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Abstract

Drought  is  considered  as  one  of  the  major  limiting  factors  affecting  growth  and
productivity  of  crop  plants.  It  severely  affects  the morphological  and physiological
activities of the plants and hampers the seed germination, root proliferation, biomass
accumulation and final yield of field crops. Drought stress disrupts the biosynthesis of
chlorophyll  contents,  carotene and decreases  photosynthesis  in  plants.  It  gradually
reduces CO2 assimilation rates owing to decrease in stomatal conductance. In addition,
drought  affects  cell  membrane stability  and disrupts  water  relations  of  a  plant  by
reducing water use efficiency.  To cope with these situations,  plants adopt different
mechanisms  such  as  drought  tolerance,  avoidance  and  escape.  In  this  review,  we
discussed  about  the  effects  of  drought  on  morphological  and  physiological
characteristics of plants and suggested the different agronomic practices to overcome
the deleterious effects of drought stress.
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Introduction

Different  abiotic  stresses  such  as  high  and  low
temperature,  drought,  heavy  metals  and  soil
salinity are detrimental to the growth, development
and productivity of field crops (1). Drought stress is
mainly caused by no or low rainfall in dry or wet
season and/or deviation of rainfall pattern from its

normal period (2). Alarmingly, 10% of the total land
will  suffer  drought  stress  during  early  of  21st

century that can be increased up to 40% by the end
of this century (3). 

Imposition  of  drought  caused  morpho-
physiological,  anatomical and molecular changes
in plants. Water stress conditions severely affect
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the  morphology  of  crops  by  inhibiting  seed
germination,  and  early  growth  of  plants  (4,  5).
The  drought  stress  reduces  the  plant  biomass
accumulation  and  partitioning,  harvest  index
and  productivity  of  crops  (6).  Approximately
70%  yield  in  various  crops  was  reduced  by
drought stress (7, 8). 

Different physiological activities in plants
such  as  osmotic  adjustment,  water  relations,
photosynthesis  and  respiration  are  disturbed
under drought stress (9, 10).  The mechanism of
yield  reduction  under  water  stress  condition  is
linked  to  the  reduced  light  absorption,  low
photosynthetic rates, water use efficiency (WUE)
and harvest index (11). 

The level of vulnerability of crop against
drought  stress  depends  on  its  severity,  plant
genotypes  and stage  of  crop  growth (12).  Plant
survive  under  limited  water  supply  through
several  morpho-physiological  and  biochemical
mechanism eg.,  by  changing  their  architecture,
controlling growth rate, adjusting water balance
of  the cells  and tissues and activating  the  anti-
oxidative  defense  systems  (13).  This  review
discusses  the  effects  of  drought  on
morphological  and  physiological  activities  of
plants and describes the mechanism adopted by
the  plants  to  adapt/survive  under  drought
conditions.  It  also  highlights  the  different
agronomic  approaches  for  reducing  the  effects
of  drought  stress  on  crop  plants  under  field
conditions.

Effect of drought on plant morphology

Seed germination

Seed  requires  the  proper  amount  of  water  for
germination,  however  under  water  deficit
conditions,  it  is  unable  to  imbibe and germinate
even  all  other  external/internal  conditions  are
favorable.  Hence,  reduced  seed  germination  and
poor stand establishment are the primary signs of
drought at early crop growth stages (4).  Drought
stress substantially  reduced the germination and
stand establishment in various field crops (14, 15).

Many legumes, cereals, and fodder species
have shown poor seed germination under drought
stress.  For  instance,  poor  seed  germination  and
stand  establishment  were  recorded  under  water
deficit  conditions  in  rice  and  peas (16-18).
Moreover, poor germination in Alfalfa (Medicago
sativa)  was  also  recorded  under  drought  stress
conditions  (19).  It  seems  to  be  clear  that  water
deficit causes poor germination and reduced stand
establishment  in  various  field  crops.  Therefore,
adequate  moisture  supply  is  an  absolute
requirement for early growth of various crops.

Root growth

A  well  develop  root  system  helps  the  plants  to
anchor as well  as  uptake of water and nutrients

from  its  immediate  vicinity  to  which  it  exists.
Drought causes apparent modifications in the root
architecture and morphological characters in crop
plants.  Most  often,  the  root  growth  under  mild
drought  conditions  is  not  severely  affected.  For
example,  the  root  growth  in  maize  was  not
substantially  affected  under  water  deficit
conditions (20).  However,  the root growth under
deficit  water  conditions  was  increased  in
Catharanthus  roseus (21)  and  Helianthus  annuus
(22). On the other hand, a significant decrease in
the dry weight of roots in  Populus (23) and some
species  of  sugar  beet  (24)  were  recorded  under
severe  drought  stress.  In  general,  drought  stress
increased  the  root-shoot  ratio  in  different  plant
species (25).

Leaf area

Drought stress causes significant reduction in leaf
area of  many plant species.  The increase in  leaf
area mainly depends on the leaf turgor pressure,
canopy  temperature  and  availability  of  photo-
assimilates (26, 27). Leaf area growth is the main
factor  for  photosynthesis  and  grain  yield  (28).
Water deficit conditions reduced the leaf area by
reducing  leaf  expansion  and  thus  affect  the
process  of  photosynthesis  (27).  Furthermore,  the
leaf  area  of  maize  (29),  rice  (30),  wheat  (31),
soybean (32) and many other field crops (14) was
significantly  affected  under  limited  water
conditions.

Leaf rolling 

Leaf rolling is the loss of the potential pressure due
to water loss from the upper epidermis of leaf; the
phenomenon  helps  to  reduce  leaf  temperature,
interception  of  incident  radiation  and
transpiration  rate  (33,  34).  Drought  stress
increased the leaf rolling in different plant species.
Drought  stress  decreased  the  cell  size,  stomatal
activity,  leaf  area  and  increased  the  leaf  rolling
(30).  A  study  of  two  rice  cultivars  ‘IRAT109’
(drought  tolerant)  and  ‘Zhenshan97B’  (drought
sensitive) showed that drought stress significantly
limitted plant height, increased the leaf rolling and
reduced  the  final  yield  of  susceptible  cultivar
under  drought  stress  (30).  Furthermore,  studies
reported that  some agronomic  traits  for drought
response are increased leaf rolling, decreased root-
shoot  length,  relative  water  contents  (RWC),
panicle length, grains per panicle and dry biomass
accumulation (18).

Plant height

The internal plant factors involved to enhance the
plant height are substantially affected by drought
stress. A decline in plant height could be attributed
to the reduction in cell expansion, increase in leaf
abscission  under  drought  conditions  (5)  and
impaired mitosis (35).  The plant height is largely
associated  with  cell  enlargement  and  leaf
senescence. Generally, lower cell enlargement and
higher leaf senescence are the basis of reduction in
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plant height. Several  studies  have been reported
that the plant height in different field crops such
as  wheat  (36),  maize  (29,  37),  peas  (38),  and
soybean (39) was decreased under drought stress.
Furthermore,  drought  stress  also  reduced  the
height in some fruit plants, for example there are
reports on 25% reduction in height of citrus plants
grown  under  water  deficit  conditions  (40).
Similarly,  plant height  of  Abelmoschus esculentus
decreases with more leaf senescence and less cell
enlargement  under  drought stress  (41).  A
systematic  approach  should  be  adopted  by
conventional  breeding  instead  of  traditional
breeding  to  improve  plant  height  of  crops  being
cultivated in drought prone areas.

Mechanism of growth reduction

Growth  of  plant  can  be  accomplished  by  cell
division, cell enlargement and other physiological,
ecological  as  well  as morphological  events.  Plant
growth  is  highly  dependent  on  these  events.
Drought stress can severely impair these activities.
Mechanism  of  growth  reduction  under  drought
stress  as;  (a)  reduced  cell  turgor  pressure,  b)
abridged  water  uptake  and  c)  reduced
photosynthesis and photo-assimilates required for
cell division, mitosis and cell enlargement which
often lead to reduction in plant height (14, 35). The
phenomenal  changes  in  plant  growth  under
drought stress are presented in (Fig. 1). In a study,
it has been described that cellular growth is quite
sensitive to drought  and is  severely inhibited by
interruption  of  water  flow  from  xylem  to  the
surrounding cells (142). Abating mitosis, impaired
cell  elongation  and  expansion  under  drought
stress are the major factors which reduce the plant
height, leaf area and crop growth (15).

Fig.  1. A schematic  representation of  plant growth reduction
mechanism under water deficit conditions

Plant biomass and yield

Drought stress causes significant reduction in dry
biomass accumulation and grain yield in different
filed  crops  (42).  Similarly,  imposition  of  drought
stress at silking,  grain-filling and maturity  stages
led to reduce the total dry biomass by 37%, 34%
and 21% respectively in maize crop (43). Drought
stress generally caused grain yield reduction in all
agronomic  crops.  The  yield  reduction  due  to
drought  stress  in  different  field  crops  has  been
listed  in  (Table  1).  The grain  yield  reduction

mainly  depends  upon  the  time  of  the  onset  of
drought and stage of the crop. Similarly, drought

stress at flowering and grain filling stages reduced
the  grain  yield  in  maize  (44),  green  gram  and
common beans  (45), parsley (46)  and  wheat  (47,
48).  In  addition,  drought  stress  at  pre-anthesis
stage reduced the grain size and number of grains
in wheat  (49) whilst after anthesis, it reduced the
grain filling period in different cereal crops (50).
Furthermore, drought stress at silking stage caused
phenological  delay  between  silking  and  anthesis
stages, and reduced the total number of grains and
grain  yield  in  maize  (43,  51).  Drought  stress  at
heading and maturity stages reduced the total dry
biomass and grain filling percentage in wheat (52).
The enzymes,  i.e., starch synthase (SS), adenosine
diphosphate  glucose  pyrophosphorylase  (ADGP),
starch  branching  enzyme  (SBE)  and  sucrose
synthase  (SS)  are  involved  in  the  grain  filling
process  of  cereals  (53)  and  severely  affected  by
drought stress (54, Table 1).

Effect of drought on plant physiology

Chlorophyll contents

Chlorophyll is the main component of chloroplast
which  plays  a  significant  role  in  the
photosynthesis. Chlorophyll pigments are essential
for  the  plants  to  capture  light  and utilize  in  the
functioning  of  photosynthesis  (9).  Under  water
deficit  conditions,  the  chlorophyll  contents  have
considerably  reduced  due  to  enhanced oxidative
stress  and/or  deterioration  or  photo-oxidation  of
the  chlorophyll  pigments.  Drought  stress
considerably  reduced  the  functioning  of  both
chlorophyll a and b (14, 37). In a study it has also
been identified that the reduction of chlorophyll a,
b  and  total  chlorophyll  contents  of  sunflower
under  drought  conditions  (63).  Likewise,  the
chlorophyll  contents  were  sharply  reduced  i.e.,
29%  and  42%  in  Chemlali  and  Chétoui  olive
cultivars,  respectively  under  drought  stress  (64).
The  chlorophyll  contents  were  reduced  in
response  to  the  water  deficit  conditions  in
mesophyll cells of the leaf and a small amount are
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Table  1. Yield reduction (%) in different crops under drought
stress

Crop 
Yield

reduction
(%)

References

Wheat 64.46 Rizza et al. (55)

Barley 50 Samarah et al. (56)

Maize 63-87 Kamara et al. (43)

Rice 53-92 Lafitte et al. (57)

Canola 30 Sinaki et al. (58)

Soybean 46-71 Samarah et al. (59)
Pigeon pea 40-55 Nam et al. (60)

Cowpea 55-65 Ogbonnaya et al. (61)

Chickpea 45-69 Nayyar et al. (45)

Sunflower 60 Mazahery-Laghab et al. (62)
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also decreased through bundle sheath cells (65). In
fact,  the  drought  conditions  severely  affect  the
biosynthesis and functioning of the chlorophylls in
plants  that  could  have  severe  consequences  on
photosynthetic  machinery  and  assimilate
partitioning.  Different  metabolic  processes  and
activities are disturbed by drought stress which in
turn lead to reduction in chlorophyll contents. This
reduction can also be attributed to the inhibition
of biosynthesis of precursors of chlorophyll under
drought stress (143). Drought stress may also cause
severe  reduction  of  sodium  and  potassium
contents of root and shoot (143). Owing to stomatal
closure under drought stress, absorption of CO2 is
limited  which  may  promote  the  imbalance
between  the  electron  requirement  of  Calvin-
Benson  cycle  and  photochemical  activity  of
photosystem  II  and  result  into  photo-inhibitory
damage to reaction centers of PSII (144).

Carotenoids

Several  studies  have  reported  a  decrease  in
carotenoids  contents  in  various  crops  under
drought  stress  (63,  145-148). Carotenoids  are
grouped into hydro-carbon carotenes, consisted on
lycopene and xanthophylls or β-carotene and they
are characterized by lutein (66). They play a major
role  in  anti-oxidant protection system but highly
susceptible  to  the  over-activation  of  reactive
oxygen  species  (ROS)  (28).  The  enzymatic
antioxidant system together with non- enzymatic
system i.e.,  β-  carotenes,  α-tocopherol,  ascorbate,
reduced  glutathione  and  enzymes  containing
ascorbate  peroxidase,  peroxidase,  polyphenol
oxidase,  catalase  and  glutathione  reductase
provide protection to carotenoids against ROS (67).
β-carotene  directly  involved  in  the  reduction  of
triple chlorophyll which inhibits the generation of
the  singlet  oxygen  and  thus  protects  from
oxidative  damage  (14).  Additionally,  β-carotene
plays  a  main  role  in  protecting  and  sustaining
photochemical processes as well (68).

Photosynthesis

Drought  stress  hampered  the  photosynthetic
system  by  altering  CO2 conductance  through
stomata,  carbon  cycle,  electron  transport  chain
(ETC)  of  thylakoid  membrane,  membrane  lipid
peroxidation and water imbalance (1,  69).  Under
water deficit conditions, limited gaseous exchange
causes a reduction in leaf growth, premature leaf
abscission,  oxidation  of  protein  and  limited
photosynthesis (70). According to a study, drought
in  maize  led  to  significant  reductions  in  net
photosynthesis,  transpiration,  stomatal
conductance,  inter-cellular  CO2,  water  use
efficiency,  and  intrinsic  water  use  efficiency  as
compared  with  the  well-watered  crop  (37).  The
mechanism of photosynthesis reduction in plants
under  drought  stress  is  as:  i)  reduction  in
chlorophyll  biosynthesis,  ii)  stomatal  closure
through  ABA  signaling  which  reduce
carboxylation  process,  iii)  reactions  of  ROS with

the  cellular  lipids  and proteins,  and  iv)  reduced
RuBP and PEP-case  activity  (14).  Hence,  drought
caused reduction in photosynthesis is an intricate
phenomenon that is  affected by various intrinsic
and extrinsic factors.

Respiration

Drought  often  causes  reduction  in  the  rate  of
respiration in different plant parts such as leaves
(71), shoots (72), roots (73), flower apices (74) and
in whole plant as well (75-77). Several researchers
described the unaffected (78), or increase (79, 80)
rate  of  respiration  in  plants  under  the  limited
water  supply.  However,  all  kinds  of  respiration
were  stopped  at  low  water  potential  ( 35  bars)‒
(10). The soil selection under limited water supply
is important for respiration of many plant species.
Similarly,  according to Collier and Cummins (81)
rate  of  respiration  in  leaves  is  also  slow  when
plants  are  grown  on  high  organic  soils,  as
compared to the vermiculite soil, in which drought
conditions develop very rapidly. 

Stomatal conductance

Responses of stomatal conductance are more likely
to be associated with the soil  moisture than leaf
moisture  contents.  However,  gaseous  exchange
through  stomata  is  not  only  affected  by  the  soil
water content but also other external and internal
plant factors (14). Severity in drought stress causes
intensively  caused  stomatal  closure  and  thus
reduces net photosynthesis. A study conducted on
Chinese Hibiscus revealed that under limited soil
water contents, the rate of transpiration, stomatal
conductance,  water-use efficiency and RWC were
decreased (82).

Cell Membrane Stability (CMS)

The cell membrane stability (CMS) can be used as
an index of  selecting drought  tolerant  genotypes
(17).  CMS  and  cell  membrane  integrity  under
water deficit conditions propose resistance against
water  stress.  Genotypes  having  lower  the  CMS
values  showed  higher  vulnerability  to  drought
stress and vice versa (83). Similarly, CMS index is
substantially  important  in  breeding  programmes
and  predicts  drought  tolerance  or  sensitivity
criteria (84).  The genotypes with <50% value  for
CMS  are  more  vulnerable  to  drought,  whereas
genotypes  having  CMS  values  ranged  71-80%
showed more potential towards drought tolerance
(83).  Under  limited  water  supply,  CMS  showed
positive association with tillering ability and grain
yield  of  wheat,  but  negative  with  1000-grain
weight  (85).  Furthermore,  drought  activates  the
oxidative  process  in  plant  species  which  finally
reduces  the  membrane  stability  owing  to  lipid
peroxidation (70), and consequently damages the
cell membrane (86).

Water use efficiency

The proportion between dry-matter produced and
the amount of water consumed is known as water
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use efficiency (WUE) of that plant (87). Plant water
status  is  the  measure  of  relative  water  content
(RWC) and the RWC mostly depends on the water
uplifting by the plant roots and transpiration rate
by the plant leaves and temperature. Furthermore,
water  deficit  conditions  considerably  reduce  the
water potential of leaf, transpiration rate and RWC
with  increasing  temperature  in  plants  (88).
Moreover, leaves respond quickly to drought and
by lowering the water potential and RWC rapidly.
Similarly,  the leaves of plants which are exposed
to the water deficit condition, shown more decline
in the RWC and water potential (89). Under limited
water condition, the total water content of Barbary
fig decreased by 57% (90). Wheat WUE was higher
under drought stress than well-watered conditions
(91, Table 2).

Drought mitigation mechanisms

Morphological approaches

The  most  common  morphological  approaches  of
plants  for  drought  resistance  are;  drought
tolerance, drought avoidance and drought escape
(Fig.  2)  (94,  95).  The  drought  tolerant  plants
continue  to function  normally  by  maintaining
turgor  even  at  low  water  potential  (96).
Osmoregulation,  osmoprotectants  synthesis,
osmolyte  accumulation and antioxidant activities

are the responses of plants against drought stress
(96, 97).  The capability of a plant to complete its
life cycle earlier than drought period is termed as
drought  escape  (98).  This  involves  early
germination,  faster  plant  growth,  flowering  and
maturity. 

The drought avoidance mechanism allows
plants  to  evade  dehydration  by  maintaining
internal  water  status  of  plants  (94,  99,  100).
Decrease in leaf number and size, leaf rolling, and
leaf  orientation can reduce  the water losses  and
radiation  absorption  in  plants  (101-103).
Moreover,  by improving leaf waxiness,  deep and
high rooting density often increases water uptake
deep from the soils (104-106).

Biochemical mechanisms

Proline activity

Turgor pressure of  the cell  is  maintained by the
concentration of different solutes, which lesser the
osmotic  potential  of  cytosol  (107).  Proline  often
determines the association and conservation of the
protein structure,  hold the membrane’s structure
under  water  deficit  condition  and  inhibit  the
photo-inhibition (108). It also helps to maintain the
sub-cellular structures,  cleansing of free radicals,
mitigating the oxidation-reduction potential  (109)
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Table 2. Effect of soil water contents on relative water contents, transpiration, and photosynthesis in different plants

Crop
Soil water

content RWC (%)
Transpiration
(mmol m-2 s-1)

Photosynthesis
(molm-2 s-1) References

Winter wheat Well-watered
Water deficit

79.4 ± 1.93
70.1 ± 3.25

6.0 ± 0.58
3.51 ± 0.44

 9.7 ± 0.02
 5.1 ± 1.19

Roohi et al. (92) 

Soybean 100%
50%
25%

_
_

11.6
5.5
0.7

17.45
8.67
1.81

Purwanto (93)

Winter barley Well-watered
Water deficit

77.4 ± 5.03
59.8 ± 5.09

4.9 ± 0.91
2.8 ± 0.41

 7.9 ± 2.47
 3.6 ± 92

Roohi et al. (92)

Spring triticale Well-watered
Water deficit

83.5 ± 5.02
71.3 ± 1.37

53 ± 0.26
3.19 ± 0.38

 8.8±0.64
 5.3 ±0.70

Roohi et al. (92)

RWC: relative water contents

Fig. 2. Morphological mechanisms of a plant under drought condition
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and regulate mitochondrial purposes through the
act  as  signaling  molecular  substance  under
drought stress. Additionally, it also determines the
cell development and cell death and activates the
particular  gene  aspects  which  are  necessary  for
retrieval of the plant from drought stress (110). 

The mechanism of proline under drought
is  depicted  in  (Fig.  3).  Under  limited  water
condition, the maintenance of cell turgor pressure
can  be  attained  by  the  regulation  of  osmotic
potential  by  synthesizing  proline,  carbohydrate,
sucrose,  glycine-betaine,  and  other  solute-
substances  in  the  cytoplasm.  Increased  proline
contents  were  directly  associated  with  drought
tolerance in wheat (111). Similarly,  in maize, the
proline percentage increases as  the water deficit
condition  prolonged  and  reached  to  its  peak  10
days  after  imposition  of  drought,  but  reduced
under the acute water stress (37).

Molecular mechanisms

Low  availability  of  water  in  soil  may  lead  to
cellular  water  deficit  in  plants.  Up-  and  down-
regulation of gene expression can take place under
these  conditions.  In  response  to  water  deficit
conditions,  the  activity  of  a  number  of  genes  is
triggered which enhances the plants’ tolerance to
drought stress (149). Gene expression may also be
triggered  as  a  result  of  injury  and/or  triggered
directly  as  a  result  of  other  biotic  and  abiotic
stresses.  It  is  also  well  documented  that  plants’
ability  to  tolerate  drought  is  a  multiplex
phenomenon and is an outcome of expression of
multiple genes.

Aquaporins

Aquaporins (AQs) have the ability to facilitate the
protein  mediated  membrane  transport  in  plants
(14). Although, different studies demonstrated the
understanding of AQs and plant water relation in
plants  (150),  however  relation  between AQs  and
crop resistance to drought stress has not been fully

illustrated.  Maurel  and Chrispeels  (150)  reported
that  under  water  deficit  conditions,  AQs  can
increase the water permeability by regulating the
hydraulic conductivity of membranes.

In  a  recent  year,  different  researchers
carried studies on plant water relations and AQs in
plants. Different reports clearly indicate that AQs
play  important  role  in  uptake  of  water  through
plants  roots  by  declining  root  hydraulic
conductivity  (151),  and  play  a  major  role  in
cellular osmoregulation (152). More expression of
plasma  membrane  AQs in  tobacco  was  reported
which  improved  the  plant  vigor  of  tobacco
however,  overexpression  of  prolactin-inducible
protein 1b gene caused fast wilting under drought
stress  (152,  153).  Different  reports  demonstrated
the  specific  functions  and regulation  of  intrinsic
AQs  of  plasma  membrane.  For  instance,  their
overexpression in roots have been reported which
can mediate  the soil  water  uptake  by roots,  and
down-regulation of prolactin-inducible  protein in
trans  genetic  plants  have  lower  water  uptake
capacity of plants (151, 152).

Stress proteins

To  cope  with  drought  stress,  the  synthesis  of
different proteins has been reported. Among these
proteins,  mostly  are  water  soluble  and  thus
enhance  the  stress  tolerance  by  hydration  of
cellular structure (154). A variety of stress proteins
are implicated under drought which enhance the
tolerance capability of plants (53). The induction of
dehydration-responsive  element-binding  genes
(DHG)  (dehydration-responsive  element-binding
gene1  and  dehydration-responsive  element-
binding  gene2)  under  dehydration  (155).  These
genes  are  involved  in  signal  pathways  under
stressed  conditions.  The  manipulation  of  these
genes in plants may enhance the drought tolerance
ability of these plants (156). Previous studies have
reported drought tolerance in rice and groundnut
by  manipulation  of  DHG  (157,  158).  Apart  from
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Fig. 3. Functions of proline in plants (adopted from Szabo  and Savoure (110) with modifications)
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DHG,  different  capsella  bursa-pastoris  like  genes
are  also  synthesized  under  drought  stress  (159).
Introduction of DHG in transgenic tall fescue may
result  in  more  accumulation  of  proline  which
increases  the  drought  resistance  in  crops.  This
phenomenon  indicates  the  ability  of  capsella
bursa-pastoris  3  to  induce  tolerance  against
drought (160). The expression of some dehydrins
and late embryogenesis abundant genes have also
been  reported  under  drought  stress  (161).  Low-
molecular-weight heat shock proteins also play a
role in increasing the capability of plants to cope
with  abiotic  stresses  (154,  162).  Different
membrane-stabilizing proteins are another group
of protein which is responsible for enhancing the
drought tolerance in various crops. These increase
the water-binding capacity by creating a protective
environment and also  play  an  important  role  in
the sequestration of ions (163).

Different Agronomic Practices to overcome the
drought effects 

Changing the sowing time

Planting  date  is  an  important  factor  regarding
drought escape in subtropical, tropical and rained
conditions  (112).  Early  planting  under  dry
conditions  is  corrected  by  improving  WUE,
changing the sowing time so that  plant does not
suffer  drought  stress  specially  at  critical  stages
(100). The cropping system that provides balance
and adequate water with an appropriate quantity
of nutrients will improve canopy growth and yield
by enhancement of biomass production. The more
of  canopy  area,  the  more  will  be  the
evapotranspiration  (113).  Consequently,  changes
in the production of biomass through each unit of
transpiration by adjusting planting dates can be a
helpful strategy for drought tolerance or drought
escape (114). 

Adequate  supply  of  Irrigation  and  Soil
amendments 

Topsoil  modifications  affect  soil  water  by
infiltration,  evaporation  and  environment-soil
heat transfer (115). Water can be preserved in soil
by different means and mulching is one of them
which  can  substantially  reduce  the  evaporative
losses while could enhance the uptake and storage
of water in plant root zone (115, 116).

The  current  irrigation  systems,  likewise,
drip,  film hole and sprinkler irrigation are more
efficient and water saving techniques that improve
WUE and grain yield as compared to the surface
irrigation (115, 117). Therefore, modern irrigation
techniques  are  more  suitable  for  supplying
adequate irrigation needed for plant growth and
development.  The modern irrigation systems are
more suitable  for  cash  crops,  through delivering
the  proper  amount  of  water  for  plant  growth
under sloppy areas (118). Furthermore, crop yield
can  be  enhanced  up  to  70%  by  providing

supplemental  irrigation  and  soil  management
practice at the reproductive growth stage (115).

Seed priming

Seed priming is the most pragmatic and short-term
strategy to reduce the effects of drought stress in
crop plants (14,  147, 164, 165;  Table 3). A partial
hydration of seed towards a point associated with
a start of metabolic processes of germination but
no  radicle  emergence  occur  is  known  as  seed
priming  (119).  Better  and  uniform  germination

was  found  in  primed  seeds  (15).  Osmopriming
with  saturated  CaHPO4 and  KCl  (4%)  solution
resulted  in  improved  germination,  better  stand
establishment  and  yield  of  direct  seeded  rice
under  water  stress  conditions  (120).  Similarly,
primed  seed  of  rice  showed  better  germination,
rapid  seedling  establishment  and  uniform  crop
architecture  that  led  to  the  improved  yield  (4).
Under  water  deficit  conditions,  primed  wheat
seeds  showed  44%  more  germination  than
unprimed seeds (121).

Conclusions

Drought stress often resulted in substantial loss in
growth and yield agronomic crops. Drought stress
impedes various morphological and physiological
processes in different crops.  It  generally reduces
seed  germination  and  impairs  stand
establishment,  reduces  leaf  area,  overall  plant
growth  and  total  dry  biomass  accumulation  in
different  crops.  Drought  stress  hampers  the
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Table  3. Various  seed  priming  techniques  adopted  for  
developing drought tolerance in plants

Plants Priming method Authors

Wheat Hydropriming, auxin 
priming, halopriming 
(CaSO4), chemical 
priming (KH2PO4, H2O2, 
SNP), gibberellic acid 
(GA3) priming

Das and 
Choudhury (122); 
Ghana and 
Schillinger (123); 
Akbari et al. (124); 
Wahid et al. (125)

Rice Hydropriming, PEG, 
KCl, CaCl2, ascorbate, 
priming

Basra et al. (126); 
Farooq et al. (127); 
Yari and Sheidaie 
(128); Yuan-Yuan 
et al. (129)

Maize Chemical priming 
(CuSO4, ZnSO4), on-
farm seed priming

Murungu et al. 
(130); Finch-Savage
et al. (131); Foti et 
al. (132); 
Janmohammadi et 
al. (133)

Sugarcane Halopriming (NaCl) Patade et al. (134)

Cotton Hydropriming, 
hormonal (GA3)

Murungu et al. 
(130); Casenave 
and Toselli (135); 
Akbari et al. (124)

Chickpea Hydropriming, 
osmopriming 
(mannitol) 

Kaur et al. (136, 
137); Elkoca et al. 
(138)

Sunflower Hydropriming, 
osmopriming (KNO3) 

Kaya et al. (15)

Mustard Hydropriming, NaCl 
priming, ABA priming 

Srivastava et al. 
(139, 140)

Canola Hydropriming Omidi et al. (141)
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photosynthetic  and  gas  exchange  attributes
chlorophyll  biosynthesis  and  cell  membrane
integrity  as  well  as  alterations  in  phonological
development  of  crops.  Plants  respond  to  water
deficit  conditions  by  drought  avoidance  and
tolerance  mechanism  eg.,  by  changing  their  leaf
shape, leaf number and size, leaf rolling and leaf
orientation which helps to reduce water losses and
light interception in plants. Osmoregulation, osmo-
protectants  biosynthesis,  accumulation  of
compatible  solutes  and antioxidant  activities  are
the  physio-biochemical  responses  of  plants  to
drought stress. Different agronomic practices such
as  changing  the  sowing  times,  efficient  use  of
irrigation water and seed priming techniques can
be quite helpful to minimize the effect of drought
stress under field conditions.
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