essential nutrients (such as nitrogen, phosphorus, potassium, 

etc.) or compounds like EDTA (Ethylene Diamine Tetraacetic 

Acid), citric acid, humic acids and fulvic acids, which bind to 

nutrients such as  iron, zinc, copper, calcium and magnesium, 

making them more available to plants, which can enhance 

nutrient availability in  plants (15).  

Adsorption onto soil particles: Upon application to the soil, 

nanoparticles may interact with soil particles through various 

processes, such as electrostatic attraction, van der Waals forces, 

or chemical bonding. This interaction can influence the 

distribution and mobility of nanoparticles in the soil (16). 

Transport in soil pores: Nanoparticles can move through the 

soil matrix via processes such as diffusion, advection and 
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dispersion. The size, shape, surface charge and surface chemistry 

of nanoparticles influence their mobility in soil pores (16). 

Uptake by plant roots: As nanoparticles such as nano zinc 

(ZnO), nano copper (CuO) and nano iron (Fe2O3 and Fe3O4) move 

through the soil, they encounter plant roots. Nanoparticles may 

adhere to root surface or penetrate the root tissue through 

various pathways, including root hair and epidermal cells. 

Translocation within the plants: Once absorbed by the roots, 

nanoparticles may be transported within the plant through the 

vascular system. They can be distributed to different plant 

tissues, including leaves, stems and reproductive organs, where 

they affect plant growth and development. The detailed 

mechanism of nanofertilizers absorption through soil application 

is shown in Fig. 1. 

Plant response: Nanoparticles absorbed by plants can interact 
with cellular components and affect various physiological 

processes. These responses include changes in nutrient uptake 

and assimilation, modulation of gene expression, activation of 

stress responses and alterations in metabolic pathways.  

 Nanofertilizers can be applied to soil using traditional 

methods such as  broadcasting, side-dressing, or fertigation. 

Once applied, these nanoparticles interact with plant roots either 

by adhering to their surfaces or by entering root cells through a 

process known as endocytosis (17). 

 Seed Treatment 

Seed priming is a technique conducted before sowing that 

triggers physiological alterations in seeds, leading to accelerated 

germination and enhanced plant growth and development by 

modulating metabolic and signaling pathways (18). 

 During seed priming with nanofertilizers, nanoparticles 

penetrate the seed coat through tiny openings, cracks, or natural 

pores. The transportation of nanoparticles is facilitated by the 

seeds’ internal physiological processes, including water uptake 

and nutrient absorption. Once absorbed by the seed, 

nanoparticles are distributed within different seed tissues, 

including the endosperm, embryo and seed coat. The detailed 

mechanism of nanofertilizers absorption  during seed priming is 

presented in Fig. 2. 

 Nanoparticles interact with cellular components such as 

proteins, lipids and nucleic acids. This method facilitates seed 

germination, seedling emergence and subsequent plant growth 

by several mechanisms. 

Improved water uptake: Nanoparticles can create nanoscale 

water channels on seed surfaces, facilitating water uptake during 

imbibition and enhancing germination during water-limited 

conditions. 

Enhanced nutrient uptake: Nanoparticles can modify the 

surface properties of seeds, facilitating the absorption of 

nutrients from the surrounding soil or growth medium. This can 

lead to improved nutrient uptake efficiency, seedling vigor and 

overall plant growth. 

Stress tolerance:  Nanoparticles can induce stress tolerance in 

seeds by modulating antioxidant enzyme activity and osmolyte 

accumulation. This helps seeds withstand adverse environmental 

conditions, such as drought, salinity and temperature extremes. 

Gold and silver nanoparticles were used to prime onion seeds. 

Internalization studies, carried out using instrumental neutron 

activation analysis and gas chromatography-mass spectrometry, 

confirmed that the treated nanoparticles were absorbed into 

onion seeds. A series of greenhouse and field trials have 

demonstrated improved seed germination, emergence, growth 

and yield compared to both unprimed and hydroprimed seeds. 

Seed priming with AuNPs resulted in a significant increase in 

emergence percentage (63.2%) compared with the unprimed 

control (37.4%) when data from both years were analyzed 

together. An average yield increase of 23.9% was observed in 

AuNPs treated onions, compared to unprimed onions (19). Nano 

silicon dioxide at 8 g L-1 resulted in a  higher percentage of seed 

germination in tomatoes (20).  

Activation of metabolic processes: Nanoparticles can stimulate 

the expression of genes related to plant growth and 

development, leading to accelerated metabolic processes and 

enhanced seedling vigor. 

Fig. 1. Nanoparticles are absorbed by the roots and transported through the plant via the xylem. 
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Hormonal regulation: Nanoparticles can modulate the synthesis 

and signaling of plant hormones, such as auxins, cytokinins and 

gibberellins, which play crucial roles in seed germination and 

early seedling growth. 

Protection against pathogens: Nanoparticles with antimicrobial 

properties can protect seeds from seed-borne pathogens, reduce 

the risk of seedling diseases and improve overall plant health. 

Metallic nanoparticles (MNPs) are promising broad-spectrum 

antimicrobial agents that can target a broad range of plant 

pathogens, including bacteria, fungi and viruses. Different types of 

MNPs such as silver, copper, zinc, iron and gold have been 

explored for their antimicrobial properties. The unique 

physicochemical characteristics of MNPs, including their small 

size, large surface area and high reactivity, allow them to interact 

with plant pathogens at the molecular level. This interaction can 

lead to cell membranes damage, disruption of cellular respiration 

and production of reactive oxygen species (21). 

Foliar Application 

Applying fertilizers directly to the leaf surface of plants allows for 

rapid nutrient absorption and bypasses the root system. 

Nanoparticles are absorbed by the leaf through cuticular pores, 

stomata and leaf tissue. Inside the leaves, nanoparticles move in 

two ways: via apoplastic and symplastic pathways.  

 In the apoplastic pathway, nanoparticles move through 

the extracellular spaces of plant tissues by diffusion.  This 

movement is particularly relevant for nanoparticles that do not 

readily enter plants. In the symplastic pathway, nanoparticles 

move through the interconnected cytoplasm of plant cells. Both 

pathways contribute to the overall distribution and translocation 

of nanoparticles in plants. Once inside the leaves, nanoparticles 

can be transported within the plant through the vascular tissue.  

             Foliar application is viable even under adverse soil and 

weather conditions and facilitates direct nutrient absorption by 

plants, thereby minimizing fertilizer waste. Consequently, the 

use of nanofertilizers for foliar application enhances nutrient use 

efficiency (NUE) and accelerates crop growth. Nanofertilizers 

exhibit heightened reactivity. Owing to their small size and 

unique surface properties, they are more chemically reactive 

than bulk fertilizers. This enhanced reactivity means that they 

can more effectively interact with plant cells and soil, promoting 

faster and more efficient uptake of nutrients by plants and can 

permeate through the cuticle, ensuring controlled discharge and 

precise delivery to target areas (22). The mechanism of 

nanofertilizers absorption through foliar application is shown  in 

Fig. 3. 

Role of Nanofertilizers 

The conventional method of applying fertilisers to the soil has 
various limitations in terms of nutrient accessibility for plants. 

Hence, foliar application is  the most effective approach for 

rectifying nutrient deficiencies and enhancing  crop yield and 

quality (23). Nano-coated materials larger than 10 nm in size 

enhance penetration through stomata despite being larger than 

10 nm and having a high surface area relative to their volume. 

This increases their reactivity and ability to interact with  

stomatal cells, helping them to move more effectively  through 

the stomata (24). Nanofertilizers possess a significant surface 

area, high absorption capacity and controlled release kinetics 

tailored to specific  sites, rendering them an intelligent delivery 

system (25). Nanocarriers frequently deliver nutrients precisely 

when and where they are required. Thus, it is pertinent to 

highlight key research studies that have shown the penetration 

and movement of nano-fertilizers through leaves, their effects on 

crop productivity, yield enhancement, plant resilience to 

environmental stresses and the reduction of heavy metal 

toxicity. 

 Foliar nanofertilizers are likely to offer a new means to 

address the high production challenges in agricultural systems.  

Effects of Foliar Nanofertilizers on Growth and Yield of 

Vegetable Crops 

 Solanaceous Vegetables 

The Solanaceae family, primarily found in tropical regions, 

comprises approximately 75 genera and 2000 species. Among its 

notable vegetable genera are Solanum (including potatoes and 

eggplants), Lycopersicon (tomatoes) and Capsicum (peppers) 

(26). 

 Optimal results for enhancing various growth parameters 

and overall yields of tomato cv. Arka Rakshak were achieved 

through a combination of 50% nitrogen, along with 100% 

phosphorus and potassium, supplemented with 50% zinc 

applied inorganically to the soil. Additionally, a series of foliar 

sprays were applied: the first with nano nitrogen, the second 

with nano zinc and the third with nano copper (27). 

Fig. 2. Nano-priming forms nanopores in seeds, enhancing water uptake, ROS production and antioxidant responses, boosting germination and vigor. 
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 The use of nano-silicon fertilizer (NSF), nano-chelated 

potato-specific fertilizer (NPS) and nano-chelated complete 

micro (NCM) resulted in increased fresh tuber yields and 

improved various parameters associated with potato growth 

and yield when compared to the control group (28).  Tri-spray 

treatment (NSF+NCM+NPS) in potato cultivation resulted in 

maximized fresh tuber yield enhanced water use efficiency 

(WUE) and agronomic efficiency (AE). Employing nano-ZnO at a 

concentration of 50 mg L-1 resulted in notable enhancements in 

transplant growth, photosynthetic efficiency, levels of 

macronutrients, as well as enzymatic and non-enzymatic 

antioxidant activities. These findings contribute to the 

development of robust eggplant transplants (29). 

 The foliar application of nanofertilizer (nano nitrogen, 

nano copper, nano zinc) at specified rates (Nitrogen at 4mL L-1, 

Copper at 2mL L-1, Zinc at 2mL L-1) in conjunction with the 

recommended soil fertilizer dosage in chilli was found to 

enhance all growth characteristics (29). 

Cruciferous Vegetables  

Cruciferous vegetables, categorized within the Brassicaceae or 

mustard family, are estimated  for their nutritional richness and 

associated health advantages. Examples include vegetables, 

such as cabbage, cauliflower, broccoli, kale, turnip, Brussels 

sprouts and others. 

 Research has demonstrated that the application of nano-

DAP at various levels at 50% P, 100% N & K + Foliar Spray of nano

-DAP at 2 mL L-1 at 25-30 days after transplanting and 100% RD of 

N & K + Seedling root-dip treatment of n-DAP at 5 mL L-1, proved 

to be remarkably effective in enhancing the growth attributes of 

cabbage heads (30). 

 Spraying broccoli with nano fertilizers (K 27%, Zn 12% 
and Fe 9%) at a concentration of 2 g L-1, three times during the 

growth period, resulted in a notable increase in vegetative 

growth compared to untreated plants (31). 

Cucurbitaceous Crops 

Cucurbits are a significant category of vegetable crops within the 

Cucurbitaceae family, comprising 118 genera and 825 species 

and showing substantial genetic variability. These include 

cucumbers, melons, watermelons, pumpkins and squash. 

  An experiment involving the application of three different 

concentrations of nanofertilizers, N20, P205 and K20, on three 

distinct cucumber hybrids, Roni, Modhish and Baher, recorded 

that applying a concentration of 3 mg L-1 of nanofertilizer on Roni 

hybrids notably enhanced plant length and leaf area. Similarly, 

on Modhish hybrids, the same concentration significantly 

boosted yield per plant, fruit yield and total fruit yield. 

Additionally, on Baher hybrids, the 3 mg L-1 concentration led to a 

significant increase in the leaf area and the number of leaves per 

plant (32).  

 The application of nanofertilizers at various volumes (3, 

4.5, 6 and 9 mL) led to significant enhancements in cucumber 

growth and yield (33). These improvements included increased 

plant height, number of leaves per plant, chlorophyll content, 

yield and NPK % in both leaves and fruits compared with the 

control treatment. Specifically, the application of 6 mL of NPK 

resulted in yield increases of 4.84% and 53.42% in the first and 

second seasons, respectively. 

  The application of 300 mg L-1  Zinc nanoparticles  and 200 

mg L-1 iron nanoparticles  as foliar spray at three growth stages in 

cucumber resulted in improvements in various growth 

parameters (34).  

 These included vine length, number of fruits per plant, 

total leaf chlorophyll content, fruit characteristics such as 

dimension and weight, accumulation of seed constituents (TSS, 

TSP, starch and oil content) and attributes related to seed yield 

(number of seeds per fruit, 1000 seed weight, seed yield per 

hectare). These enhancements were observed compared to 

those in untreated plants and those treated with higher doses of 

Fe and Zn nanoparticles. 

 The application of silica nanofertilizer to the leaves of 

musk melon greatly enhanced plant height, stem thickness, 

internode length and the total number of bisexual flowers. The  

also results in more bold ovaried flowers (35).  

Fig. 3. Nanoparticles enter leaves via stomata, moving through apoplastic and symplastic pathways and reach roots via phloem, especially in storage root crops. 
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 The foliar application of ZnO oxide nanoparticles to the 

leaves increased the productivity, improved market value and 

health-promoting attributes of melon produce (36). 

 The use of 9g of Nano NPK (19:19:19) L-1in bottle gourd 

cultivar Sarita resulted in superior vine length, primary branch 

count, time to emergence of the first female flower, time to fruit 

setting and time to fruit harvesting compared to other 

treatments. On the other hand, employing 7.5g of Nano NPK 

(19:19:19) L-1 led to optimal outcomes in terms of total fruit count 

per vine, fruit weight, yield per hectare, TSS, ascorbic acid 

content and moisture percentage, ultimately resulting in highest 

Benefit-to-Cost (B:C) ratio (37) . 

Leguminous Vegetable   

Vegetable legumes such as garden peas, French beans, cowpeas, 

cluster beans, lima beans, winged beans and similar varieties, 

play a crucial role in maintaining a nutritious diet because of their 

high protein content. These legumes are rich sources of 

carbohydrates, vitamins, minerals and various bioactive 

compounds that are beneficial to human health. With increasing 

awareness of the importance of a balanced diet, there is growing 

demand for both fresh and processed vegetable legumes among 

consumers. Ensuring high yields of vegetable legumes is 

essential, but poses significant challenges, primarily due to the 

slow pace of yield improvement and the negative effects of both 

biotic and abiotic stresses on their cultivation (38). 

 An experiment showed that the use of nano-

micronutrient fertilizers significantly affected the physical quality 

of pods and the yield of fresh pods in snap bean plants (39). The 

application of nano-micronutrient spray solutions containing 

manganese (Mn), iron (Fe) and zinc (Zn) at a concentration of 50 

mg L-1 (in the form of oxide compounds) resulted in a notable 

improvement in both pod quality and yield. This improvement 

was observed after three spray applications administered at 

intervals of 21, 31 and 41 days after seeding. 

 Another study found that using half the recommended 
amount of nitrogen (10 kg ha-1), full phosphorus (30 kg ha-1) and 

full potassium (10 kg ha-1) as an initial application, followed by 

foliar administration of nitrogen in the form of nano urea and 

zinc as nano zinc at a rate of 2 ml L-1 individually  30 days after 

sowing (DAS), resulted in improved growth and yield in bush-

type vegetable cowpeas (40). 

 Application of 75 % RDF of N through prilled urea 

combined with a 0.4 % nano-urea foliar spray at 45 and 60 DAS 

resulted in  superior performance in terms of total NPK content 

of leaves, whole plants and pod yield compared to other 

treatments(41). The use of balanced nanofertilizer NPK (20-20-

20) in Cucurbita pepo L has also been shown to increase the yield 

and improve the vegetative and fruiting characteristics of the 

crop (42). 

Root and Tuber Crops 

Roots and tubers are plant species that produce starchy 

underground structures such as roots, tubers, rhizomes, corms 

and stems. They are primarily used for human consumption, 

either in raw form or processed into various food products. 

Additionally, they are used as animal feed and as raw materials 

for starch, alcohol and beer production.  

 Despite their high-water content, ranging from 70% to 

80%, these crops are predominantly composed of carbohydrates, 

particularly starches, which make up approximately 16% to 24% 

of their total weight. These crops are primarily cultivated by 

marginal farmers and often yield more calories per hectare per 

day than  other crops (43).  

 Root and tuber crops are the second most important 

groups of crop plants after cereals. Roots and tubers contribute 

5.4% of energy to  global food security (44). 

 The application of a mixture of nanosized microelements 

(Fe, Mn, Zn and B) at a concentration of 200 mg L-1, combined with 

1% urea, significantly improved the yield and quality of the sugar 

beet variety Farida. Additionally, incorporating this fertilizer rate in 

nanoparticle form helped to reduce the requirement for 

micronutrients and nitrogen fertilizers for the plants (45). 

  It was found that using a combination of ZnO and FeO 
nanoparticles at concentrations of 60 ppm and 50 ppm, 

respectively, enhanced the physical characteristics and 

nutritional levels of red radish. Additionally, increasing the levels 

of iron and zinc in radish roots did not negatively affect human 

health. The research concluded that environmental friendly 

nanofertilizers derived from green synthesis methods, such as 

ZnO and FeO, positively influence the growth, yield and 

nutritional content of radish (46).  

 Foliar nourishment of sweet potatoes (cv. Beauregard) 

plant leaves with ZnO nanoparticles at a concentration of 1000 

mg L-1 rebalanced the leaf with Fe and Mn contents  under  high 

CaCO3
 Stress conditions (47).  

Leafy Vegetables 

Leafy vegetables encompass a wide variety of crops from diverse 

botanical families. These vegetables are characterized by  their 

edible portions as leaves (48, 49). 

 Utilizing nitrogen in the nano form enhances fertilizer 

efficiency, even at doses lower than the recommended levels, 

while simultaneously mitigating excess loss and environmental 

contamination. Nano-formulated nitrogen fertilizer, applied 

through a combination of 75% fertigation and 25% foliar 

application, has been shown to increase nitrogen uptake and 

improve nitrogen utilization efficiency. Additionally, foliar 

application of nano nitrogen leads to increased levels of β-

carotene and crude protein  by fostering enhanced growth and 

fertilizer utilization efficiency (50). 

 A pot experiment conducted in sandy soil evaluated the 

impact of nano-nitrogen loaded in modified zeolite compared 

with conventional fertilizers on lettuce. Different combinations of 

100%, 75%, 50% and 25% of the recommended dose of 

conventional nitrogen fertilizer, along with 100ml, 75ml, 50ml 

and 25ml of 1000ppm Nano N solution, were applied to lettuce 

plants. In this study, vegetative growth and yield parameters 

were measured and the results indicated that the use of nano 

nitrogen led to significantly higher values for vegetative growth 

parameters, including plant fresh weight (PFW), shoot fresh 

weight (SFW), plant length (PL), leaf area (LA) and plant dry 

weight compared to conventional fertilizers (51). Effective 

utilization of green-synthesized copper oxide (CuO) and zinc 

oxide (ZnO) nanoparticles as nanofertilizers boosted the 

agronomic characteristics of Amaranthus hybridus when applied 

via hydroponic and foliar methods (52). 
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Foliar Nanofertilizer for Biotic and Abiotic Stresses in Vegetable 

Crops 

Biotic stress in plants refers to the adverse effects caused by 

living organisms such as pathogens (bacteria, fungi and viruses), 

pests (insects, mites and nematodes), parasites, or competing 

plants (weeds). These stressors can negatively affect the growth, 

development and productivity of plants. Biotic stressors may 

directly damage plant tissues, inhibit nutrient uptake, alter plant 

physiology and induce plant defense responses. Common 

examples of biotic stress in plants include fungal infections, 

insect herbivory, nematode infestations and weeds competition. 

Effective management of biotic stress for vegetable crop 

production can be achieved through nanotechnology. 

 The introduction of nanoparticles in pest management 

has revolutionized agriculture by significantly reducing the use of 

pesticides. Various types of nanoparticles, including polymeric, 

metallic and metal oxide nanoparticles, have demonstrated 

remarkable effectiveness in addressing biotic stress in crops (53) 

(Table 1). Among these, silver and copper nanoparticles have 

garnered extensive research attention because of  their potent 

antimicrobial properties (54, 55). Nonetheless, chitosan 

nanoparticles have emerged as pivotal players in plant biotic 

stress management studies because of  their antimicrobial 

efficacy, biocompatibility and biodegradability, making them the  

preferred choice for controlling such stresses in plants (56, 57). 

 Abiotic stress in plants refers to the adverse effects of non

-living factors, such as   extreme weather, salinity and pollution. 

Unlike biotic stressors, which are living organisms, abiotic 

stressors originate from the physical and chemical components 

of the environment. Abiotic stress can disrupt various 

physiological processes in plants, including water balance, 

photosynthesis, nutrient uptake and cellular metabolism. These 

stresses can lead to reduced growth, decreased productivity, 

wilting, leaf chlorosis, tissue damage, ultimately reducing crop 

yields and, in severe cases, causing plant death. 

 Nanoparticles have emerged as a promising strategy for 

mitigating the adverse effects of abiotic stresses on plants. Metal 

nanoparticles have various beneficial applications in plant 

systems. Moreover, nanoparticles have shown promise in 

stimulating the production of phytohormones, thereby 

regulating plant growth and metabolism in response to abiotic 

stressors. In particular, chitosan nanoparticles, with the ability to 

release nitric oxide, have been effective in alleviating the 

detrimental effects of saline stress (53). The applications of 

nanofertilizers for alleviating biotic and abiotic stresses are 

presented in Table.1 below.  

Challenges 

Nanomaterials have wide applications in agriculture, primarily 

as nanofertilizers and carriers of fungicides and pesticides. 

Nanofertilizers are used to enhance crop growth, improve soil 

fertility and increase agricultural yield while maintaining 

sustainability (68). They are integral to precision farming 

practices and are increasingly recognized for their ability to 

mitigate the negative impacts of inefficient chemical fertilizer 

use, such as water pollution and eutrophication  (69). 

 For successful field applications, determining the 

optimal activity and concentration of nanofertilizers is critical 

for achieving maximum yields with minimal losses (70). 

Furthermore, evaluating residual nanofertilizers during in 

planta studies is essential to reduce the potential risks to other 

organisms in the ecosystem” (71). Safety measures must be 

developed and implemented concurrently, focusing on the 

type, size and shape of nanoparticles suitable for crop 

production 

 Factors, such as   solubility, stability, surface reactivity 

and charge significantly influence the effectiveness of 

nanofertilizers in agricultural practices. Despite the increasing 

adoption of nanofertilizers, there remains a lack of specific 

protocols for their field application, resulting in non-specific 

reactivity in plants across different species (72). Additionally, 

the mechanisms of nanofertilizer absorption and their 

interactions within plants are not fully understood. Therefore, it 

is imperative for research groups, funding organizations, 

policymakers and leaders from both the private and public 

sectors to familiarize themselves with guidelines tailored to the 

use of NFs, with a focus on prioritizing the interests of farmers 

(73). 

SI NO. Biotic/Abiotic stresses Effective Nano fertilizer Reference 

  

01. 
Salt stress 

Zinc nanoparticles (ZnNPs) at 0.3%, ZnNPs spray at 0.3% in spinach (Spinacia oleracea L.) as 
foliar spray was found to be effective in the accumulation of osmolytes enzymatic and non-

enzymatic antioxidant defense systems thus suppressed the NaCl induced stress. 

  

(58) 

02. Saline water stress 
Nano-fertilizer consisting of 79.19% CaCO3 and 4.62% MgCO3% was applied through foliar 

spraying @ 0.75 g L-1 in tomato plant showed   improved plant height, leaf number, yield of salt-
stressed plants 

(59) 

03. Salt stress 
Foliar application of MgO-Nano Particles @ 100 µg mL-1 alleviates the inhibitory effects of salt 

stress on sweet potatoes. (60) 

04. Cold stress 
The combination of AMF (Arbuscular mycorrhizal Fungi) with a nanoparticle mixture (ZnO-NPs + 

Se-NPs) as foliar spray in chili plans reduces the harmful effects of cold stress on chili plants. (61) 

05 Drought stress 
The drought-induced decline in the content of phenol and mineral nutrients was mitigated by 

ZnO NPs foliar application in cucumber seedlings. (62) 

06 Water stress 
Application of zinc oxide nanoparticles at a concentration of 100 parts per million (ppm) via 

foliar spray on eggplant resulted in enhanced water productivity, thus mitigating the adverse 
effects of water stress on brinjal production in dry-land agricultural settings. 

(63) 

07. Aphid 
Foliar application of the mixture of Penicillium sp.106 spora mL-1 + nanosilica 5%, in cabbage 

seedlings increased the mortality of M. persicae. (64) 

08. Spider mite 
Application of SiO-NP and ZnO-NP at 5 ppm in tomato is a eco-friendly management strategy 

of T. urticae. (65) 

09. Chocolate spot disease 
Ag/SiO2 nanocomposite improved faba bean resistance to B.cinerea that causes chocolate spot 

disease by increasing proline, phenols and defense enzymes (peroxidase and polyphenol 
oxidase enzymes). 

(66) 

10. Fusarium oxysporum 
Foliar application Fe2O3 nanoparticles (at 20 µg mL-1) shown antifungal activity against F. 

oxysporum in tomato. (67) 

Table 1. Foliar Nano fertilizer in combating biotic and abiotic stresses in vegetable crops 
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Future Perspectives  

Recent publications indicate a growing interest in the foliar 

application of nanofertilizers, either independently or in 

conjunction with soil fertilization. This method offers direct benefits 

to crops, is more accessible and is unaffected by soil reactions. In 

addition, foliar sprays require smaller quantities, making them 

more cost-effective and environmentally friendly. Overall, foliar 

nanofertilizers show promise for sustainable agriculture but require 

further research before widespread adoption. Challenges such as 

nanoparticle toxicity, environmental residues and the influence of 

these factors on agricultural production, along with determining 

the optimal concentration for effective action, need to be 

addressed before large-scale implementation. Despite these 

obstacles, there are expectations of continued advancements in 

this area in the future: 

• Determining the optimal concentration and timing of 
nanofertilizer application is essential, as it varies across different 
crops. Thorough trials are necessary to prevent environmental 
contamination and potential harm to the plants. 

• Further investigation into how fertilizer functions within foliage 
is crucial for pinpointing the specific sites of nanoparticle 
action. 

• Comparative research on various application methods, 
including soil application, seed priming, root dipping in 
nutrient solutions and foliar spraying, is required to identify the 
most effective approaches in different scenarios. 

• Focus to be directed towards exploring different 
nanomaterials and fertilization techniques, as the outcomes 
may vary depending on the application method employed. 

• Despite advancements, significant hurdles remain before 
widespread adoption, necessitating focus on issues such as 
toxicity, human health impacts and economic viability. 

 

Conclusion   

Through a comprehensive analysis of current research findings, it 
is evident that nanofertilizers offer promising solutions to address 

various challenges faced in conventional agriculture, including 

nutrient loss, environmental pollution, limited nutrient uptake 

efficiency and biotic and abiotic stresses faced by vegetable crops. 

Through foliar nanofertilizer application, vegetable crop 

production can be substantially improved, leading to increased 

yield, enhanced nutrient utilization and healthy plants, ultimately 

leading to sustainable crop production. Nanofertilizers bring 

about a positive transformation in the agricultural sector by 

diminishing the quantity of conventional fertilizers currently 

utilized, while simultaneously enhancing crop yields. 

Nanofertilizers offer economic advantages to producers 

by reducing fertilizer loss through leaching and volatilization. 

Their eco-friendly nature further enhanced their appeal. Although 

there is uncertainty regarding the environmental impact of 

nanomaterials, further research is essential to fully understand 

their long-term impacts and optimize the formulation and 

application methods of nanofertilizers for widespread adoption in 

vegetable cultivation. Nonetheless, the potential benefits of 

nanofertilizers offer significant opportunities to revolutionize 

vegetable crop management and advance sustainability in the 

coming years. 
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