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Abstract   

Abnormalities in the body's propensity to control and take advantage of sugar as 
fuel result in type 2 diabetes mellitus (T2DM). Targeting the transcription factor 
peroxisome proliferator-activated receptor gamma (PPARG) protein, which 
controls the expression of proteins critical to the progression of type 2 diabetes 

mellitus (T2DM), is an intriguing approach for treating T2DM. Therefore, the 
current study focuses on predicting more effective natural compounds for better 
treatment. Chamaecostus cuspidatus (Nees & Mart.) C. Specht & D. W. Stev. 

belonging to the family Costaceae, traditionally acknowledged as an insulin 
herb, has been taken for the study. Phytocompounds were collected from the 
published literature, followed by in silico ADMET toxicity checking and molecular 

docking study against the PPARG protein at its specific binding sites. A quantum 
computation study was performed to check the reactivity of the ligands and 
normal mode analysis (NMA) was employed to study and characterize the 

selected protein's flexibility and stability with network analysis. Anti-diabetic 
drug Biguanide (Metformin) was taken as a standard drug. From this study, 
Kaempferol resulted with a premier imperative affinity of -7.1 kcal/Mol, with the 

lowest band gap energy that forms one conventional hydro bond with His466, 
which is suggested as a new drug molecule for T2DM treatment. In molecular 
dynamics simulation, the natural compound Kaempferol reflected better 

stability with the target protein PPARG. 
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Introduction   

A perilous, chronic disease with many complications, type 2 diabetes mellitus 
(T2DM) is the most prevalent cause of illness in the globe. Due to an absolute or 
relative deficiency of the hormone insulin, this metabolic circumstance is 

represented by hyperglycaemia and abnormalities in the metabolism of 
carbohydrates, proteins and fats. Targeting the transcription element 
peroxisome proliferator-activated receptor gamma (PPARG), which tiller the 

biosynthesis of T2DM-related proteins, is an intriguing approach for treating 
T2DM (1). Having many roles in metabolism, especially glucose equipoise, 
which is dysfunctioning in T2DM, PPARG activity is essential for the emergence 

and prevalence of T2DM. The oversight of adipogenesis in white adipose tissue 
is one of PPARG's key roles; in fact, PPARG is both obligatory and competent for 

 

PLANT SCIENCE TODAY 
ISSN 2348-1900 (online) 
Vol 12(2): 1-10 
https://doi.org/10.14719/pst.5933 

HORIZON  
e-Publishing Group 

Computational investigations of bio-active phytoconstituents 
from Chamaecostus cuspidatus (Nees & Mart.) C. Specht & D.W. 
Stev. against peroxisome proliferator-activated receptor 
gamma (PPARG) protein of type 2 diabetes mellitus 
 

Chandra Sekhar Tripathy1, Santosh Kumar Behera2 & Sagarika Parida1* 

 

1Department of Botany, School of Applied Sciences, Centurion University of Technology and Management, Bhubaneswar 752 050, India 

 2Department of Biotechnology, National Institute of Pharmaceutical Education and Research, Ahmedabad 382 355, India  

 

*Email: sagarika.parida@cutm.ac.in  

RESEARCH ARTICLE 

 

http://horizonepublishing.com/journals/index.php/PST/open_access_policy
https://horizonepublishing.com/journals/index.php/PST/open_access_policy
https://horizonepublishing.com/journals/index.php/PST/open_access_policy
https://horizonepublishing.com/journals/index.php/PST/indexing_abstracting
https://horizonepublishing.com/journals/index.php/PST/indexing_abstracting
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https:/doi.org/10.14719/pst.5933
http://horizonepublishing.com/journals/index.php/PST/open_access_policy
https://crossmark.crossref.org/dialog/?doi=10.14719/pst.5933&domain=horizonepublishing.com
http://www.horizonepublishing.com/
https://doi.org/10.14719/pst.5933
mailto:sagarika.parida@cutm.ac.in
mailto:sagarika.parida@cutm.ac.in


TRIPATHY ET AL  2     

https://plantsciencetoday.online 

morphing fibroblastic precursors into adipocytes (2, 3). 
Adiponectin, leptin, TNF-, IL-6 and resisting are just a few of 

the cytokines and adipokines secreted by fatty tissues (4). 
These pro-inflammatory chemicals significantly impact the 
onset of insulin resistance and obesity (5). Although PPARG is 

found in the liver and muscle, which substantially impacts 
insulin sensitivity, its roles are most prominent in white 
adipose tissue, where the receptor is most abundantly 

expressed. PPARG serves as a promising avenue for therapy 
for the remedy and stewardship of T2DM due to its crucial 
involvement in developing T2DM. T2DM has become a global 

disease, so much research has been conducted worldwide to 
treat this disease with satisfactory results. This investigation 
also focuses on the PPARG protein, which is a vital protein 

involved in T2DM to stop the overexpression of this protein 
with the help of natural compounds. 

 Organic compounds of biological genesis that undergo 
formation by a plant's cells are known as phytoconstituents. 
Biosynthesis is the process by which plants can transform simple 
chemical components into intricate organic compounds with 

the assistance of enzymes. There are numerous uses for the 
isolated or extracted chemical ingredients in medications. Plants 
are natural sources of organic compounds, are filled with 

multiple medicinal properties and provide dedicated service to 
humanity. In the current study, Chamaecostus cuspidatus (Nees 
& Mart.) C. Specht & D. W. Stev. (Costus igneus) has been taken as 

the target plant for the investigation. Southeast Asian native 
Costus igneus, known as the "insulin plant," is a traditional 
medicine. In India, C. cuspidatus, a member of the costaceae 

family, is specified as the "insulin herb" because its leaves enable 
the body to release more insulin. This traditional plant has 
recently gained acceptance on a global level and is widely 

utilized as an Ayurvedic medicinal herb (6). In terms of the plant's 
anti-diabetic activity, whole plant parts were taken for the study. 

             In drug development, the current world needs to find 
faster and more effective solutions to treat a disease and 
computational drug development plays a vital role in drug 
design (7). So, the current study focuses on the in-silico drug 

development procedure to predict effective phytocompounds 
from C. cuspidatus, which will better affect PPARG in treating 
T2DM. In the study, the reported phytocompounds have 

undergone different screening procedures to identify better 
phytocompounds for molecular docking against PPARG 
protein of T2DM. Quantum computation was performed to 

study the reactivity of the molecules and normal mode 
analysis (NMA) was conducted to examine the dynamics and 
characterize the selected protein's flexibility and stability and 

predict large amplitude motions. Network analysis was 
performed to identify the hub genes associated with PPARG 
protein of T2DM. The molecular dynamic simulation study 

was performed to analyze the stability of protein-ligand 
complexes.  

 

Materials and Methods 

Sequence, structure and functional annotation 

The UniProt database was employed to retrieve the target 
PPARG gene's sequence, structural specifics and functional 
particulars (8). The experimental structure of the PPARG 

protein of T2DM was recovered from the Protein Data Bank 
(PDB) (9). 

Retrieval of phytoconstituents 

In this study, twenty-five phytoconstituents of C. cuspidatus 
were selected by searching their information in various 

published literature (10-13). These biochemical configurational 
particulars were procured from the PubChem database (14) in 
SDF format. Using the Biovia Discovery Studio 2021 (15) 

version, the 3D structures were transformed into PDB format. 

Lipinski's rule of five and toxicity studies 

Lipinski's rule of five (16) indicates that an internally 
administered medicine is required to abide by the 
specifications of molecular mass (<=500 D), logP (<=5), 
hydrogen bond donor (<=5), hydrogen bond acceptors (<=10) 

and molar refractivity (40–130), is the most crucial criterion for 
picking out a medication. If specifications are unmet, a 
molecule has no significance as a drug-Lipinski's Rule of Five 

anticipated by the TarGetNet Server (17). The ligands were 
classified utilizing Lipinski's Rule of Five and were further 
investigated for their toxicity using Protox-II (18). The tool's 

control was left in its pre-set configurations. 

Prediction of binding site 

The Computed Atlas of Surface Topography of Proteins 
(CASTp) web server (19) assessed the binding vicinity of 
selected PPARG proteins identified as a target for T2DM. It was 
determined that most outcomes identified active amino acid 

residues that portrayed the phytoconstituents' binding region. 

Molecular docking of screened phytoconstituents against 
selected target protein of T2DM 

The AutoDock vina tool (20, 21) was utilized in the work above 
for molecular docking studies to identify the ailment target 
protein to more appropriately juxtapose the target disease 

T2DM. 

Density Functional Theory (DFT) analysis 

A quantum computer simulation was executed using a 
presumption from Density Functional Theory (DFT) to assess 
the reactivity and potency of the practicable ligands mobilized 
in this research. Leveraging the Becke 3-parameter Lee-Yang-

Parr (B3LYP) correlation operation of DFT, the reactivity and 
efficacy have been monitored (22). The DFT analysis was 
implemented to ascertain the energies of the highest occupied 

molecular orbital (HOMO) and lowest unoccupied molecular 
orbital (LUMO) for the organic molecules with the optimal 
interacting scores and therapeutics that are readily available 

(standard) commercially for the various targeted disorders. 
With the assistance of the ORCA Program's version 4.0, the 
vitality has been established (23). 

Protein-protein interaction network analysis of PPARG 
protein 

Understanding protein-protein interactions (PPIs), critical to 
practically aggregate exertion in a cell in both flourishing and 
ailing conditions, is indispensable for compassionating cell 
morphology. Due to the potential adverse effects of pharmacon 

on PPIs, it is also decisive for medicament augmentation. The 
biological interactions between proteins in a cell can be 
illustrated empirically by PPI networks. The STRING database 

(24) was employed to predict the interconnection of PPARG 
protein with other proteins. 
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Normal mode analysis (NMA) 

The flexible state a protein can access around equilibrium 
premises can be summed up with NMA. Numerous articles have 
focused on the utilization of NMA to study biological 
macromolecules and it has been reliably demonstrated that 

these states have functional vitality. Advances in computer 
technology and normal mode estimation algorithms have made 
NMA one of the least computationally expensive approaches to 

discovering the dynamics of macromolecules. The technique 
known as normal mode analysis can be utilized to define the 
flexible states that a protein or other molecule can access 

around a place of equilibrium (25). The Imods server has been 
employed to study the dynamics behavior of this PPARG protein 
of T2DM (26). 

Molecular dynamic simulation 

Molecular dynamics (MD) is a method of complex algorithms to 
study and foresee the motions of atoms and molecules in a 

hierarchy of macromolecular structure-to-function 
coincidences. MD is a process that employs complex algorithms 
to investigate and anticipate the motions of atoms and 

molecules in a hierarchy of macromolecular structure-to-
function coincidences (27). By providing the atoms and 
molecules with a set limit on time to interact, the dynamic 

"evolution" of the entire structure is exemplified (28). The 
Desmond program (Schrödinger Release 2022-4: Maestro, 
Schrödinger, LLC, New York, NY, 2022) was used to do MD 

simulations in Apo (only protein) of PPARG protein of T2DM. In 
Holo states of PPARG protein complexed with 2 ligands, those 
are Holo1: PPARG-Kaempferol complex and Holo2: PPARG-

Biguanide complex. After a 100 nanosecond (ns) molecular 
dynamics simulation, the ligand-protein complexes that 
performed the highest were assessed within the MD paradigm, 

where the steps were minimization, heating, equilibration and 
manufacturing (29). Instinctively, topology was reached by 
establishing the OPLS4 force field and efficiently minimizing 

atomic coordinates and protein-ligand interactions regarding 
energy (30). The SPC solvent model was used for immersing 
the compound in an asymmetrical box of 15 × 15 × 10 Å. By 

adding 0.15 M NaCl, the physiological pH was annihilated. The 
water box was configured using the Particle Mesh Ewald (PME) 
boundary circumstances, ensuring no solute atoms are found 

below 10 Å of the frontier.  Employing the NPT combination, 
the entire structure was simulated for 100 ns at 300 K. Plots of 
root mean square fluctuation (RMSF) and deviation (RMSD) 

were used to look into the dynamic behavior and changes to 
the structure of the proteins. RMSD assesses the variance in a 
protein's backbones between their initial and final 

assignments, highlighting the fraction of the protein or 
complex that has become flexible (31, 32). The simulated 
interaction graph can determine the most likely pattern for 

ligand interactions at the protein attachment site (33, 34). 

 

 

Results  

Sequence and structural information retrieval of PPARG 

Protein 

The target protein was searched in the UniProt database to 

get its detailed information. It was found that PPARG Protein 
had P37231 UniProt id with an amino acid (aa) length of 505 

aa. The PDB id 2QMV taken for the study was determined 
using NMR with sequence lengths 235 to 504. The detailed 
information is given in Table 1. 

Phytochemicals of C. cuspidatus 

Twenty–five phytochemicals of C. cuspidatus were retrieved 

from reported published research articles. Table 2 gives detailed 
information regarding the 25 phytochemicals. Their details were 
obtained from the PubChem database. 

Lipinski's rule of five and toxicity annotation 

Target Net's web server was used to apply the Lipinski rule of 

five, which eliminated 18 of the 25 ligands that fulfilled all the 
criteria. Table 3 depicts the results. The 18 did not abide by this 
criterion because they did not give 100% results, which reflects 

that these compounds do not follow Lipinski's rule of 5 
completely. Only 7 compounds were found following the 
Lipinski rule completely. These 7 compounds were further 

screened through the Protox-II server for toxicity checking and 
consensus results were prepared that the 7 compounds were 
found to follow Lipinski's rule of five completely and were 

nontoxic. This analysis identified 7 compounds that qualified 
for further molecular docking analysis (Table 4). 

Sl. No. Entry Id (UniProt) Protein Name Gene Name Amino acid Length PDB ID taken for study 

1. P37231 Peroxisome proliferator-activated 
receptor gamma PPARG 505 

2QMV 
NMR 

(235-504) 

Sl. No. Chemical name Molecular              
formula PMID 

1. 12-Octadecadienoic acid C18H32O2 129630222 

2. Alpha-Tocopherol C29H50O2 14985 

3. alpha-ionone C13H20O 5282108 

4. Ascorbic acid C6H8O6 54670067 

5. Beta-carotene C40H56 5280489 

6. Beta-ionone C13H20O 638014 

7. Corosolic acid C30H48O4 6918774 

8. Dodecanoic acid C12H24O2 3893 

9. Diosgenin C27H42O3 99474 

10. Ethyl oleate C20H38O2 5363269 

11. Farnesylacetone C18H30O 1711945 

12. Kaempferol C15H10O6 5280863 

13. Gracillin C45H72O17 159861 

14. Hexadecanoic acid C16H32O2 985 

15. Lupenol C30H50O 259846 

16. Myristic acid C14H28O2 11005 

17. Octadecanoic acid C18H36O2 5281 

18. Oleic acid C18H34O2 445639 

19. Oleyl alcohol C18H36O 5284499 

20. Quercetin C15H10O7 5280343 

21. Sitosterol C29H50O 222284 

22. Squalene C30H50 638072 

23. Stigmasterol C29H48O 5280794 

24. Tetradecanoic acid C14H28O2 11005 

25. Tigogenin C27H44O3 99516 

Table 1. PPARG protein information of T2DM 

Table 2. Description of retrieved phytoconstituents of C. cuspidatus  

https://pubchem.ncbi.nlm.nih.gov/#query=C18H32O2
https://pubchem.ncbi.nlm.nih.gov/#query=C6H8O6
https://pubchem.ncbi.nlm.nih.gov/#query=C12H24O2
https://pubchem.ncbi.nlm.nih.gov/#query=C27H42O3
https://pubchem.ncbi.nlm.nih.gov/#query=C20H38O2
https://pubchem.ncbi.nlm.nih.gov/#query=C18H30O
https://pubchem.ncbi.nlm.nih.gov/#query=C45H72O17
https://pubchem.ncbi.nlm.nih.gov/#query=C16H32O2
https://pubchem.ncbi.nlm.nih.gov/#query=C30H50O
https://pubchem.ncbi.nlm.nih.gov/#query=C14H28O2
https://pubchem.ncbi.nlm.nih.gov/#query=C18H36O2
https://pubchem.ncbi.nlm.nih.gov/#query=C18H34O2
https://pubchem.ncbi.nlm.nih.gov/#query=C15H10O7
https://pubchem.ncbi.nlm.nih.gov/#query=C30H50
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Binding site prediction of PPARG protein 

The PDB id 2QMV of PPARG Protein taken for the study was 
uploaded in the CastP web tool to depict the imperative spots. 

The binding sites for PPARG protein are Lys263, Phe264, 
Lys265, His266, Ile267, Thr268, Leu270, Ser274, Lys275, Ile279, 
Gln283, Ser464, Leu465, His466 and Leu468. Fig. 1 represents 

the area predicted by the CastP server as binding sites. 

Molecular docking study 

In computer-assisted therapeutic discovery and structural 

molecular biology, molecular docking is crucial. Finding the 
dominant binding mode(s) of a ligand with a protein with an 

acknowledged 3D structure is the primary objective of ligand-
protein docking interaction. In the current docking simulation 
approach, the AutoDock tool obtains the results throughout 

the docking process. AutoDock 4.2 tool is used to determine 
the grid box. Kollman charges were initially allotted to the 
selected protein. Subsequently, Gasteiger partial charges were 

delegated to the inhibitors above. The grid box was prepared 
according to the predicted binding sites of the PPARG protein. 
The grid box value was found with the coordinates X -62, Y - 56 

and Z -66. After obtaining the grid box value, AutoDock Vina 
was employed to do the molecular docking studies. Here, the 
highly reported compound Biguanide is standard (35). It was 

obtained that Kaempferol was found with preeminent 
interacting affinity of -7.1 kcal/Mol and forming Hydrogen 
bonding with His466 followed by Beta-Ionone with second 

apical with docking affinity of -6.0 kcal/Mol and Myristic acid 
with third maximal with interacting score of -5.9 kcal/Mol. In 
contrast, the standard drug Biguanide showed only an 

interacting score of -4.7 kcal/Mol. Table 5 depicts the docking 
repercussions. Fig. 2 & 3 represent the 2D and 3D molecular 
reciprocation of 7 selected molecules of C. cuspidatus and 

Biguanide with PPARG protein. 

 

Quantum chemical calculation 

Due to quantum computation's crucial nature, quantum 
chemistry was analysed to learn about frontier molecular 

descriptors for 7 intended molecules and the reported escalate 
Biguanide (Table 6), where Kaempferol displayed the lowest 
gap energy followed by Beta-ionone. Besides descriptors 

entailed, HOMO (highest occupied molecular orbital) and 
LUMO (lowest unoccupied molecular orbital), Electronic 
Energy (eV), Potential Energy (eV), Kinetic Energy (eV) and 

Dipole Moment (Debye). The compelling acuteness for 
Kaempferol and Beta-ionone compounds, found with band 

energy gap (ΔE), i.e., the difference between ELUMO and 

EHOMO, with appraises 10.883 and 10.855 eV. Kaempferol and 
Beta-ionone displayed higher acuteness when compared to 
Biguanide, based on its slightest band energy gap. Fig. 4 

represents the DFT results for Kaempferol, Beta-ionone and 
Biguanide. 

Network analysis 

PPARG gene undergoes a STRING database to search for 
interlinked genes. Table 7 depicts the results in detail. Here, the 

parameter in STRING databases is set with no. of nodes, i.e., 20, 
to predict highly associated genes with PPARG protein. Fig. 5 
represents the genetic interaction network of the PPARG 

protein with other proteins. The line joining nodes in different 
colours represents distinct interactions: Blue line: compiled 
from database curation: the experimentally established 

represented through magenta line: Gene neighbourhood is 
portrayed by the green line: Red line: Fusion of genes Indigo 
blue line: co-occurrence of genes Light green line: mining text 

Line: in black: co-expression: homology proteins reflected by 
light blue. 

 

 

Sl. 
No. Phytochemicals Name 

MR (Molar 
Refractivity)            

(40-130) 

Molecular weight            
(<=500 D) 

HBD (H-bond 
Donor) 
(<=5) 

HBA (H- bond 
Acceptors) 

(<=10) 

LogP 
(<=5) 

Lipinski's rule 
of five 

1. 12-Octadecadienoic acid 89.4638 280.44548 1.0 2.0 5.8845 75% 
2. Alpha-tocopherol 139.271 430.7061 1.0 2.0 8.8402 75% 
3. alpha-ionone 61.483 192.2973 0.0 1.0 3.5141 100% 
4. Ascorbic acid 35.1202 176.12412 4.0 6.0 -1.4074 100% 
5. Beta-carotene 184.432 536.87264 0.0 0.0 12.6058 50% 
6. Beta-ionone 61.483 192.2973 0.0 1.0 3.6582 100% 
7. Corosolic acid 138.0754 472.69972 3.0 4.0 6.0603 75% 
8. Dodecanoic acid 61.5698 200.31776 1.0 2.0 3.9919 100% 
9. Diosgenin 121.5948 414.62058 1.0 3.0 5.7139 75% 

10. Ethyl oleate 99.065 310.51452 0.0 2.0 6.587 75% 
11. Farnesylacetone 87.418 262.4302 0.0 1.0 5.7748 75% 
12. Kaempferol 76.012 286.2363 4.0 5.0 2.2824 100% 
13. Gracillin 217.5832 885.04298 9.0 17.0 0.2141 25% 
14. Hexadecanoic acid 80.7978 256.42408 1.0 2.0 5.5523 75% 
15. Lupenol 135.1418 426.7174 1.0 1.0 8.0248 75% 
16. Myristic acid 71.1838 228.37092 1.0 2.0 4.7721 100% 
17. Octadecanoic acid 90.4118 284.47724 1.0 2.0 6.3325 75% 
18. Oleic acid 89.9378 282.46136 1.0 2.0 6.1085 75% 
19. Oleyl alcohol 89.3278 268.47784 1.0 1.0 6.0162 75% 
20. Quercetin 78.035 302.2357 5.0 6.0 1.988 75% 
21. Sitosterol 133.2288 414.7067 1.0 1.0 8.0248 75% 
22. Squalene 143.48 410.718 0.0 0.0 10.605 75% 
23. Stigmasterol 132.7548 412.69082 1.0 1.0 7.8008 75% 
24. Tetradecanoic acid 71.1838 228.37092 1.0 2.0 4.7721 100% 
25. Tigogenin 122.0688 416.63646 1.0 3.0 5.7938 75% 

Table 3. Lipinski’s rule of five analyses of the phytoconstituents of C. cuspidatus 
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Table 4. Toxicity analysis of the selected phytoconstituents from C. cuspidatus using Protox-II Server 

Table 6. DFT results of best phytocompound selected from C. cuspidatus showing better result against PPARG protein target of T2DM and reported compound 

Biguanide 

Sl. No. Phytochemical compound Toxic /Non-Toxic 
1. alpha-ionone Non-Toxic 
2. Ascorbic Acid Non-Toxic 
3. Beta-Ionone Non-Toxic 
4. Dodecanoic acid Non-Toxic 
5. Kaempferol Non-Toxic 
6. Myristic Acid Non-Toxic 

7. Tetradecanoic acid Non-Toxic 

Table 5. Molecular docking results of seven selected phytoconstituents from C. cuspidatus and reported compound Biguanide against Peroxisome proliferator-

activated receptor gamma (PPARG) protein of T2DM 

Sl. No. Phyto-compound 
Binding Energy scores              

(kcal/Mol) 
No. of Hydrogen 

Bonds Hydrogen-Bond forming residues 

1. Alpha-ionone -5.8 - - 

2. Ascorbic Acid -4.6 4 
Lys358, Gly361, Lys354, 

Leu356 
3. Beta-Ionone -6.0 - - 
4. Dodecanoic acid -5.3 2 Arg288, Gly284 
5. Kaempferol -7.1 1 His466 
6. Myristic Acid -5.9 2 Lys263, Arg280 
7. Tetradecanoic acid -5.2 1 Arg288 
8. Biguanide (marketed) -4.7 2 Cys285, Leu340 

Sl. No. Phytochemical name Electronic Energy
(eV) Potential Energ (eV) Kinetic Energ 

(eV)  LUMO (eV) HOMO (eV) 
GAP 

Energy 
(eV) 

Dipole          
Moment 
(Debye) 

1. Alpha-ionone -40560.26672 -31389.91912 15652.27241 2.465 -9.224 11.689 3.18894 
2. Ascorbic Acid -39235.06521 -36968.14397 18451.50534 2.884 -9.660 12.544 5.23384 
3. Beta-Ionone -40563.12303 -31393.51223 15655.99180 2.171 -8.684 10.855 3.75369 
4. Dodecanoic acid -39370.72151 -33532.24735 16723.61894 4.615 -11.564 16.179 1.75371 
5. Kaempferol -70771.00004 -55518.42058 27702.09500 2.141 -8.742 10.883 4.63190 
6. Myristic Acid -46049.37423 -37765.48782 18833.99770 4.615 -11.497 16.112 1.77664 
7. Tetradecanoic acid -46049.37423 -37765.48782 18833.99770 4.615 -11.497 16.497 1.77664 

8. Biguanide (reported) -17810.66493 -19095.38413 9522.56036 4.681 -8.816 13.497 1.74138 

Genetic interaction observation STRING NETWORK 
   PPARG 

Number of Nodes 21 
Number of Edges 149 

Average Node Degree 14.2 
Avg. Local Clustering Coefficient 0.85 

Expected Number of Edges: 48 
PPI Enrichment P-Value < 1.0e-16 

Genes interacted 
PRDM16, XPR1, KDM3A, PAX8,CTNNB1, RELA, NCOR2, 

NCOA2,FABP4,MED1,NCOA1,SREBF1,PPARGC1A, 
SIRT1,RXRA,EP300,CREBBP,CEBPA,NCOR1,CEBPB 

Table 7. Genetic network interaction analysis of PPARG protein selected in the study of T2DM using STRING Database 

Fig. 1. Predicted area of binding region of PPARG Protein. Fig. 2. Molecular docking 2D-interaction of (A) PPARG Protein-Alpha-Ionone 

(B) PPARG Protein- Ascorbic Acid (C) PPARG Protein- Beta-ionone (D) PPARG 
Protein-Dodecanoic acid (E)  PPARG Protein- Kaempferol (F) PPARG Protein- 
Myristic acid (G) PPARG Protein- Tetradecanoic acid (H) PPARG Protein-   
Biguanide. Visualized using LigPlot + tool.  
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Normal mode analysis (NMA) 

Using the iMODS server to quantify the B-factor (a protein's 

atom disorder), calculate eigenvalue and monitor structural 
deformability, the normal mode analysis method was utilized 

to determine the PPARG protein's substantial movement and 
stability. Fig. 6 gives the results of NMA. In Fig. 6 (A), the 
Deformability B-factor is viewed and found with lesser no. of 

peaks and in Fig. 6 (B), the Mobility B-factor is viewed and 
obtained that the NMR structure taken for the study does not 
vary with the NMA structure. Fig. 6 (C) gives the Eigenvalue 

value of 2.382481e-04. In Fig. 6 (D), the variance is illustrated. In 
Fig. 6 (E), the covariance matrix is embellished with the 
pictograph adumbration (via white, red and blue colours). 

Colour modulation insinuates the analogous, differentiable 
and anti-parallel couplets of amino acid residues. Fig. 6 (F) 
gives the elastic network model and springs of atomic 

acquaintance are ordained as grey dots in the miniature, 
where the callousness of reciprocal action to the acclivity of the 
grey colour. 

Assessment of molecular dynamics simulation trajectories 

The highly complex MD algorithm addressed the relationships 

between atoms and molecules in a system of physical 
relationships between macromolecular elements and their 

roles. The multifaceted evolution of the system was apparent 
in permitting the atoms and molecules to interact for an 

allocated amount of time. A 100 ns molecular dynamics 
simulation, including structural rearrangements of molecules 
and receptors, was undertaken to assess the docked complex's 

stability. The dynamics and stability of Apo and Holo systems 
(PPARG: Apo; Holo1: PPARG-Kaempferol complex, Holo2: 
PPARG -Biguanide complex were evaluated using Desmond 

suit, to figure out the dynamic behaviour and bonding 
mechanism. For PPARG protein, the dynamic rigidity of both 
systems (Apo and Holo) was evaluated by adopting the RMSD 

profile of the backbone atoms at 100 ns. Fig. 7 displays results. 
The backbone RMSD graph of Holo1 state: PPARG - Kaempferol 
complex revealed a stable RMSD during ~35 to 70 ns compared 

to its Apo state with values between ~2.8 to ~4.0 Å in the initial 
stage and after that second stable RMSD found during ~75 ns to 
85 ns with its value between ~3.0 to 4.0 defining a stable 

configuration throughout 100 ns simulation process, whereas 
in Holo2: PPARG -Biguanide complex conveyed smaller stable 
RMSD during ~75 to 85 ns and rest unstable avenues 

throughout the simulation cycle upon comparison to its Apo 
state MD simulations with higher fluctuation picks defining the 
instability nature. The backbone atoms' RMSD profile at 100 ns 

is presented in Fig. 7, illustrating the dynamic stability of both 
the Apo and Holo systems for ligands establishing complexes 

 

Fig. 3. Molecular docking 3D-interaction of (A) PPARG Protein-Alpha-ionone (B) PPARG Protein- Ascorbic acid (C) PPARG Protein- Beta-ionone (D) PPARG Protein-

Dodecanoic acid (E)  PPARG Protein- Kaempferol (F) PPARG Protein- Myristic acid (G) PPARG Protein- Tetradecanoic acid (H) PPARG Protein- Biguanide. Visualized 
using Biovia Discovery studio tool. 

Fig. 4. DFT results: (A) LUMO- Kaempferol (B) HOMO- Kaempferol (C) LUMO- 
Beta-ionone (D) HOMO- Beta-ionone (E) LUMO- Biguanide (F) HOMO- 
Biguanide. The positive and negative electron densities are connoted by red & 
blue color. 

Fig. 5. Interaction network of PPARG protein with other proteins. 
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with the PPARG protein. Taking together the RMSD values of all 
2 Holo states in the case of PPARG, Holo1 revealed minor 

deviations and a stable trajectory, followed by Holo2. This 
depicts that the compound Kaempferol could inhibit the 
PPARG and aid in maintaining rigidity by tailoring its molecular 

framework compared to Biguanide. 

 Further validation for the RMSD result emerged from 

root mean square fluctuation (RMSF), which quantifies residue 
variability.  The dispersion among various residues has been 

monitored in each state implementing RMSF plots.  Thus, 
comparable to the Holo states, the Apo state observed more 
extensive fluctuations for PPARG protein, demonstrating the 

simulation's constrained motions. For Holo1, the amino acid 
residues between 45 to 75 and 130 to 145 displayed significant 

variations within their Cα atoms contrary to alternate 

locations. For Holo2, a constant variation was observed 
between 25 to 30, 70 to 80 and 125 to 140. The fluctuations 
could be due to various interactions. Protein residues that 

interact with the ligand are marked with green-colour vertical 
bars. The findings confirm that ligand binding could render 
residues in the Holo state more stationary than in the Apo 

state. Fig. 8 depicts the RMSF results. 

H-bond analysis 

Schrödinger Release 2022-4 was utilized in MD simulations to 
illustrate intermolecular hydrogen bonds, identifying variables 

and determining the stability of the drug-target complex.  The 
intermolecular hydrogen bonds of the Holo states were 
tracked. The stacked bar chart of Holo1 in Fig. 9 (A) shows that 
amino acid residues of Post MD PPARG-Kaempferol complex 
intermolecular Hydrogen bonds formed with Leu255, Glu259, 
Arg280, Gln283, Ile341, Glu343, Gly344 and Gly346 may play a 

vital role in the binding and regulation of the protein. In the 
case of the Holo2 state in Fig. 9 (B) for PPARG-Biguanide Post 
MD complex intermolecular Hydrogen bonds formed with 

Glu291, Glu295 and Glu343, which defines Biguanide has less 
stability with PPARG. Fig. 9 depicts the results. 

 The simulation of the Holo1 state (PPARG-Kaempferol 
complex) represented a consistent number and intensified 

intermolecular hydrogen bonds throughout the simulation 
with lesser deviation, whereas the Holo2 state (PPARG-
Biguanide complex) has inconsistent H-bonds. Fig. 10 shows 

the results for the stabilized hydrogen bonding interactions in 
post MD protein-ligand interaction of all the Holo states. 

Fig. 6. Normal mode analysis of PPARG Protein (A) Deformability B-factor (B) Mobility B-factor (C) Eigenvalue (D) Variance (E) Co-variance (F) Elastic network. 

Fig. 7. The structural rigidity of the Apo and Holo states of PPARG protein throughout 100 nanoseconds (ns) time period of MDS Backbone-RMSD (a) PPARG-
Kaempferol complex (b) PPARG -Biguanide complex. 
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Discussion 

Hyperglycaemia is a medical disorder associated with 

diabetes, which is characterized by elevated blood sugar levels. 
People from both industrialized and developing nations suffer 

from T2DM (36) and its implications, which is a universal public 
health burden. PPARG protein is currently of interest to 
researchers due to its association as the vital target for T2DM 

therapeutics (1). Metformin (Biguanide) is the most prescribed 
drug around the globe as first-line drug well known for 
managing T2DM by decreasing hepatic glucose production, but 

it has no role in uprooting T2DM. The genetic linkage of the 
PPARG gene with other genes may lead to complications and 
make way for the initiation of other associated diseases inside 

the human body. Therefore, researchers are on their way to 
explore potential compounds from natural sources, including 
C. cuspidatus, which is regarded as an insulin plant, for better 

pharmacotherapeutics in T2DM (7). Concerning the 
importance of insulin plant, the current investigation implied 
computer-assisted drug discovery process, involving 

combinatorial approach of pharmacokinetic studies, 
molecular docking and DFT analysis, to explore effective anti-
diabetic phytochemicals. The In-silico, pharmacokinetic studies 

revealed 7 compounds, namely alpha-ionone, ascorbic acid, 
beta-ionone, dodecanoic acid, kaempferol, myristic acid and 
tetradecanoic acid. Subsequently, the molecular docking 

studies depicted Kaempferol and Beta-ionone with better 
docking scores compared to others. This finding is well aligned 
with the existing reports, where Kaempferol has been well 

appreciated as an anti-diabetic drug and its complications (37). 
The binding energy of Kaempferol proves its potency to act as a 

better drug against the PPARG gene and can reduce blood 
sugar levels by helping the pancreatic Beta-cells for more 

amount of insulin production. 

 With its broadened processing power over traditional 

approaches, quantum computing has the potential to 
fundamentally change an extensive variety of scientific fields, 

including medicine. However, proof-of-concept studies have 
been the main use of quantum computer technology for drug 
discovery. Through the quantum chemical calculation study, 

the DFT method was applied to study the reactivity, where 
screened natural molecules showed the highest reactivity due 
to lower band gap energy, which defined their faster rate 

reaction in the side body with better efficacy. The 2 high-
scoring compounds Kaempferol and Beta-ionone have the 
lowest band energy as compared to the other natural 

compounds and the standard drug Biguanide. The low energy 
gap of Kaempferol also defines the higher stability of the 
molecule and strength of binding to the target protein PPARG. 

 Subsequently, on the other hand, the Normal mode 

analysis method was applied to check the PPARG protein’s 
stability, flexibility and correlation with Kaempferol. In 
molecular dynamic simulation, the Kaempferol-PPARG 

complex resulted highly stable trajectory with higher number 
of H-bonding residues in post MD simulation interaction 
defining its stronger attachment than the standard drug. The 

findings of this in-silico study could be employed as evidence 
for further in-vitro and in-vivo assessments that are required to 
validate anti-diabetic medication potency and effectiveness of 

the compounds against PPARG protein. 

Fig. 10. Stacked bar chart plot showing protein ligand contacts during the simulation of 100 ns for (A) PPARG-Kaempferol complex (B) PPARG -Biguanide complex. 

Fig. 9. Stacked bar chart plot showing protein ligand contacts during the simulation of 100 ns for (A) PPARG-Kaempferol complex (B) PPARG -Biguanide complex. 

A B 
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Conclusion 

The number of patients with T2DM is increasing daily and 

specific proteins like PPARG play an essential role in rapid 
growth. In the current study in silico drug design process is 

applied to search for a better phytochemical from C. cuspidatus.  
Here, the compounds Kaempferol and Beta-ionone scored 
better with reactivity. This computational investigation leads 

these molecules to further in vitro analysis and development of 
possible drug candidates to manage T2DM. 
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