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Abstract 

Groundnut, predominantly cultivated as a rainfed crop, is highly susceptible 

to significant price volatility. This study aimed to investigate and enhance 

the performance of traditional models for forecasting the realized volatility 

of groundnut price returns across five Indian states (Tamil Nadu, Telangana, 

Karnataka, Maharashtra, and Gujarat) by evaluating traditional models and 

neural network-based frameworks. Using groundnut price returns data 

spanning fourteen years and six months (01 January 2010 to 30 June 2024), 

weekly realized volatility was computed. The predictive behaviour of 

Heterogeneous Autoregression (HAR)-based neural network frameworks 

was evaluated. Neural networks were assessed using time series cross-

validation, and model metrics were employed to generate Model 

Confidence Sets (MCS). These sets were ranked based on model inclusion. 

The Extended Cochran–Armitage test was applied to identify and compare 

the best-performing models. Subsequently, model forecasts were tested 

and compared using the two-sided Diebold-Mariano test, and Model 

Confidence Sets were generated to evaluate predictive performance. For 

this unconventional weekly realized volatility forecast, the HAR (1,6,12) 

framework emerged as the most effective. Notably, the implementation of 

Convolutional Neural Network (CNNs) combined with RNNs, such as Conv1D

-GRU and Conv1D-LSTM, demonstrated superior and consistent predictive 

performance across all states. Among standalone neural networks, GRU 

performed on par with CNN-based RNNs. These findings highlight the 

potential of CNN and GRU models as effective and accurate methods for 

forecasting agricultural price volatility. 

 

Keywords 

convolutional neural network; Conv1D-GRU; Conv1D-LSTM; groundnut; 
realized volatility; heterogeneous autoregression; recurrent neural network;  

 

Introduction 

Accurately forecasting fluctuations in agricultural prices is a critical issue 

within the global food system. Understanding price volatility is essential for 

anticipating price movements in agricultural commodities. Addressing price 

volatility is crucial for safeguarding farmers ‘livelihoods and ensuring 

economic stability. Fluctuations in agricultural markets can significantly 

impact farmers’ income, leaving them vulnerable to financial instability and 

food insecurity (1,2). Price volatility disrupts farmers’ investment and 
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production decisions, impending their ability to cover 

basic costs and plan for future seasons (3). Mitigating this 

volatility through effective forecasting and market 

interventions can enhance predictability and resilience, 

thereby fostering sustainable agricultural practices and 

ensuring rural economic stability (4). Furthermore, 

stabilizing prices is vital for food security, as prices 

volatility often leads to increased consumer costs, 

affecting the affordability of essential goods. 

Recent advancements have demonstrated that a reliable 

and consistent benchmark econometric model for 

addressing this issue is the Heterogeneous Autoregressive 

Realized Volatility (HAR-RV) model. This study utilizes low-

frequency data, specifically daily groundnut price, and 

explores various logical combinations of time horizons to 

enhance interpretability and forecasting performance. 

Lyócsa et al. (5), attempted to use low-frequency data for 

realized volatility forecasting and concluded that such 

data could be as effective as high-frequency data when the 

latter is not available or difficult to obtain. While studies 

on realized volatility forecasting are relatively limited, 

research on agricultural commodities is even scarcer. For 

instance, Liu employed LSTM models, while Bucci and 

Christensen et al. utilized Feed forward neural networks 

(FNNs) and LSTM in their respective studies on realized 

volatility (6–8). These studies proved that neural networks 

outperform traditional models. However, it is important to 

note that all existing literature predominately focuses on 

FNNs and LSTM. Notable works by Bucci, Sahiner et al., 

and Diane and Brijlal have successfully applied Artificial 

Neural Networks to forecast realized volatility (9–11).  

Despite these advancements, there remains a limited body 

of research that integrates the HAR-RV framework with 

neural networks to predict the realized volatility of 

commodities. This gap is even more pronounced in studies 

focused on the agricultural sector. 

Therefore, our primary objectives of this investigation are 

to: 

(a) assess whether the HAR-RV framework is effective for 

volatility studies using low-frequency data, such as daily 

prices of agricultural crops, and  

(b) explore alternative neural network architectures, 

beyond ANN and LSTM, that can be integrated with the 

HAR-RV framework to improve predictive accuracy. 

 

Materials and Methods 

This study examines price returns of groundnut, a crop 

known for its inherent volatility, in India. Groundnut, often 

referred to as the ‘King of Oil seeds’ in India, holds 

significant importance in the country’s agricultural 

economy. The study aims to enhance forecasting models 

for agricultural price volatility by leveraging Artificial 

Neural Networks, Convolutional Neural Networks, and 

Recurrent Neural Networks.  

This research focuses on forecasting the realized volatility 

of groundnut price returns across five states of India 

(Gujarat, Maharashtra, Karnataka, Telangana, and Tamil 

Nadu). These states were selected based on the triennial 

cultivation area and production levels, which are 

predominantly concentrated in the southern region of the 

country. 

Data collection 

The dataset consists of daily modal prices aggregated from 

the Agricultural Marketing Information Network 

(AGMARKNET, https://agmarknet.gov.in/) across five key 

states in India — Gujarat, Maharashtra, Karnataka, 

Telangana, and Tamil Nadu — over a span of 14 years and 

6 months (01 January 2010 to 30 June 2024). These states 

were specifically chosen due to their significant 

contributions to groundnut production and the availability 

of comprehensive data.  

Gujarat leads in both cultivation area, accounting for 35% 
of the total area, and production, contributing 43% of the 

total groundnut yield in the country. Tamil Nadu 

contributes to around 7% of the total area and 10% of total 

production; Karnataka contributes 11% of the cultivated 

area and 6% of production. Maharashtra and Telangana 

cover 5% and 2% of the total cultivated area, respectively, 

and account for 4% and 3% of total production, 

respectively, as reported by the Directorate of Economics 

and Statistics, Ministry of Agricultural and Farmers 

Welfare, Government of India.  

To address the issue of missing data entries, the median 

imputation technique was employed, ensuring the 

consistency and reliability of the dataset for analysis. For 

analysing price volatility, the rate of returns at time  was 

calculated using the formula:  

 

 

Here, and represents the groundnut price on 

the ith day of the tth week. This approach allowed for the 

computation of weekly realized volatility based on the 

collected modal price data, providing a robust foundation 

for further predictive modelling and analysis. 

Empirical Analysis and Volatility Measurement 

The groundnut median prices in Maharashtra exhibited the 
highest variability, followed closely by Tamil Nadu. In 

contrast, the median prices in Gujarat, Karnataka, and 

Telangana demonstrated a significant degree of stability. A 

pronounced disparity in the range of median prices was 

observed in Maharashtra and Tamil Nadu compared to the 

other states, which can be attributed to substantial price 

volatility in these regions.  

Analysing of groundnut pricing trends and returns across 

the five states revealed a consistent upward trend in prices 

over time in all states. However, price fluctuations 

displayed a uniform pattern across the states, except for 

Maharashtra. Between 2015 and 2018, groundnut prices in 

Maharashtra followed an upward trajectory and then 

stabilized, with minimal volatility, as reflected in the price 

returns. 

In Tamil Nadu and Karnataka, groundnut price returns 

showed a substantial positive spike, followed by 
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Telangana, which exhibited more frequent but less 

pronounced spikes. The price returns in Maharashtra and 

Gujarat displayed notable peaks in both directions, with 

these fluctuations being more pronounced in Maharashtra. 

Realized Volatility 

Traditionally, volatility studies and forecasts are 

conducted using the Generalized Autoregressive 

Conditional Heteroscedasticity (GARCH) approach, which 

includes Univariate GARCH models and Multivariate 

GARCH models such as VECH, Baba-Engel-Kraft-Kroner 

(BEKK), Constant Correlation models (CCC), and Dynamic 

Correlation (DCC) models (12). But, in this study, a more 

relevant measure of observable volatility, realized 

volatility is used to measure the volatility. The weekly 

realized volatility of groundnut price returns at time t was 

calculated using the formula: 

 

 

 

 

where  Nt = 7 is the 

length of the period  t.  

The realized volatility of groundnut price returns and their 
kernel density is shown in Fig. 1. The distribution patterns 

of realized volatility in Karnataka, Telangana, and Tamil 

Nadu are notably similar. Among these, Karnataka 

exhibited some notable high points in volatility compared 

to the others. Maharashtra followed these states, 

demonstrating relatively lower volatility. As evident from 

the returns, groundnut price volatility in Maharashtra 

remained extremely low between 2015 to 2018.  

In contrast, Gujarat exhibited the least price volatility and 

has maintained a consistent level of stability throughout 

the period. 

Heterogeneous Autoregression 

The Heterogeneous Autoregression (HAR) model is a 

widely used tool for forecasting realized price volatility in 

financial time series data. It is particularly effective in 

recognizing how volatility is influenced by varying time 

frames. The model is built on the premise that market 

participants operate on diverse time scales, which 

collectively shape the dynamics of market volatility. 

The HAR model leverages historical volatility data to 

predict future volatility levels. It operates under the 

hypothesis that the market consists of traders with varying 

investment horizons and distinct information sets, 

contributing to a complex and layered pattern of volatility 

over time. 

The predictive power of the HAR model and its 
adaptations has been extensively studied. For instance, 

Pappas et al. developed a novel volatility forecasting 

model that integrates market realized variances and semi 

variances into the HAR framework, achieving notable 

improvements in forecasting accuracy (13). Similarly, Baek 

& Park   introduced the sparse vector HAR (VHAR) model, 

which captures the dynamics of multinational stock 

volatility while improving forecasting performance (14). 

Clements and Preve studied explored the effects of various 

estimators, transformations, and forecasting schemes on 

the HAR model, concluding that simpler solutions often 

outperform standard HAR forecasts (15). Zhu et al. 

extended HAR-type models for the Shanghai Stock 

Exchange Composite by explicitly accounting for time-

varying coefficients, and they investigated the HAR 

model's predictive accuracy using various estimators, 

transformations, and forecasting schemes (16). They also 

examined the impact of replacing high-frequency data 

with low-frequency data in the HAR model.  

In this study, we try to employ the Heterogeneous 

Autoregression (HAR) model given in Eqn. (2) and Eqn. (3) 

as the foundational framework. 

 

 

where,  

 

 

This model differs from the conventional HAR (1,5,22) 

model typically employed with high-frequency data. 

Special emphasis was placed on incorporating the 

influence of autoregressive terms to effectively capture 

temporal effects and improve the precision of realized 

volatility forecasts. The linear partial correlation 

coefficients of the features revealed a consistent pattern 

across all the states analysed. After rigorous trials, the HAR 

(1,6,12) model was identified as the most suitable 

framework for modelling weekly realized volatility, 

demonstrating superior performance in capturing the 

underlying dynamics. 

Neural Network Models 

Architecture: The proposed Neural Network Architectures 

are presented in Fig. 2. The tested feed forward networks 

start with an input layer of shape structured as batch size * 

time steps * no.of features. 

Network Depth and Width: The depth and breadth of the 

network, activation functions, optimizers, and number of 

epochs were selected methodically based on the 

outcomes of hyper-parameter tuning conducted with 

KerasTuner. The models were designed to be sufficiently 

complex, with an extensive number of nodes, to 

approximate any continuous function, as agreed upon by 

Cybenkot's Universal Approximation theorem (17).  

During the tuning process, single, double, and triple layers 
were subjected to testing. ANN performed optimally with a 

single hidden layer, while LSTM and GRU required two 

layers each. CNN achieved effective results with a single 

Conv1D layer. The Conv1D-LSTM and Conv1D-GRU models 

included a single Conv1D layer followed by their respective 

RNN layer. The number of neurons per layer was tested 

from the set             
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Initialization and Activation: The Scaled Exponential Linear 

Unit (SELU) activation function outperformed other non-

linear activation functions, yielding superior predictive 

results. The LeCun-Normal kernel initializer was found to 

complement SELU effectively, enhancing predictive 

accuracy while mitigating vanishing and exploding 

gradient issues. This configuration was consistently 

applied across the networks. 

Fig. 1. Realized volatility of groundnut price returns. 

Fig. 2. Model Architectures: (a) Artificial Neural Network (ANN); (b) Long-Short Term Memory (LSTM); (c) Gated Recurrent Unit (GRU); (d) Convolutional Neural 
Network(Conv1D); (e) Conv1D-LSTM; (f) Conv1D-GRU. 

https://plantsciencetoday.online
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 For LSTM and GRU layers, incorporating sigmoid and tanh 

functions as recurrent activation functions significantly 

improved prediction accuracy. Initially, the ReLU 

activation functions in conjunction with HeNormal 

initialization was employed to restrict predictions to 

positive values. Batch Normalization layers were 

subsequently added to enhance the models' training 

efficiency and generalization capacity. 

Despite the initial success of these methods, SELU 

emerged as the superior choice for the dataset across all 

states, even though it occasionally produced predictions 

in the negative range. Unlike functions that feature zero 

gradients for all inputs over specific ranges, SELU ensures 

active neuron participation throughout training, allowing 

continuous learning. 

Optimization: Three optimizers, Adaptive Moment 

Estimation (Adam), Stochastic Gradient Descent (SGD), 

and Root Mean Square Propagation (RMSprop) were 

tested. Among these SGD was the one that performed the 

best and was used to optimize the networks’ weights, 

despite its slow convergence rate. Various learning rate 

schedules were tested before finalizing the optimizer, with 

SGD proving efficient in minimizing loss. 

Model Training: Based on the nature of the time series 

data from different states, the data was partitioned into 

training, validation, and testing sets. The training set was 

used to train the model, while the validation set was used 

to monitor the training process to prevent overfitting 

issues.  Early stopping callback were used as a 

precautionary measure against overfitting. 

The model was trained by optimizing Mean Squared Error 
(MSE) loss function, since it seemed to have a better 

significance in moderating the model. In order to assess 

the accuracy of the predictions the following metrics were 

used: Mean Absolute Error, Mean Squared Error, Root 

Mean Squared Error and Pearson R2 . 

Model Performance Evaluation 

Cross Validation: In order to verify the predictive 

performance of the models, k-fold cross validation was 

performed. Each time series dataset was split into three 

training sets and corresponding testing sets, with a two-

period gap between them to prevent information leakage 

between the sets. This was repeated five times to avoid 

any bias in the analysis.  

For each of the six models across the five-time series, Mean 

Absolute Error and R-squared values were computed for 

the 5x3 validation sets. The MAE and R2 values were 

averaged across the splits in each of the five runs. Model 

confidence sets were then generated, ranking the models 

based on their order of inclusion in the set.  

To assess the association between the observed ranks and 

the models, the Extended Cochran–Armitage test was 

performed. This test builds on the traditional Cochran–

Armitage trend test, which evaluates the relationship 

between an ordinal predictor and a binary outcome. The 

extended version accommodates a categorical dependent 

variable with more than two levels, making it suitable for 

this analysis. 

Subsequently, pairwise ordinal independence tests were 

conducted to differentiate high-performing models from 

lower-performing ones based on their ranks. This step 

provided a clearer distinction in model performance, 

identifying those with superior predictive capabilities. 

Model Testing: After cross validation, the models were 

tested to confirm their predictive accuracy as indicated by 

the validation results. The test set was employed for this 

evaluation. To compare the predictive performance of 

different neural networks, a two-sided Diebold-Mariano 

(DM) test was applied. 

The DM test statistically compares the forecasting 

accuracy of two competing models. It calculates the 

difference in loss values (e.g., prediction errors) for each 

time period and tests whether the mean of these 

differences is statistically different from zero. Under the 

null hypothesis, the mean difference in forecast errors 

equals zero, indicating that neither model outperforms the 

other significantly. 

This approach ensures robust evaluation of model 

performance, highlighting the models with superior 

predictive accuracy in both validation and testing phases. 

 

Results and Discussion 

The HAR-RV framework for predicting realized price 

volatility is usually used where high frequency data are 

available, i.e., intra-day data points collected over months 

or years, is available. In such cases, daily, weekly, and 

monthly realized volatilities are commonly used as 

features. However, in this study, we used daily price 

returns of groundnut, with only one data point per day. As 

a result, weekly realized volatility was utilized as the 

measure of volatility, and feasible features for the 

prediction process were tested accordingly. To identify 

suitable features, linear partial correlation coefficients 

were analyzed for weekly realized volatility across 

different time periods t ϵ 1,2,3,…,24. It was observed that 

no features corresponding to time periods greater than 

t=12, exhibited significant correlation with weekly realized 

volatility. Therefore, the weekly realized volatility for time 

periods t = 1,2,4,6,12, which demonstrated significant 

correlations, were selected as features for the neural 

network models. 

Following the initial configuration, the models were 

trained, and cross validated. From Table 1, it is evident 

that the Conv1D-LSTM model consistently ranked first or 

second, followed by the GRU and Conv1D-GRU models. 

The Linear Regression model consistently ranked last 

throughout the cross-validation process, while the LSTM 

model exhibited the poorest performance in most 

instances. 

Upon generating the Model Confidence Set, an Extended 

Cochran–Armitage test was performed on the tabulated 

ranks to determine whether there was an association 

between the models and their cross-validation rankings. 

The hypotheses were formulated as follows: 
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H0:There is no association between the models and their rank. 

H1:There is an association between the models and their ranks. 

Test statistic:  χ2- 289.01; df=5;α=0.05; p-value<2.2e-16 

This proves that there is strong evidence to reject the null 

hypothesis(H0).  

A pairwise comparison for ordinal independence was 

subsequently performed. The results indicated no 

significant performance differences between theConv1D-

LSTM and Conv1D-GRU (p - value = 0.051). Similarly, the 

comparison showed no significant difference between the 

performance of GRU and Conv1D-LSTM (p - value = 0.331) 

and the performance of GRU and Conv1D-GRU (p - value = 

0.194). All other pairwise comparisons showed strong 

evidence to reject the null hypothesis, confirming 

significant differences in model performance. 

From Table 1 and the test results, the following can be 

observed:  

(1) Linear Regression model was outperformed by all 

neural networks across all instances. 

(2) Conv1D – LSTM and Conv1D – GRU models consistently 

demonstrated the best performances across all states. 

(3) Among standalone networks like ANN, LSTM and GRU, 

GRU recorded consistent performance than other models 

and was comparable, in some cases, to the CNN-based 

LSTM and GRU models.  

These findings suggest that a simple recurrent neural 

network such as GRU can be a reliable choice for 

forecasting the realized volatility of groundnut prices. 

Moreover, integrating CNN with RNN models significantly 

enhanced the predictive performance, particularly for 

LSTM, due to the superior feature extraction capabilities of 

the Conv1D layer. Although Conv1D-GRU exhibited 

incremental improvements, further research is required to 

fully understand its potential. 

Interestingly, all models performed well in Gujarat, the 

state with the lowest price volatility, highlighting that 

neural networks can be effective under low-volatility 

conditions. Despite the lower loss values in Gujarat, there 

appeared to be a trade-off between goodness-of-fit and 

loss. In contrast, R² values in Maharashtra, a state with 

high volatility, were notably higher than those in Gujarat. 

Models performed better in states with high price volatility 

(Tamil Nadu, Maharashtra, and Karnataka) than in states 

with low volatility. 

The models were then tested on unseen data, with the 

results tabulated in Table 2. The forecasts of the models 

were then compared using the two-sided Diebold Mariano 

test, which calculates a t-statistic for each comparison. A 

heat map illustrates the significance of the test statistic 

(Fig. 3). The null hypothesis (H0) posits that the forecasts of 

the models being compared do not differ. A lower  p - value 

rejects the null hypothesis. The testing results aligned with 

cross-validation outcomes, with more pronounced 

reflections of model behaviour. All neural networks 

outperformed the linear HAR-RV model in terms of lower 

errors. However, in Gujarat, the differences between HAR-

RV and other neural networks were not statistically 

significant, likely due to the state’s consistently low-price 

volatility. GRU produced promising forecasts for realized 

volatility, while Conv1D-GRU and Conv1D-LSTM performed 

comparably across all states. Notably, LSTM failed to 

outperform ANN or CNN, consistent with cross-validation 

findings. Standalone ANN and CNN models struggled to 

generalize time-dependent patterns as effectively as RNNs, 

but CNN integration with RNNs demonstrated significant 

improvements, warranting further investigation. 

This study exclusively examined groundnut price volatility 

across five major producing states using realized volatility 

over various time periods, without incorporating 

potentially influential exogenous factors such as weather, 

policy changes, or global market trends. While the findings 

offer an initial understanding of volatility structures and 

may generalize to other regions, future research could 

benefit from incorporating a broader range of exogenous 

variables and extending the analysis to other crops. 

 

Conclusion 

Modelling groundnut price returns volatility using the HAR-

RV framework based on daily price data is a substantial 

advancement in the field of agriculture. Our study 

demonstrates that the HAR (1,6,12) framework is a reliable 

approach for modelling and predicting realized volatility in 

groundnut prices. This framework implies that weekly 

realized volatility is influenced by the volatility of the 

preceding week, the previous month, and the past three 

months. 

Ranks 

Modals 
1 2 3 4 5 6 7 

LRa 0 0 0 0 0 0 75 

ANN 0 12 0 15 36 12 0 

LSTM 0 0 0 1 12 62 0 

GRU 25 14 31 5 0 0 0 

Conv1D 0 2 14 42 16 1 0 

Conv1D-LSTM 28 32 6 2 7 0 0 

Conv1D-GRU 22 15 24 10 4 0 0 

 
Table 1. Ranks obtained through Model Confidence Set generation during the cross validation process  

aLinear Regression model was omitted for further analysis as the model was outperformed by all other models invariably. 
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To enhance these models, the incorporation of neural 

networks proved to be highly effective. Among the trained 

and tested models—ANN, LSTM, GRU, CNN, CNN-LSTM, 

and CNN-GRU—the integration of LSTM and GRU with CNN 

emerged as particularly powerful for predicting weekly 

realized volatility, showing promising potential for further 

exploration. The simple GRU model also displayed 

competitive performance, largely due to its 

straightforward architecture compared to LSTM. 

Neural network models demonstrated superior fit in high-

volatility price scenarios. Conversely, in low-volatility 

conditions, the trade-off between goodness-of-fit and 

model loss was minimal. 

This study focused on analysing the price volatility of 

groundnut crops from five major producing states. While 

these findings provide insights that may generalize to 

other regions, the study exclusively relied on realized 

volatility and did not account for potentially influential 

exogenous factors such as weather, policy changes, or 

global market trends. 

Future research could expand on these results by applying 

the models to additional agricultural commodities across 

diverse locations and incorporating significant exogenous 

State Model MAE MSE RMSE 
 

Tamil Nadu 

LR 7.192 50.332 7.095 0.416 

ANN 4.802 28.358 5.325 0.489 

LSTM 5.785 36.164 6.014 0.400 

GRU 2.898 15.284 3.909 0.850 

Conv1D 967 27.601 5.254 0.501 

Conv1D-LSTM 2.708 14.158 3.763 0.861 

Conv1D-GRU 2.599 13.944 3.734 0.863 

Telangana 

LR 5.875 46.689 6.833 0.423 

ANN 4.770 33.929 5.825 0.448 

LSTM 7.020 52.576 7.251 0.317 

GRU 2.693 18.880 4.345 0.781 

Conv1D 3.835 26.919 5.188 0.568 

Conv1D-LSTM 2.730 18.618 4.315 0.784 

Conv1D-GRU 2.759 19.372 4.401 0.775 

Karnataka 

LR 6.911 53.274 7.299 0.401 

ANN 4.589 25.556 5.055 0.486 

LSTM 6.654 42.120 6.490 0.334 

GRU 2.462 13.387 3.659 0.871 

Conv1D 4.401 24.588 4.959 0.475 

Conv1D-LSTM 2.338 12.789 3.576 0.877 

Conv1D-GRU 2.440 12.716 3.566 0.877 

Maharashtra 

LR 7.420 70.889 8.420 0.375 

ANN 4.347 41.432 6.437 0.631 

LSTM 5.680 53.290 7.300 0.521 

GRU 3.234 28.817 5.368 0.836 

Conv1D 5.291 48.630 6.974 0.515 

Conv1D-LSTM 3.318 29.887 5.467 0.830 

Conv1D-GRU 3.292 29.608 5.441 0.832 

Gujarat 

LR 1.324 4.915 2.217 0.781 

ANN 1.174 4.012 2.003 0.821 

LSTM 1.348 5.034 2.244 0.776 

GRU 1.188 3.644 1.909 0.838 

Conv1D 1.241 4.026 2.006 0.821 

Conv1D-LSTM 1.237 4.293 2.072 0.809 

Conv1D-GRU 1.190 4.104 2.026 0.817 

Table 2. Out - of - bag sample validation of neural network models for different states 
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variables. This would enable the development of more 

robust and effective non-linear modelling tools for 

agricultural price volatility. 

 

Limitations 

This study exclusively focused on groundnut crop prices 
from five major producing states. The volatility structures 

in lesser-producing states were not analyzed. Additionally, 

the proposed models were tested solely using realized 

volatility across different time periods, without 

incorporating any exogenous variables. 
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