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Abstract   

Mycotoxins are secondary metabolites produced by fungi, primarily from the genera 

Aspergillus, Fusarium, Penicillium and Alternaria. The attention is on the existence of 

mycotoxin compounds in food substances that jeopardize public health and it is 

directed to systematic regulation to overcome these issues. Pathogenic fungi, 

including Aspergillus, Penicillium and Fusarium species, infiltrate spice crops during 

the pre-harvest, postharvest and storage stages. These fungi create toxic secondary 

metabolites called mycotoxin. The reviews' intend to examine the prevalence, types 

and levels of mycotoxins commonly found in spices, including aflatoxins, ochratoxin 

A and fumonisins. The study highlights the factors that influence mycotoxin 

contamination, such as environmental conditions, agricultural practices and 

storage methods. Analytical techniques for detecting mycotoxins, including 

chromatography and immunoassays, are evaluated for efficacy and sensitivity. It 

also discusses the regulatory frameworks and safety standards established by 

international bodies like the Codex Alimentarius Commission to mitigate mycotoxin 

risks. In addition to these regulatory measures, mycotoxin detection needs to be 

addressed before framing the standards. The preventive strategies and mitigation 

measures, including good agricultural practices (GAP), proper drying, storage 

conditions and biocontrol agents, were explored based on previous research 

conducted earlier. This comprehensive review underscores the critical importance 

of implementing integrated approaches combining advanced detection methods, 

harmonized regulatory standards and preventive strategies to ensure the safety and 

quality of spices in the global food supply chain.  
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Introduction   

Spices refer to the parts of plants like leaves, bark, seeds, fruit, or roots that enhance 

colour and flavour and even preserve food (1). Spices are widely used in everyday 

cooking and are essential for improving the flavour of food in many different 

cuisines worldwide. However, there is a risk as these ingredients get contaminated 

by harmful fungi, leading to mycotoxins that remain unaffected by cooking 

processes (2). Commonly utilized worldwide and integral to Persian cuisine, it 

includes cinnamon, turmeric, black pepper and chilli powder in various dishes. The 
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most inexpensive and widely used spice in food is black pepper, 

which is grown in tropical climates. In addition to being used as a 

spice in meals, meat items, soups, vegetables and marinades, 

black pepper is also used as a preservative in the pharmaceutical 

and perfumery industries (3). Mycotoxin contamination in spices 

represents a significant global food safety concern, affecting food 

security and international trade. Spices, essential components of 

culinary traditions worldwide, are particularly susceptible to 

mycotoxin contamination due to their cultivation, harvesting, 

processing and storage conditions in predominantly tropical and 

subtropical regions (4). The presence of mycotoxins, primarily 

produced by Aspergillus, Penicillium and Fusarium species, poses 

substantial health risks to consumers, ranging from acute 

toxicity to chronic diseases, including carcinogenic, 

immunosuppressive and teratogenic effects (5). 

 Mycotoxins, toxins generated by fungi, are byproducts of 

toxigenic fungi. The presence of mycotoxins in food products is a 

primary worldwide health concern, affecting both economies 

and public health. These substances can pose severe risks to 

human and animal health, potentially leading to illnesses or even 

deaths (6). Due to the lack of a protein structure, mycotoxins 

resist heat and can persist through cooking processes (80-121 °C) 

(7). Specific types of mould fungi with toxigenic properties are 

responsible for producing these substances. Environmental 

factors such as temperature and moisture play a significant role 

in promoting fungal growth and, consequently, the production 

of mycotoxins in food items (8). Currently, over 300 identified 

mycotoxins, primarily focusing on those known to be 

carcinogenic and toxic. Ochratoxin A (OTA) and aflatoxins (AFTs) 

are among the numerous mycotoxins that have gained attention 

due to their harmful effects and economic significance. 

Mycotoxins cause significant economic losses globally in human 

and animal health and products every year (9). 

 Aflatoxins (AFTs) and ochratoxin A (OTA) are the most 

prevalent and hazardous mycotoxins. Aflatoxin, a significant 

mycotoxin, is primarily produced by species within the 

Aspergillus section Flavi, like A. flavus, A. parasiticus and A. 

nomius, under suitable environmental conditions. The main 

AFTs, including B1, B2, G1 and G2, are identifiable under 

fluorescent or violet light (appearing green or blue) (10). Aflatoxin 

B1, a well-known toxin within the AFTs group, is recognized for its 

harmful effects, such as mutagenicity and carcinogenicity in 

humans and animals (11). OTA is another mycotoxin produced 

by specific species of Aspergillus and Penicillium, such as A. 

ochraceus, A. carbonarius and P. verrucosum (12). The United 

Nations Food and Agriculture Organization (FAO) estimates that 

up to 25% of agricultural and food products worldwide are 

contaminated with mycotoxins(13). Mycotoxin contamination is 

often linked to drying spices on the ground, creating ideal 

conditions for fungal growth. According to the Rapid Alert 

System for Food and Feed (RASFF), the most reported border 

rejection notifications in the European Union in 2016 were the 

products contaminated with mycotoxins (14). Mycotoxin 

contamination has emerged as a critical threat to food security 

over the past twenty years, with fumonisins being particularly 

widespread in essential crops. This prevalent contamination by 

fumonisins necessitates further research into the toxin-

producing capabilities of Fusarium species (15). 

 Analytical techniques like enzyme-linked immunosorbent 

assay (ELISA) and high-performance liquid chromatography 

(HPLC) can measure mycotoxins. HPLC is mainly useful for 

simultaneous mycotoxin analysis owing to its specificity and 

sensitivity. Nevertheless, ELISA may exhibit cross-reactivity with 

similar compounds and lower sensitivity compared to 

chromatographic methods (16). Acceptable levels of mycotoxin 

contamination differ among various countries, including the 

USA, India, Spain and Iran (2, 17, 18). Additionally, recent 

advances in rapid detection methods, including biosensors and 

portable analytical devices, have enhanced the capability for 

early detection and monitoring of mycotoxin contamination in 

spices (19). This review aims to provide an in-depth analysis of 

current challenges and recent developments in mycotoxin 

detection, examine existing regulatory frameworks and evaluate 

preventive measures for ensuring the safety and quality of spices 

in the global food supply chain. 

Economically important spices 

Spices are unique botanical substances that enhance food scent, 

flavour and appearance. Since ancient Vedic times, various herbs 

and plants have been recognized for their therapeutic benefits. 

The medicinal properties of spices and their ability to combat 

microbes and inflammation have been documented since the 

Rigveda era (4500-1600 BCE). Not only do spices enhance the 

taste of food, but they also promote human health due to their 

antimicrobial, anti-inflammatory and medicinal qualities. 

Additionally, they prolong the shelf life of food and serve as 

natural preservatives (20). 

 Sold in whole, ground, or blended forms, spices like 

turmeric, paprika, chili, cloves, star anise, coriander seed, 

cardamom, cumin and fennel are commonly featured in Asian 

cuisines. However, geographical location, soil quality and 

postharvest techniques can influence the attributes of spices. 

Despite many countries cultivating spices, India stands as the 

largest producer globally. FAOSTAT data from 2019 reveals that 

spice production reached 2.8 million tonnes from 1.4 million 

hectares of harvested land, with Asia accounting for 86% of the total 

output. Specifically, India produced 1.4 million tonnes of spices in 

2019, indicating its dominant position in the market. The top chilli 

producers in 2016 were China, Mexico and Turkey, underscoring the 

significance of this crop, especially for emerging economies. 

Chilli 

Chilli is one of the most commonly used spices worldwide 

(Capsicum annum L.). Chillies are the fruits of Capsicum plants 

from the Solanaceae family, originating in America. In Sindh, the 

most cultivated chilli types are Longi and Sanam. These cultivars 

are widely used as seasonings in various Sindhi dishes and are 

profitable in domestic and foreign markets. Chilli products come 

in multiple forms, such as dried, fresh, powdered, pastes and 

flakes. Although fresh chillies can be consumed immediately 

after harvest, most chilli production focuses on processing and 

dehydration and it is often used in creating spice mixes. Studies 

suggest that most fungi found in chilli are likely contaminants or 

pathogens rather than native to the plant (21-23). Among the 

various spices, A. flavus and A. niger are the primary sources of 

fungal contamination in chillies (24). Analysis of OTA 

contamination in chilli samples from multiple regions revealed 

predominant fungal species, including Aspergillus niger, A. 

carbonarius and A. ochraceus (12). 
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 Additionally, recent surveillance studies have 

demonstrated the co-occurrence of these mycotoxins in dried 

chilli samples, with AFB1 showing a higher prevalence (82%) 

compared to OTA (65%) in market samples (25). The Guntur 

Sannam chilli is renowned worldwide for its distinctive 

characteristics. Known as an S4 type chilli in trade, it is primarily 

valued for its strong spice and as a source of capsaicin, the active 

component in chillies responsible for their heat (26). The 

combination of leaf blight and fruit rot represents a severe threat 

to chilli production, possibly destroying entire crops (27). 

Anthracnose (Colletotrichum capsici), the most devastating 

disease in Longi chillies, manifests as dark sunken fruit lesions, 

leading to significant crop losses (28). 

Cinnamon 

There are four main types of cinnamon popularly used in various 

products: Indonesian cinnamon (C. burmannii), Chinese cinnamon 

(C. cassia), Vietnamese cinnamon (C. loureirii) and Sri Lankan 

cinnamon (C. zeylanicum), although over 250 cinnamon varieties 

have been identified (29). Throughout history, people have 

incorporated cinnamon into their culinary practices as a flavour 

enhancer and aromatic seasoning across diverse cultures. Besides 

its culinary uses, cinnamon plays a significant role in medicine due 

to its antibacterial and antioxidant characteristics (30, 31). In a 

related study conducted in Saudi Arabia, Aspergillus flavus and 

Aspergillus niger were identified in cinnamon samples at 

frequencies of 33% and 75% respectively (32). 

Coriander seeds  

Coriander seeds, from the plant Coriandrum sativum of the Apiace 

family, are commonly used as a spice. Among fungal pathogens 

isolated from coriander samples in Bihar, India, P. verrucosum 

showed the highest prevalence (63%), followed by A. niger (10.6%) 

and A. flavus (8%) (31). Southeastern Asian countries, which are 

famous. Fungal pathogens constantly infect them for their 

reputation in coriander production. Coriander samples from 

Medan and Indonesia had minimal toxic Aspergillus (33).  

Pepper 

Peppers are widely used as a popular table spice globally. Black 

pepper is known as the "king of spices" and "black gold. In 

various regions, including Malaysia and Southeast Asia, peppers 

are commonly used in curries, soups and meat and poultry 

marinades. Numerous studies have highlighted the prevalence 

of fungi in black pepper samples. Black and white peppers are 

predominately infected with Aspergillus species, among other 

fungal pathogens (33). Black pepper samples from Brazil are 

highly contaminated with Aspergillus spp, such as A. ochraceus, A. 

parssiticus, A. carbonarius, A. flavus, A. nomius and A. niger (32). 

Black pepper from Tanzania was found to include AF-producing 

fungi, including A. parasiticus, A. flavus and A. nomius (34). 

 Similarly, white pepper exhibited lower-level 
contamination with only Rhizopus spp and Aspergillus. Black 

pepper samples from Bahrain showed contamination by A. 

flavus species, with 1.12×103 CFU/g of fungi at 78% (24).  

Fennel 

Multiple fennel varieties exist, sweet fennel (F. vulgare var.) and 

bitter fennel (F. vulgare Mill) are the most commonly used. The 

distinction between these lies in the volatile oil content of their 

seeds, ranging from 1% to 6%. In bitter fennel, about 10% to 6% 

of the volatile oil consists predominantly of anethole, comprising 

half of the oil contents of A. ochraceus (5.0%), A. niger (5.3%) and 

A. flavus (12.3%), were identified in moderately contaminated 

fennel samples from India (31). Fungal contaminations such as A. 

niger in fennel were reported with the potential to produce OTA 

in significant amounts (32). Fennel is widely used to flavour 

soups, sauces, pastries, confectioneries, bread rolls, liquors, 

meat dishes and pickled seasonings. Its fruit is often chewed as a 

masticatory, while its seeds and oil possess various medicinal 

properties. Fennel leaves are known for their digestive, 

appetizing and stimulating effects, helping to increase urine 

secretion and discharge. Additionally, aqueous ethanol extracts 

from the roots of F. vulgare var. dulce have been tested for 

diuretic activity in rats (35). In fennel ochratoxin A, contamination 

is less than the permissible limit (31). 

Cumin 

Cumin is widely used in dishes such as Indian pickles and spice 
blends like sambar powder. A.niger is the major fungal pathogen 

identified to be contaminated at 4.6 * 102 CFU /g of cumin 

samples in Bahrain(24). A.niger was the predominant fungus at 

60%, followed by A. flavus at 40% and A. fumigatus at 20%, all 

known to produce OTA and AFT.AFB1 and total AFTs were 

uncommon, with mean amounts of 0.03 µg/kg and 0.05 µg/kg in 

57% of Moroccan cumin samples from public markets (36). 

Studies showed that there was no contamination of cumin 

samples with A. niger with a 0.2 µg/kg detection limit (37).  

Mycotoxins in Fungi 

Mycotoxins, which are secondary compounds produced by fungi 

such as Aspergillus, Penicillium, Alternaria and Fusarium, are 

known to be present in spices (38). The primary mycotoxins 

found in spices were OTA and Afs, along with other mycotoxins 

detected in food products that include fumonisins (FBs), 

deoxynivalenol (DON), trichothecenes, zearalenone (ZEN) (8, 20). 

Spices are particularly susceptible to mycotoxin contamination 

due to cultivation, storage and processing conditions in tropical/

subtropical regions (14). Ochratoxin A's dual threat as a potent 

kidney toxin and potential carcinogen is particularly concerning 

in spices. Their frequent consumption as food ingredients 

enables chronic low-dose exposure that can accumulate harmful 

effects over time, even at concentrations below regulatory limits 

(39). It is described below in (Table 1-2). 

Aflatoxins (AFTs) 

AFs exhibit mutagenic solid, carcinogenic and immunosuppressive 

characteristics, notably more harmful than other mycotoxins (46). 

AFT represents a significant mycotoxin produced by fungi within 

the Aspergillus genus. A. flavus, A. parasiticus and A. nomius are the 

primary AFT producers among various Aspergillus species (8). AFTs 

are commonly found in peanuts contaminated with A. flavus or               

A. parasiticus in other substances such as dried fruits, nuts, rice, 

spices, figs and corn (56). There are four main types of aflatoxin: B1, 

B2, G1 and G2. Research indicates that A. flavus primarily releases B 

toxins, with B1 being the most commonly occurring toxin known 

for its cancer-causing and genetic-mutating characteristics (57, 58). 

Cotton and maize stand first in identifying AFTs produced by                   

A. flavus (59). Aflatoxins are particularly dangerous in spices 

because these ingredients are often stored in warm, humid 

conditions that promote mould growth, are resistant to typical 

household cooking temperatures and can concentrate in spice 
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 Table 1. List of important mycotoxin and toxin-producing fungal organisms 

Mycotoxin Fungal organisms Mode of action Reference 

Aflatoxins B1, B2, 
G1, G2 A. parasiticus, Aspergillus flavus, A. nomius 

DNA adduct formation, Inhibition of protein synthesis, Lipid 
peroxidation, Immunosuppression, Carcinogenic (primarily 

targets liver), P53 mutation induction 
(8, 40) 

Ochratoxin A 
Penicillium verrucosum,                               

Aspergillus ochraceus, A. carbonarius 

Inhibition of protein synthesis, Disruption of calcium 
homeostasis, Mitochondrial dysfunction, Competitive 

inhibition of Phe-tRNA synthetase, Nephrotoxic effects, DNA 
damage through oxidative stress 

(41-44). 

Fumonisins B1, 
B2, B3 Fusarium verticillioides, F. proliferatum 

Disruption of sphingolipid metabolism, inhibition of ceramide 
synthase, Cell membrane damage, Alteration of sphinganine/

sphingosine ratio, Neural tube defect induction 
(45-47) 

Zearalenone 

F.culmorum, F.verticillioides                           
Fusarium graminearum F. semitectum, 

F.cerealis, F. crookwellense, 
F.pseudograminearum and F.equiseti 

Estrogenic activity, Binding to estrogen receptors, Disruption 
of hormonal balance, Reproductive system effects, 

Competitive binding with 17β-estradiol 
(20, 45, 46, 48, 49) 

Citrinin 
P.  viridicatum, P. expansum, Penicillium 
citrinum, Monascuspurpureus, M. ruber,                

A. niveus, A.terreus 

Nephrotoxicity, Mitochondrial dysfunction, Oxidative stress 
induction, Disruption of ion transport, Inhibition of RNA/

protein synthesis 
(20, 50-52) 

Table 2. Chemical structure of mycotoxins                                     Source: Biorender 

Mycotoxins Chemical structure Reference 

Aflatoxin B1  

(55) 

Aflatoxin B2  

Aflatoxin G1  

Aflatoxin G2  

Ochratoxin A (OTA)  (43) 

Citrinin 

 

  

  

 (20) 

Zearalenone (ZEA)    (45) 
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matrices - a key food safety concern since even small amounts of 

contaminated spices can introduce significant AFT exposure 

through regular consumption patterns (45, 60). 

Ochratoxin A (OTA) 

Out of these, OTA is the most prevalent mycotoxin in food, 
originating from P. verrucosum and various Aspergillus species, 

namely A. ochraceus and A. carbonarius (8). A. ochraceus and A. 

carbonarius dominate OTA production in tropical regions, 

commonly contaminating spices and crops during both the 

cultivation phase and postharvest storage under warm, humid 

conditions. The ochratoxin A (OTA) is primarily produced by four 

key fungal species: A. ochraceus, A. niger, A. carbonarius and P. 

verrucosum (41-33). Fungi-producing OTAs' are well favoured in 

regions with tropical climates, promoting the synthesis of OTA (61).  

Citrinin 

Citrinin(CIT) is a mycotoxin produced by several Penicillium spp 

(50). Although CIT was discovered for the first time in 1931 from 

Penicillium citrinum, several other fungi were also found to 

produce the mycotoxin, such as A. terreus, A. niveus, 

Monascusruber, M. purpureus, P.viridicatum and P.expansum (20). 

Studies have confirmed that citrinin is toxic to kidneys, as shown 

in a prior investigation with chickens contaminated by P. 

citrinum (62). However, it is classified under group 3 carcinogen, 

indicating their low lethality by the International Agency for 

Research on Cancer (IARC). 

Fumonisins 

The primary producers of fumonisins are Fusarium species, 
particularly F. verticillioides (63-65). Twenty-eight fumonisins, 

which have been identified, were sorted into four different 

groups (46), among which fumonisin B (FB) was found to be the 

most common group, comprising FB1,  FB2 and FB3. Necrotic 

lesions identify the syndrome with a liquid consistency in the 

white matter region of horses' brains (8). There has been an 

increasing interest among researchers in exploring the presence 

of FBs in spices. Spices and herb samples collected in China were 

identified with the presence of FB1 and FB2 (66). 

 The research demonstrated that mouldy samples, 
accounting for 42.5%, were tainted with FB2 and FB1 and averaged 

concentrations of 165.9 and 129.0 µg/kg respectively. In contrast, 

usual samples, comprising 8.6%, exhibited contamination levels of 

165.9 and 256.8 µg/kg for FB1 and FB2 respectively. Additionally, 

assessed herbs and spices were obtained from Polish markets, 

where FBs were identified in the samples at levels ranging from 5.29 

to 62.78 µg/kg for total FBs (67,68). 

Trichothecene (TC) 

F. graminearum and F. culmorum are among the common 

species in agricultural goods, besides other species capable of 

producing TCs, including Cephalosporium, Cylindrocarpon, 

Dendrodochium, Myrothecium, Trichoderma, Trichothecium and 

various Stachybotrys species (51, 53, 54). Field crops such as 

Paddy, Barley, oats, corn, rye and wheat are frequently tainted 

with TCs (69).   

Zearalenone (ZEA) 

Zearalenone (ZEA), previously referred to as F-2 toxin, is categorized 

as a non-steroidal estrogenic mycotoxin (37). ZEA is synthesized by 

certain Fusarium species, primarily F. graminearum and F. 

semitectum (45). Additional producers of ZEA include F. culmorum, 

F. verticillioides, F. cerealis, F. crookwellense, F. pseudograminearum 

and F. equiseti (48, 69). 

Impact of Environmental and Agricultural Factors on Mycotoxin 

Production  

The aflatoxin biosynthesis pathway is modelled by non-
biological factors such as temperature, water activity, pH and 

carbon/nitrogen availability (70). These environmental factors 

serve a dual role: enhancing A. flavus colonization while 

simultaneously inducing the transcription of genes involved in 

aflatoxin production (71,72). Fungal growth and toxin production 

are favoured by higher water activity, specifically with aflatoxin 

synthesis reaching optimal levels at 0.99 aw when combined 

with temperatures of 29-30 °C (73, 74). 

 Aflatoxin biosynthesis and fungal growth are inhibited at 

temperatures outside the 25-37 °C range, while water activity 

below 0.85 aw reduces toxin production, with complete cessation 

occurring at 0.70-0.75 aw (74). Mycotoxin contamination in spices 

is significantly influenced by poor soil management practices, 

particularly inadequate crop rotation, improper field preparation 

and contaminated soil conditions (75). Improper irrigation 

practices, such as over-irrigation, water stress and the use of 

contaminated water, can adversely affect crop health and soil 

quality (76). Delayed harvesting, such as leaving crops in the field 

too long or harvesting under wet conditions, can increase the risk 

of spoilage and contamination (14). Inadequate drying, including 

slow or improper methods and incomplete drying, can lead to the 

growth of spoilage organisms and reduce crop quality (77). Poor 

storage conditions like high humidity, inadequate ventilation, 

temperature abuse and pest infestation can lead to 

contamination, spoilage and product degradation (78). In the 

agricultural sector, proper sanitation and hygiene practices are 

absent throughout the process, from harvesting to storage and 

transportation (79, 80). The most suitable temperature range for 

the survival of A. flavus is around 30 °C with the most effective 

production occurring between 25 °C and 30 °C (81, 82). Even with 

their low water activity levels, spices are at risk of fungal 

contamination, influenced by the cultivation location, harvesting 

procedures and processing techniques (61). Fungal 

contaminations and mycotoxin production are significantly 

promoted in warm and humid tropical regions, which are also 

ideal conditions for spice cultivation (83). 

 The mycotoxins contaminating the spices are viable from 

the point of infection through the storage unit and can show 

their impact when consuming the food products containing the 

spices (84).  

  Among storage fungi, Aspergillus species, especially A. 

flavus and A. niger, are commonly isolated from spices due to 

their tolerance to low moisture conditions and ability to produce 

mycotoxins (85, 86). Penicillium is another common storage fungi 

that can produce and secrete mycotoxins, especially in tropical 

regions (87). Southeast Asia's climate is predominantly tropical, 

making it one of the world's most climate-vulnerable regions. 

Predicted changes in temperature, CO₂ levels and rainfall 

patterns are expected to intensify in this region due to climate 

change (88). The hot and humid conditions present for much of 

the year promote the growth of mycotoxin-producing fungi, 

which release toxic metabolites, leading to contamination in 

food and feed (89). The tropical zone, between 23.5° North and 

23.5° South, has high temperatures year-round because the 
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Sun's rays fall directly here. This direct sunlight is concentrated 

over a smaller area, causing more heat per unit and making it the 

hottest climate zone (90). Spices, valued for their unique flavours 

and aromatic compounds, are inherently vulnerable to fungal 

contamination due to their hygroscopic nature, which allows 

moisture absorption from the environment, creating ideal 

conditions for fungal proliferation (91). Container transportation 

and temperature abuse during maritime shipping significantly 

increase spice contamination levels during transit (92) (Fig. 1.).  

Impact of mycotoxin 

Ochratoxin A (OTA) exhibits nephrotoxic and reproductive toxicity, 
with demonstrated transplacental transmission and documented 

hepatotoxic, neurotoxic and immunosuppressive effects. At the 

same time, OTA and aflatoxins contaminate diverse food matrices, 

including cereals, nuts, dried fruits, spices, legumes, alcoholic 

beverages and herbs at varying concentrations (37) (Fig. 2.). 

 Mycotoxins can enter the body through various 

pathways, including contact, inhalation and ingestion. A primary 

concern among these toxic components is AFTs; consistent 

consumption of mycotoxin at a level ranging from 10 to 50 µg/kg 

or above can reflect negatively on human health due to their 

teratogenic, immunosuppressive, carcinogenic and mutagenic 

effects (93). Approximately five billion people worldwide are 

exposed to mycotoxins daily through conventional food sources 

and unidentified pathways (94). Excessive consumption of 

mycotoxin results in intoxication, a condition referred to as 

mycotoxicosis (95). Mycotoxin accumulation causes acute or 

chronic toxicity and temporary or long-term adverse effects such 

as neurotoxicity, teratogenicity, cytotoxicity, mutation, 

hepatotoxicity and carcinogenicity. OTA is also nephrotoxic and 

its target organ is the kidney. Overdose of ochratoxin can cause 

kidney failure and death also (31). Mycotoxins (particularly 

aflatoxins, ochratoxin A and trichothecenes) disrupt cellular 

bioenergetics by inhibiting mitochondrial electron transport 

chain complexes I-IV, resulting in decreased ATP production and 

increased reactive oxygen species (ROS) generation, which 

collectively leads to cellular energy depletion and oxidative 

damage (96, 97). Aflatoxin B1 and ochratoxin A disrupt glucose 

homeostasis by inhibiting GLUT4 transporter expression and IRS-

1 phosphorylation in the insulin signalling cascade, resulting in 

impaired glucose uptake, insulin resistance and reduced 

glycogen synthesis in muscle and liver cells (98).  

 Mycotoxins prevent the replication of RNA and DNA by 

interacting with nucleic acids at the cellular level (99). Acute 

toxicity is reflected in rapid allergic changes and symptomatic 

effects, which can be diagnosed using drugs. Chronic toxicity is 

the result of prolonged consumption of toxins, leading to 

irreversible conditions such as cancer and severe fatality (8). In 

Gambia, children consuming AFT-contaminated food had a 

lower secretory immunoglobulin A(IgA) rate (43). Moreover, 

Contamination with AFT has also led to changes in lymphocyte 

subsets and distribution among Ghanaian adults, indicating that 

AFTs may weaken cellular immunity and reduce infection 

resistance (100). 

Techniques involving mycotoxin detection 

Early detection of mycotoxins is paramount for ensuring food 

safety and minimizing public health risks, with recent research 

demonstrating its vital role in preventing acute and chronic 

toxicity exposures, protecting vulnerable populations like 

children and the immunocompromised and identifying 

contamination sources before widespread distribution (19). Early 

detection strengthens food security by enabling screening of raw 

materials before processing, preventing contaminated products 

from entering the food chain and supporting sustainable 

 

Fig. 1. Impact of environmental factors on toxin contamination. 
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agriculture practices (101). Since the discovery of mycotoxins, a 

variety of approaches have been utilized for their analysis, with 

chromatographic methods, immunoassays and rapid strip 

screening tests being the predominant methods for mycotoxin 

detection and analysis (102, 103) (Table 3). 

Chromatographic methods 

In chromatographic analysis, separation occurs through physical 
interactions when the liquid mobile phase permeates through or 

moves along the solid stationary phase, causing a differential 

distribution of components between these phases (108, 109). 

Commonly utilized chromatography methods include high-

performance liquid chromatography (HPLC) integrated with diode 

array, fluorescence and UV detectors, thin-layer chromatography 

(TLC), gas chromatography-tandem mass spectrometry (GC-MS/

MS) and liquid chromatography-tandem mass spectrometry (LC-

MS/MS), (102, 103). Methods belonging to the chromatographic 

classification have been developed explicitly for the precise 

quantification of mycotoxins because they can effectively 

ascertain, recognize and measure various toxic substances (110). 

Thin - layer chromatography  

Thin-layer chromatography (TLC) has demonstrated its cost-

effectiveness and simplicity as a method suitable for the 

quantitative and qualitative detection and analysis of multiple 

mycotoxins. This is mainly due to its cost efficiency, simplicity 

and the presence of UV light fluorescent spots. However, it is 

essential to note that TLC exhibits lower sensitivity and accuracy 

levels, which present challenges in achieving precise 

quantification (102, 111). Conversely, liquid chromatography (LC) 

is known for its reliable separation capacity, particularly when 

combined with the sensitivity of tandem mass spectrometry. 

This combination has solidified LC as a powerful technique 

capable of detecting and quantifying mycotoxins in various 

circumstances (112, 113). The detection limit for aflatoxins using 

fluorescence detection after derivatization was reported to be 

0.1-0.5 ng per spot (114). The detection limit for fumonisins using 

fluorescence detection after derivatization was reported to be 

between 100-500 ng per spot (115). 

 

 

Fig. 2. Impacts of mycotoxin on human health from a toxicological perspective. 

Table 3. Comparison of analytical techniques: TLC, HPLC and LC-MS/MS in terms of cost, sensitivity, accuracy and applications 

Techniques Cost Sensitivity Accuracy Application References 

TLC 
Low (inexpensive 

setup and materials) 
Low to moderate 

sensitivity 
Moderate accuracy; 

qualitative/semi-quantitative 

Qualitative analysis, 
preliminary compound 

identification, purity checks 
(102) 

HPLC 
Moderate to High 
(equipment and 

solvents are costly) 

Higher sensitivity than 
TLC in the ng/mL range 

High accuracy for quantitative 
analysis, but can be impacted 

by matrix complexity. 

Quantitative analysis, 
pharmaceutical testing, 

complex mixture separation 
(104) 

LC-MS/MS 
Very High (expensive 
setup and operation 

costs) 

Very high sensitivity, 
capable of detecting low 

ng/mL or even pg/mL 
concentrations 

Extremely high accuracy, 
especially for complex 

mixtures due to MS specificity 

Used in biopharmaceuticals, 
proteomics, metabolomics, 

clinical diagnostics and drug 
development 

(105–107) 
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High-performance liquid chromatography (HPLC) 

The concurrent analysis of multiple mycotoxins is achieved using 

HPLC due to its high sensitivity and specificity as a 

chromatographic technique (19, 44). HPLC uses diverse 

discoverers and adsorbents, including fluorescent (FLD) and UV-

visible (UV), which are contingent upon the presence of 

chromophores employed for mycotoxin examination. 

Occasionally, mycotoxins are detectable directly in HPLC-FLD 

owing to inherent fluorescence (37). Detection limits are 

approximately 50 ng g-1 for FB1 and 100 ng/g for FB2 (115). 

Fluorescence detection (FLD) with post-column derivatization is 

widely used for detecting aflatoxins in food and feed due to its 

high sensitivity. For aflatoxins B1 (AFTB1) and B2 (AFTB2), the 

method can detect levels as low as 0.1-0.5 ng/g, while for G1 

(AFTG1) and G2 (AFTG2), detection limits range from 0.2-0.6 ng/g. 

(116). The limits of detection (LOD) for aflatoxins (AFTs), 

ochratoxin A (OTA) and zearalenone (ZEA) were 0.004-0.012 ng/g, 

0.05 ng/g and 0.5 ng/g respectively, while the limits of 

quantification (LOQ) were 0.015-0.05 ng/g, 0.2 ng/g and 2 ng/g, 

respectively (117). HPLC provides excellent resolution for 

complex mycotoxin mixtures, mainly using advanced columns 

with sub-2 µm particle sizes (118). Modern UHPLC systems 

achieve faster analysis times while maintaining high separation 

efficiency (44). The development of comprehensive HPLC 

methods capable of simultaneously detecting multiple 

mycotoxin classes, integrating novel stationary phases for 

improved separation and implementing gradient elution 

programs optimized for complex matrices has been 

demonstrated (119). Enhanced sample cleanup protocols using 

immunoaffinity columns and QuEChERS (101). Matrix-matched 

calibration strategies for accurate quantification (120). 

Liquid chromatography (LC) 

Using liquid chromatography combined with tandem mass 
spectrometry (LC-MS/MS) is currently the predominant method 

for detecting mycotoxin. This method is renowned for its 

exceptional selectivity and sensitivity, eliminating the necessity 

for derivatization or purification steps (121). The integration of LC 

with MS/MS (LC-MS/MS) presents a robust diagnostic technique 

known for its high sensitivity, selectivity and dependability (106-

107). LC-MS/MS-based multi-methods have become increasingly 

important as they facilitate the quick detection and sometimes 

quantification of various mycotoxins in diverse food categories 

and animal feeds (99). LC-MS/MS has extended its application in 

detecting several mycotoxins such as DON, T-2 toxin, AFTB1, B2, 

G1, G2, HT-2 toxin and OTA in grains of legume (122). LC-MS/MS 

can detect multiple toxins at deficient concentrations (ppb or 

lower). The tandem mass spectrometry (MS/MS) process allows 

for high specificity, reducing interference from other substances 

in complex matrices (106, 107). This instrumentation makes it 

suitable for automation, allowing labs to handle large sample 

volumes efficiently and with consistent results. This is 

particularly useful in regulatory and quality control settings (123). 

It can detect toxins, including those with different chemical 

structures (e.g., polar and non-polar compounds), providing 

flexibility in multi-toxin analysis (124). It is a faster analysis 

compared to traditional methods,allowing for detecting multiple 

toxins in one analytical run, saving time and resources (125). The 

aflatoxin detection limits were reported as 0.005-0.01 µg/kg for 

AFTB1 and AFTB2 and 0.008-0.015 µg/kg for AFTG1 and AFTG2 

(126). The detection limits for ochratoxins were reported as 0.01-

0.05 µg/kg for OTA and 0.02-0.06 µg/kg for OTB (127). LC-MS/MS 

enables simultaneous detection of multiple mycotoxin classes 

with high specificity and sensitivity, achieving detection limits of 

0.01-0.5 µg/kg across diverse mycotoxins, including masked and 

emerging forms (4). Tandem MS/MS analysis offers enhanced 

specificity and sensitivity (5). The simultaneous detection of 

regulated, emerging and masked mycotoxins, which can analyze 

over 50 mycotoxins in a single run and reduce sample 

preparation requirements compared to conventional methods, 

has been achieved (4). 

Immunochemical Methods 

Immunochemical methodology obviates the need for proficient 

and extensively trained personnel to address potential issues 

during the separation process, thereby reducing labour intensity 

and time consumption and establishing superiority over 

chromatographic and spectrophotometric methodologies. The 

most prevalent immunochemical techniques utilized in the 

examination of aflatoxins include enzyme-linked immunosorbent 

assay (ELISA), immunosensors, Radioimmunoassay (RIA) and 

immunoaffinity column assay (ICA) (8, 128). 

 The detection process depends on specific polyclonal and 

monoclonal antibodies designed for these toxins (75). Recently, 

biosensors, including piezoelectric, electrochemical, optical and 

variants, have been integrated to quantify mycotoxins in food 

items (129). Nanoparticle-based Biosensor and Surface Plasmon 

Resonance (SPR) techniques function by detecting refractive 

index changes, earning their classification as 'label-free' detection 

systems (4, 5). The SPR method allows for the real-time optical 

recognition of multiple analytes involving fluorescence 

polarization and near-infrared fluorescence sensors, displaying 

promising fluorescence detection and quantification capabilities. 

By utilizing this technique, a fluorescence-labelled PT derivative 

bound to antibodies exhibits increased emission of fluorescence 

polarization. This technique's detection range for PT in food 

products extends from 6 to 102 µg/L (130).  

 Biosensors, particularly PT ones, could prove valuable in 
real-time mycotoxin monitoring in the food sector. However, the 

short stability of the bio-recognition elements in effect with the 

long-term self-life of biosensors, insufficient selectivity, in 

particular with enzyme inhibition-based biosensors and the 

relatively high cost of antibodies in comparison with artificial 

recognition elements are various challenges faced in executing 

detection methods using biosensors. The realm of 

nanotechnology is evolving in mycotoxin detection. Nanoprobes 

that include nano-silver, graphene and magnetic nanoparticles 

are utilized to detect different mycotoxins (36). Another rapid 

technique, the electronic nose, relies on food aromas and odours. 

 Fungal contaminations in food leave a trail of volatile 

byproducts that can be detected using GC-MS, whose properties 

are correlated with fungal activities during infection (8). The 

fungal-contaminated samples are differentiated from healthy 

samples utilizing the integration of NIR hyper-spectral imaging 

and spectroscopy ranging from 700 to 2500 nm. Various 

alternative approaches have surfaced alongside conventional 

methods, including aggregation-induced emission, molecularly 

imprinted polymers, electronic noses and fluorescent 

polarization.  
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 The utilization of the electronic nose has been 

documented in the identification of various mycotoxins, such as 

FBs and Afs, DON in maize and wheat and wheat bran, respectively 

(131, 132). Detection of AFTB1 in broad bean sauce peanut oil and 

OTA in coffee and wine by developing an Aggregation-Induced 

Emission (AIE) dye-based sensor  (133, 134). Chronic exposure to 

sub-ppb levels of aflatoxins can lead to liver damage and 

immunosuppression (70). Improved detection methods help 

enforce strict regulatory limits (134). Enhanced sensitivity was 

reported using quantum dot-labeled antibodies ( 4). The strict 

regulatory limits for AFTM1 in milk, set at 0.05 ppb by the EU and 

0.5 ppb by the FDA, preclude the use of sample dilution or reduced 

injection volumes in analysis, as these techniques can raise 

detection limits above these critical threshold values (135, 136). A 

novel immunoassay system utilizing microfluidic and protein 

microarray technologies was developed for rapid mycotoxin 

screening, demonstrating high sensitivity with detection limits 

between 0.03 and 1.24 ng/mL (137). 

Regulatory limits 

Implementing preventive measures and regulations is crucial to 

shield consumers from exposure to mycotoxins. The primary 

goal is establishing upper limits for mycotoxins in food products 

to promote fair trade and protect public health. Regulatory 

thresholds have been set by more than a hundred nations across 

the globe (13). It is described below (Table 4). 

Management of mycotoxins 

The global spice industry, particularly in tropical regions, faces a 
prevalent issue of mycotoxin contamination. It is imperative to 

enforce stringent pre and postharvest measures to mitigate the 

escalation of mycotoxin levels (139, 140). Furthermore, the 

adoption of practices such as adherence to good manufacturing 

practices (GMP), good storage practices (GSP) and good 

agricultural practices (GAP) can significantly contribute to the 

reduction of mycotoxin production (141) (Fig. 3). 

 

Toxin Spices 
Maximum level (µg/kg ) 

B Sum of B1, B2, G1 and G2 

Aflatoxin 

 Dried spices include fruits from Capsicum spp. (whether whole or ground, such as 
chillies, cayenne, paprika, chilli powder), Piper spp. (comprising white and black 

pepper), Myristicafragrans (commonly known as nutmeg) and Curcuma longa (known 
as turmeric). Additionally, mixed dried spices that contain any combination of the 

spices as mentioned above are also considered. 

5,0 10,0 

Ginger (Zingiber officinale) (dried) 5,0 10,0 5,0 10,0 

Ochratoxin 

  
Dried spices (including whole or ground chillies, chilli powder, cayenne, or paprika) 

other than capsicum species 15 

  
Capsicum spp. (dried fruits thereof, whole or ground, including chillies, chilli powder, 

cayenne or paprika) 20 

Table 4. Maximum levels of aflatoxins in spices under EU legislation reported (138) 

Fig. 3. Methods for preventing mycotoxin contamination in spices. 
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Preharvest 

Crop rotation strategies in spices, such as rotating pepper with 

ginger and turmeric with pulses, help manage pests, improve soil 

health and reduce disease incidence (142, 143) demonstrate the 

effectiveness of these practices in spice cultivation. When applied 

appropriately, organic soil amendments such as compost, green 

manure, biochar and animal manure enhance soil fertility and 

structure (4). Microorganisms like lactic acid bacteria, Bacillus 

licheniformis, B. subtilis and Saccharomyces cerevisiae have 

effectively detoxified mycotoxin in pre-and postharvest stages 

(144). The extract from neem leaves has been reported to reduce 

AFT contamination in cereals during storage (145). Amid growing 

concerns over synthetic preservatives, there is increasing interest 

in natural food protection methods to enhance food quality, 

extend shelf life and safeguard against biodegradation by 

mycotoxigenic microbes (146). Integrated management 

combines cultural practices, biological control and soil 

management to enhance agricultural sustainability (147). 

 The choice of genetically modified seeds or fungal-resistant 

crop varieties with antifungal attributes presents favourable 

strategies. Moreover, pesticides, fertilizers and appropriate irrigation 

practices can be advantageous.  

 Utilizing native, suitable toxigenic A. flavus, the biological 

management of aflatoxins has recently become a viable method for 

reducing crop contamination (148). Application of pre-harvest 

fungicide can reduce the production of mycotoxins by specific A. 

flavus strain in Capsicum powder, growth of fungal strains that 

produce aflatoxin, identified and isolated from chilli, paprika and 

smoked paprika significantly inhibited in vitro when grown in 3% 

extract agar supplemented with 80% mancozeb and 25% 

tebuconazole, administrated at a concentration of 3.5 and 0.75g/L 

respectively, regardless of strain or environmental conditions (149).  

 An ideal fungicide should effectively concurrently hinder 

both mould growth and AFT production. Chilli was evaluated with 

bioagents, plant extracts and fungicides for contamination with 

aflatoxin in in-vitro and in vivo conditions. The development of 

mould was significantly reduced by 0.3% mancozeb (91.1%), 

followed by captan (85.2%) and carbendazim (73%). Suppression 

of (100%) A. flavus was recorded with the application of 

nimbicidin, Pongamia oil and neem seed kernel extract (NSKE) at a 

concentration of 5%. A. flavus was inhibited by an indigenous 

isolate of Pseudomonas fluorescens with a suppression rate of 

74.9% exceeding Trichoderma harzianum with a recorded 

inhibition rate of 70.4% in vitro. The supplements performed 

exceptionally in vitro were selected for real-time challenges against 

A. flavus in the agricultural field. Among these, fruits treated with 

captan displayed the lowest infection rate by A. flavus (1.6%), 

followed by those treated with NSKE (2.2%), P. fluorescens (2.0%) 

and nimbicidin (7.8%), in comparison to the control (38.3%). In 

terms of field assessment, the lowest incidence was observed in 

the chilli plot treated with NSKE spray (1.6%), which was similar to 

T. harzianum (2.6%), captan (2.2%) and P. fluorescens (2.4%) 

treatments, contrasting with the control (7.4%). It is advisable to 

utilize mancozeb (0.3%), NSKE (5%) or P. fluorescens (1 × 108 CFU/

mL) through preharvest spraying on chilli plants ten days before 

harvest to effectively manage aflatoxins (AFTs) at the agricultural 

level (150).  

 

Harvest and Postharvest 

Efficient management practices during harvesting and 

postharvest stages can mitigate the escalating levels of 

mycotoxin in spices. It is essential to prevent physical harm to the 

bark of cinnamon, seeds of cumin, pods of peppers, roots of 

ginger and turmeric and leaves of bay plants caused by insect 

infestations or harvesting tools. Fruits damaged by physical 

means or fungal contamination must be eliminated. Appropriate 

hygienic washing techniques to eliminate dirt or soil from the 

plant surfaces. Extreme hygiene must be employed when 

separating dirt or soil from plant surfaces. After the cleaning 

process is completed, promptly initiating the drying phase is 

imperative. Since moisture provides a favourable environment 

for mould growth, it is essential to dry spices quickly to prevent 

the proliferation of mould. The moisture content should be 

decreased to approximately 10%, with the water activity level 

below 0.7. The effects of drying red peppers on concrete and soil 

surfaces were explored in a study. The red peppers were halved 

and dried outdoors, with one group placed on soil and the other 

on concrete. After drying, the pepper halves were left to incubate 

for a week. Interestingly, the peppers dried on concrete surfaces 

did not exhibit a significant production of aflatoxins; however, 6 

samples out of 10 produced high levels of aflatoxin 

contamination when dried on soil surfaces. 

 The predominant fungi present in the soil were found to 

be A. flavus and A. parasiticus, indicating that the contact of chilli 

with soil during soil drying of chilli might be the significant factor 

contributing to the contamination of aflatoxin in ground-dried 

red peppers. It is crucial to ensure appropriate storage and 

transportation conditions to uphold the quality of spices. 

Transport vehicles and storage facilities should be maintained in 

excellent, dry conditions and protected from insects. Due to their 

hygroscopic nature, spices can absorb moisture from the 

surroundings, creating an environment conducive to mould 

growth and mycotoxin production, especially in warm and 

humid climates (151). 

 Similarly, aflatoxin levels and mould growth on hot 

peppers during a 5-month storage period at 20 °C, 25 °C and 30  
0C. The hot peppers were stored in low-density polyethene bags 

and jute bags. The findings revealed that storing the peppers at 

higher temperatures of 25 °C and 30 °C resulted in a 61% increase 

in AFT concentrations compared to those stored at 20 °C. 

However, there was no report of AFT contamination during the 

initial 90-100 days of the storage period in polyethene bags. In 

contrast, the contamination was reported in hot peppers when 

stored in jute bags during the same period. The results showed 

the advantage of storing hot pepper in polyethene bags 

compared to jute bags. The prolonged storage of hot pepper 

combined with a gradual increase in temperature and aeration 

permeability in jute bags over polyethene bags contributed to 

the rise in fungal growth and aflatoxin contamination (152). Cold 

plasma is a novel non-thermal technology that utilizes reactive 

species (e.g., O, O3, OH, NO, NO2) to degrade mycotoxins, 

converting them into less toxic compounds while preserving 

food quality (153). An alternative to traditional open-air Sun 

drying is solar driers, which require lower investments compared 

to advanced fossil fuel drying techniques. This is particularly 

beneficial for most developing countries in climatic zones with 

significantly higher insolation than the global average of 3.82 
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kWh/m² per day (154). Preserving food materials like meat, 

vegetables, fruits, spices and herbs through open-air sun drying 

is considered one of humankind's earliest systematic 

technological activities (155). A survey conducted in several 

countries in the Asia-Pacific region identified the most promising 

and popular solar driers as (i) natural convection cabinet type, (ii) 

forced convection indirect type and (iii) greenhouse type (156).  

  

Conclusions and Future Perspectives 

Current challenges  

Current detection methods face significant constraints, including 

high costs, time-intensive processes, limited field sensitivity, 

challenges in multi-mycotoxin detection, complex sample 

preparation requirements and dependence on specialized 

expertise and laboratory facilities. The management of mycotoxins 

faces critical challenges due to climate change-induced 

proliferation, emerging fungal resistance to treatments and 

inadequate storage infrastructure in developing nations, creating 

significant obstacles to effective control and prevention. The 

substantial financial burden on small-scale farmers and the 

complexity of meeting diverse regulatory requirements across 

different geographical regions further compound these challenges, 

making comprehensive mycotoxin management increasingly 

complex. 

Emerging technologies 

Modern mycotoxin detection is evolving through innovative 

technologies, including highly specific biosensors with aptamers 

and antibodies, accessible smartphone-based platforms, 

sensitive, rapid test kits, machine learning-driven automated 

analysis systems and portable spectroscopic devices, all aimed at 

improving detection accuracy and accessibility. 

 Microbial biocontrol represents a sustainable approach to 

mycotoxin management through the strategic use of non-

toxigenic fungal strains, antagonistic Bacillus and Pseudomonas 

species, advanced formulations for enhanced efficacy, integrated 

control methods for synergistic effects and field-validated 

biocontrol agents, as supported by extensive research.  

 Gene-editing technologies, particularly CRISPR-Cas9, are 
transforming mycotoxin resistance in crops through targeted 

applications in developing resistant varieties, modifying mycotoxin 

biosynthesis pathways, enhancing plant defence mechanisms, 

creating fungal-resistant crops and ensuring safety through rigorous 

assessments, as demonstrated by recent research advances.  

Future directions 

By combining IoT-based environmental monitoring systems, 

modified atmosphere packaging, real-time sensor technologies 

for moisture and temperature control, blockchain-enabled supply 

chain traceability and automated intelligent warehousing 

systems, modern storage solutions are revolutionizing mycotoxin 

management and creating a more efficient and reliable storage 

ecosystem, bolstered by recent research advances. Producers, 

processors, regulatory agencies, the scientific community and 

consumers are responsible for maintaining a safe and high-

quality spice supply. Contaminants like mycotoxins are inevitable 

and impossible to eradicate. However, effective monitoring 

programs and regulatory limits can significantly reduce the levels 

of mycotoxins in consumer products. 
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