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Abstract

Abnormalities in the body's propensity to control and take advantage of sugar as
fuel result in type 2 diabetes mellitus (T2DM). Targeting the transcription factor
peroxisome proliferator-activated receptor gamma (PPARG) protein, which
controls the expression of proteins critical to the progression of type 2 diabetes
mellitus (T2DM), is an intriguing approach for treating T2DM. Therefore, the
current study focuses on predicting more effective natural compounds for better
treatment. Chamaecostus cuspidatus (Nees & Mart.) C. Specht & D. W. Stev.
belonging to the family Costaceae, traditionally acknowledged as an insulin
herb, has been taken for the study. Phytocompounds were collected from the
published literature, followed by in silico ADMET toxicity checking and molecular
docking study against the PPARG protein at its specific binding sites. A quantum
computation study was performed to check the reactivity of the ligands and
normal mode analysis (NMA) was employed to study and characterize the
selected protein's flexibility and stability with network analysis. Anti-diabetic
drug Biguanide (Metformin) was taken as a standard drug. From this study,
Kaempferol resulted with a premier imperative affinity of -7.1 kcal/Mol, with the
lowest band gap energy that forms one conventional hydro bond with His466,
which is suggested as a new drug molecule for T2DM treatment. In molecular
dynamics simulation, the natural compound Kaempferol reflected better
stability with the target protein PPARG.

Keywords

molecular docking; molecular dynamics simulation; normal mode analysis;
quantum chemical calculation; type 2 diabetes mellitus

Introduction

A perilous, chronic disease with many complications, type 2 diabetes mellitus
(T2DM) is the most prevalent cause of illness in the globe. Due to an absolute or
relative deficiency of the hormone insulin, this metabolic circumstance is
represented by hyperglycaemia and abnormalities in the metabolism of
carbohydrates, proteins and fats. Targeting the transcription element
peroxisome proliferator-activated receptor gamma (PPARG), which tiller the
biosynthesis of T2DM-related proteins, is an intriguing approach for treating
T2DM (1). Having many roles in metabolism, especially glucose equipoise,
which is dysfunctioning in T2DM, PPARG activity is essential for the emergence
and prevalence of T2DM. The oversight of adipogenesis in white adipose tissue
is one of PPARG's key roles; in fact, PPARG is both obligatory and competent for
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morphing fibroblastic precursors into adipocytes (2, 3).
Adiponectin, leptin, TNF-, IL-6 and resisting are just a few of
the cytokines and adipokines secreted by fatty tissues (4).
These pro-inflammatory chemicals significantly impact the
onset of insulin resistance and obesity (5). Although PPARG is
found in the liver and muscle, which substantially impacts
insulin sensitivity, its roles are most prominent in white
adipose tissue, where the receptor is most abundantly
expressed. PPARG serves as a promising avenue for therapy
for the remedy and stewardship of T2DM due to its crucial
involvement in developing T2DM. T2DM has become a global
disease, so much research has been conducted worldwide to
treat this disease with satisfactory results. This investigation
also focuses on the PPARG protein, which is a vital protein
involved in T2DM to stop the overexpression of this protein
with the help of natural compounds.

Organic compounds of biological genesis that undergo
formation by a plant's cells are known as phytoconstituents.
Biosynthesis is the process by which plants can transform simple
chemical components into intricate organic compounds with
the assistance of enzymes. There are numerous uses for the
isolated or extracted chemical ingredients in medications. Plants
are natural sources of organic compounds, are filled with
multiple medicinal properties and provide dedicated service to
humanity. In the current study, Chamaecostus cuspidatus (Nees
&Mart.) C. Specht & D. W. Stev. (Costus igneus) has been taken as
the target plant for the investigation. Southeast Asian native
Costus igneus, known as the "insulin plant," is a traditional
medicine. In India, C. cuspidatus, a member of the costaceae
family, is specified as the "insulin herb" because its leaves enable
the body to release more insulin. This traditional plant has
recently gained acceptance on a global level and is widely
utilized as an Ayurvedic medicinal herb (6). In terms of the plant's
anti-diabetic activity, whole plant parts were taken for the study.

In drug development, the current world needs to find
faster and more effective solutions to treat a disease and
computational drug development plays a vital role in drug
design (7). So, the current study focuses on the in-silico drug
development procedure to predict effective phytocompounds
from C. cuspidatus, which will better affect PPARG in treating
T2DM. In the study, the reported phytocompounds have
undergone different screening procedures to identify better
phytocompounds for molecular docking against PPARG
protein of T2DM. Quantum computation was performed to
study the reactivity of the molecules and normal mode
analysis (NMA) was conducted to examine the dynamics and
characterize the selected protein's flexibility and stability and
predict large amplitude motions. Network analysis was
performed to identify the hub genes associated with PPARG
protein of T2DM. The molecular dynamic simulation study
was performed to analyze the stability of protein-ligand
complexes.

Materials and Methods
Sequence, structure and functional annotation

The UniProt database was employed to retrieve the target
PPARG gene's sequence, structural specifics and functional
particulars (8). The experimental structure of the PPARG
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protein of T2DM was recovered from the Protein Data Bank
(PDB) (9).

Retrieval of phytoconstituents

In this study, twenty-five phytoconstituents of C. cuspidatus
were selected by searching their information in various
published literature (10-13). These biochemical configurational
particulars were procured from the PubChem database (14) in
SDF format. Using the Biovia Discovery Studio 2021 (15)
version, the 3D structures were transformed into PDB format.

Lipinski's rule of five and toxicity studies

Lipinski's rule of five (16) indicates that an internally
administered medicine is required to abide by the
specifications of molecular mass (<=500 D), logP (<=5),
hydrogen bond donor (<=5), hydrogen bond acceptors (<=10)
and molar refractivity (40-130), is the most crucial criterion for
picking out a medication. If specifications are unmet, a
molecule has no significance as a drug-Lipinski's Rule of Five
anticipated by the TarGetNet Server (17). The ligands were
classified utilizing Lipinski's Rule of Five and were further
investigated for their toxicity using Protox-Il (18). The tool's
control was left in its pre-set configurations.

Prediction of binding site

The Computed Atlas of Surface Topography of Proteins
(CASTp) web server (19) assessed the binding vicinity of
selected PPARG proteins identified as a target for T2DM. It was
determined that most outcomes identified active amino acid
residues that portrayed the phytoconstituents' binding region.

Molecular docking of screened phytoconstituents against
selected target protein of T2DM

The AutoDock vina tool (20, 21) was utilized in the work above
for molecular docking studies to identify the ailment target
protein to more appropriately juxtapose the target disease
T2DM.

Density Functional Theory (DFT) analysis

A quantum computer simulation was executed using a
presumption from Density Functional Theory (DFT) to assess
the reactivity and potency of the practicable ligands mobilized
in this research. Leveraging the Becke 3-parameter Lee-Yang-
Parr (B3LYP) correlation operation of DFT, the reactivity and
efficacy have been monitored (22). The DFT analysis was
implemented to ascertain the energies of the highest occupied
molecular orbital (HOMO) and lowest unoccupied molecular
orbital (LUMO) for the organic molecules with the optimal
interacting scores and therapeutics that are readily available
(standard) commercially for the various targeted disorders.
With the assistance of the ORCA Program's version 4.0, the
vitality has been established (23).

Protein-protein interaction network analysis of PPARG
protein

Understanding protein-protein interactions (PPIs), critical to
practically aggregate exertion in a cell in both flourishing and
ailing conditions, is indispensable for compassionating cell
morphology. Due to the potential adverse effects of pharmacon
on PPIs, it is also decisive for medicament augmentation. The
biological interactions between proteins in a cell can be
illustrated empirically by PPI networks. The STRING database
(24) was employed to predict the interconnection of PPARG
protein with other proteins.
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Normal mode analysis (NMA)

The flexible state a protein can access around equilibrium
premises can be summed up with NMA. Numerous articles have
focused on the utilization of NMA to study biological
macromolecules and it has been reliably demonstrated that
these states have functional vitality. Advances in computer
technology and normal mode estimation algorithms have made
NMA one of the least computationally expensive approaches to
discovering the dynamics of macromolecules. The technique
known as normal mode analysis can be utilized to define the
flexible states that a protein or other molecule can access
around a place of equilibrium (25). The Imods server has been
employed to study the dynamics behavior of this PPARG protein
of T2DM (26).

Molecular dynamic simulation

Molecular dynamics (MD) is a method of complex algorithms to
study and foresee the motions of atoms and molecules in a
hierarchy of macromolecular structure-to-function
coincidences. MD is a process that employs complex algorithms
to investigate and anticipate the motions of atoms and
molecules in a hierarchy of macromolecular structure-to-
function coincidences (27). By providing the atoms and
molecules with a set limit on time to interact, the dynamic
"evolution" of the entire structure is exemplified (28). The
Desmond program (Schrodinger Release 2022-4: Maestro,
Schrodinger, LLC, New York, NY, 2022) was used to do MD
simulations in Apo (only protein) of PPARG protein of T2DM. In
Holo states of PPARG protein complexed with 2 ligands, those
are Holol: PPARG-Kaempferol complex and Holo2: PPARG-
Biguanide complex. After a 100 nanosecond (ns) molecular
dynamics simulation, the ligand-protein complexes that
performed the highest were assessed within the MD paradigm,
where the steps were minimization, heating, equilibration and
manufacturing (29). Instinctively, topology was reached by
establishing the OPLS4 force field and efficiently minimizing
atomic coordinates and protein-ligand interactions regarding
energy (30). The SPC solvent model was used for immersing
the compound in an asymmetrical box of 15 x 15 x 10 A. By
adding 0.15 M NacCl, the physiological pH was annihilated. The
water box was configured using the Particle Mesh Ewald (PME)
boundary circumstances, ensuring no solute atoms are found
below 10 A of the frontier. Employing the NPT combination,
the entire structure was simulated for 100 ns at 300 K. Plots of
root mean square fluctuation (RMSF) and deviation (RMSD)
were used to look into the dynamic behavior and changes to
the structure of the proteins. RMSD assesses the variance in a
protein's backbones between their initial and final
assignments, highlighting the fraction of the protein or
complex that has become flexible (31, 32). The simulated
interaction graph can determine the most likely pattern for
ligand interactions at the protein attachment site (33, 34).

Table 1. PPARG protein information of T2DM

Results

Sequence and structural information retrieval of PPARG
Protein

The target protein was searched in the UniProt database to
get its detailed information. It was found that PPARG Protein
had P37231 UniProt id with an amino acid (aa) length of 505
aa. The PDB id 2QMV taken for the study was determined
using NMR with sequence lengths 235 to 504. The detailed
information is given in Table 1.

Phytochemicals of C. cuspidatus

Twenty-five phytochemicals of C. cuspidatus were retrieved
from reported published research articles. Table 2 gives detailed
information regarding the 25 phytochemicals. Their details were
obtained from the PubChem database.

Lipinski's rule of five and toxicity annotation

Target Net's web server was used to apply the Lipinski rule of
five, which eliminated 18 of the 25 ligands that fulfilled all the
criteria. Table 3 depicts the results. The 18 did not abide by this
criterion because they did not give 100% results, which reflects
that these compounds do not follow Lipinski's rule of 5
completely. Only 7 compounds were found following the
Lipinski rule completely. These 7 compounds were further
screened through the Protox-Il server for toxicity checking and
consensus results were prepared that the 7 compounds were
found to follow Lipinski's rule of five completely and were
nontoxic. This analysis identified 7 compounds that qualified
for further molecular docking analysis (Table 4).

Table 2. Description of retrieved phytoconstituents of C. cuspidatus

Molecular

Sl. No Chemical name formula PMID
1. 12-Octadecadienoic acid Ci1sH3.0 129630222
2 Alpha-Tocopherol CasHs002 14985
3 alpha-ionone Ci13H200 5282108
4. Ascorbic acid CsHsO0s 54670067
5. Beta-carotene CaoHse 5280489
6 Beta-ionone Ci3H200 638014
7 Corosolic acid C30H4g04 6918774
8 Dodecanoic acid C12H2402 3893
9. Diosgenin C2rH4205 99474
10. Ethyl oleate CaoH3502 5363269
11. Farnesylacetone CisH300 1711945
12. Kaempferol C1sH1006 5280863
13. Gracillin CusH720417 159861
14. Hexadecanoic acid Ci6H320: 985
15. Lupenol CsoHs00 259846
16. Myristic acid C14H2502 11005
17. Octadecanoic acid CisH3602 5281
18. Oleic acid CisH340- 445639
19. Oleyl alcohol CisH360 5284499

20. Quercetin CisH1007 5280343
21. Sitosterol CasHs00 222284
22. Squalene CsoHso 638072
23. Stigmasterol CasHasO 5280794
24. Tetradecanoic acid Ci4H2502 11005
25. Tigogenin C27H4405 99516

Sl. No. Entry Id (UniProt) Protein Name Gene Name Amino acid Length  PDB ID taken for study
Peroxi liferat tivated 2QMV
eroxisome proliferator-activate
1. P37231 receptor gamma PPARG 505 NMR
(235-504)
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Table 3. Lipinski’s rule of five analyses of the phytoconstituents of C. cuspidatus

st MR (Molar Molecul ieht HBD (H-bond HBA (H- bond LogP Lipinski' L
N 0' Phytochemicals Name Refractivity) ° 7::5%%%‘;% Donor) Acceptors) (<_g5) 'p":; ﬁlvseru e
: (40-130) (<=5) (<=10) B
1. 12-Octadecadienoic acid 89.4638 280.44548 1.0 2.0 5.8845 75%
2. Alpha-tocopherol 139.271 430.7061 1.0 2.0 8.8402 75%
3. alpha-ionone 61.483 192.2973 0.0 1.0 3.5141 100%
4, Ascorbic acid 35.1202 176.12412 4.0 6.0 -1.4074 100%
5. Beta-carotene 184.432 536.87264 0.0 0.0 12.6058 50%
6. Beta-ionone 61.483 192.2973 0.0 1.0 3.6582 100%
7. Corosolic acid 138.0754 472.69972 3.0 4.0 6.0603 75%
8. Dodecanoic acid 61.5698 200.31776 1.0 2.0 3.9919 100%
9. Diosgenin 121.5948 414.62058 1.0 3.0 5.7139 75%
10. Ethyl oleate 99.065 310.51452 0.0 2.0 6.587 75%
11. Farnesylacetone 87.418 262.4302 0.0 1.0 5.7748 75%
12. Kaempferol 76.012 286.2363 4.0 5.0 2.2824 100%
13. Gracillin 217.5832 885.04298 9.0 17.0 0.2141 25%
14. Hexadecanoic acid 80.7978 256.42408 1.0 2.0 5.5523 75%
15. Lupenol 135.1418 426.7174 1.0 1.0 8.0248 75%
16. Myristic acid 71.1838 228.37092 1.0 2.0 47721 100%
17. Octadecanoic acid 90.4118 284.47724 1.0 2.0 6.3325 75%
18. Oleic acid 89.9378 282.46136 1.0 2.0 6.1085 75%
19. Oleyl alcohol 89.3278 268.47784 1.0 1.0 6.0162 75%
20. Quercetin 78.035 302.2357 5.0 6.0 1.988 75%
21. Sitosterol 133.2288 414.7067 1.0 1.0 8.0248 75%
22. Squalene 143.48 410.718 0.0 0.0 10.605 75%
23. Stigmasterol 132.7548 412.69082 1.0 1.0 7.8008 75%
24, Tetradecanoic acid 71.1838 228.37092 1.0 2.0 47721 100%
25. Tigogenin 122.0688 416.63646 1.0 3.0 5.7938 75%

Binding site prediction of PPARG protein

The PDB id 2QMV of PPARG Protein taken for the study was
uploaded in the CastP web tool to depict the imperative spots.
The binding sites for PPARG protein are Lys263, Phe264,
Lys265, His266, 1le267, Thr268, Leu270, Ser274, Lys275, le279,
GIn283, Ser464, Leud65, His466 and Leu4d68. Fig. 1 represents
the area predicted by the CastP server as binding sites.

Molecular docking study

In computer-assisted therapeutic discovery and structural
molecular biology, molecular docking is crucial. Finding the
dominant binding mode(s) of a ligand with a protein with an
acknowledged 3D structure is the primary objective of ligand-
protein docking interaction. In the current docking simulation
approach, the AutoDock tool obtains the results throughout
the docking process. AutoDock 4.2 tool is used to determine
the grid box. Kollman charges were initially allotted to the
selected protein. Subsequently, Gasteiger partial charges were
delegated to the inhibitors above. The grid box was prepared
according to the predicted binding sites of the PPARG protein.
The grid box value was found with the coordinates X -62, Y - 56
and Z -66. After obtaining the grid box value, AutoDock Vina
was employed to do the molecular docking studies. Here, the
highly reported compound Biguanide is standard (35). It was
obtained that Kaempferol was found with preeminent
interacting affinity of -7.1 kcal/Mol and forming Hydrogen
bonding with His466 followed by Beta-lonone with second
apical with docking affinity of -6.0 kcal/Mol and Myristic acid
with third maximal with interacting score of -5.9 kcal/Mol. In
contrast, the standard drug Biguanide showed only an
interacting score of -4.7 kcal/Mol. Table 5 depicts the docking
repercussions. Fig. 2 & 3 represent the 2D and 3D molecular
reciprocation of 7 selected molecules of C. cuspidatus and
Biguanide with PPARG protein.

Quantum chemical calculation

Due to quantum computation's crucial nature, quantum
chemistry was analysed to learn about frontier molecular
descriptors for 7 intended molecules and the reported escalate
Biguanide (Table 6), where Kaempferol displayed the lowest
gap energy followed by Beta-ionone. Besides descriptors
entailed, HOMO (highest occupied molecular orbital) and
LUMO (lowest unoccupied molecular orbital), Electronic
Energy (eV), Potential Energy (eV), Kinetic Energy (eV) and
Dipole Moment (Debye). The compelling acuteness for
Kaempferol and Beta-ionone compounds, found with band
energy gap (AE), i.e., the difference between (LUMO and
eHOMO, with appraises 10.883 and 10.855 eV. Kaempferol and
Beta-ionone displayed higher acuteness when compared to
Biguanide, based on its slightest band energy gap. Fig. 4
represents the DFT results for Kaempferol, Beta-ionone and
Biguanide.

Network analysis

PPARG gene undergoes a STRING database to search for
interlinked genes. Table 7 depicts the results in detail. Here, the
parameter in STRING databases is set with no. of nodes, i.e., 20,
to predict highly associated genes with PPARG protein. Fig. 5
represents the genetic interaction network of the PPARG
protein with other proteins. The line joining nodes in different
colours represents distinct interactions: Blue line: compiled
from database curation: the experimentally established
represented through magenta line: Gene neighbourhood is
portrayed by the green line: Red line: Fusion of genes Indigo
blue line: co-occurrence of genes Light green line: mining text
Line: in black: co-expression: homology proteins reflected by
light blue.
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Table 4. Toxicity analysis of the selected phytoconstituents from C. cuspidatus using Protox-Il Server

Sl. No. Phytochemical compound Toxic /Non-Toxic
1. alpha-ionone Non-Toxic
2. Ascorbic Acid Non-Toxic
3. Beta-lonone Non-Toxic
4, Dodecanoic acid Non-Toxic
5. Kaempferol Non-Toxic
6. Myristic Acid Non-Toxic
7. Tetradecanoic acid Non-Toxic

Table 5. Molecular docking results of seven selected phytoconstituents from C. cuspidatus and reported compound Biguanide against Peroxisome proliferator-
activated receptor gamma (PPARG) protein of T2DM

Binding Energy scores

No. of Hydrogen

Sl. No. Phyto-compound (kcal/Mol) Bonds Hydrogen-Bond forming residues
1. Alpha-ionone -5.8 - -
2. Ascorbic Acid -4.6 4 Lys358, 52{1336516, Lys354,
3. Beta-lonone -6.0 - -
4. Dodecanoic acid -5.3 2 Arg288, Gly284
5. Kaempferol 7.1 1 His466
6. Myristic Acid -5.9 2 Lys263, Arg280
7. Tetradecanoic acid -5.2 1 Arg288
8. Biguanide (marketed) 4.7 2 Cys285, Leu340

Table 6. DFT results of best phytocompound selected from C. cuspidatus showing better result against PPARG protein target of T2DM and reported compound

Biguanide
. .. GAP Dipole
Sl. No. Phytochemical name Electro(mc Energy Potential Energ (eV) Kinetic Energ LUMO (eV) HOMO (eVv) Energy Morp;‘lent
eV) (eV)
(eV) (Debye)
1 Alpha-ionone -40560.26672 -31389.91912 15652.27241 2.465 -9.224 11.689 3.18894
2 Ascorbic Acid -39235.06521 -36968.14397 18451.50534 2.884 -9.660 12.544 5.23384
3 Beta-lonone -40563.12303 -31393.51223 15655.99180 2.171 -8.684 10.855 3.75369
4 Dodecanoic acid -39370.72151 -33532.24735 16723.61894 4.615 -11.564 16.179 1.75371
5. Kaempferol -70771.00004 -55518.42058 27702.09500 2.141 -8.742 10.883 4.63190
6 Myristic Acid -46049.37423 -37765.48782 18833.99770 4.615 -11.497 16.112 1.77664
7 Tetradecanoic acid -46049.37423 -37765.48782 18833.99770 4.615 -11.497 16.497 1.77664
8 Biguanide (reported) -17810.66493 -19095.38413 9522.56036 4.681 -8.816 13.497 1.74138

Table 7. Genetic network interaction analysis of PPARG protein selected in the study of T2DM using STRING Database

Genetic interaction observation

STRING NETWORK

PPARG
Number of Nodes 21
Number of Edges 149
Average Node Degree 14.2
Avg. Local Clustering Coefficient 0.85
Expected Number of Edges: 48
PPI Enrichment P-Value <1.0e-16

Genes interacted

PRDM16, XPR1, KDM3A, PAX8,CTNNB1, RELA, NCOR?2,
NCOA2,FABP4,MED1,NCOAL,SREBF1,PPARGCIA,
SIRT1,RXRA,EP300,CREBBP,CEBPA,NCOR1,CEBPB

“’:"“§ ? : ki o
b
© (V)
4 )

© ®

Fig. 1. Predicted area of binding region of PPARG Protein.

Fig. 2. Molecular docking 2D-interaction of (A) PPARG Protein-Alpha-lonone
(B) PPARG Protein- Ascorbic Acid (C) PPARG Protein- Beta-ionone (D) PPARG
Protein-Dodecanoic acid (E) PPARG Protein- Kaempferol (F) PPARG Protein-
Myristic acid (G) PPARG Protein- Tetradecanoic acid (H) PPARG Protein-
Biguanide. Visualized using LigPlot + tool.
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Fig. 3. Molecular docking 3D-interaction of (A) PPARG Protein-Alpha-ionone (B) PPARG Protein- Ascorbic acid (C) PPARG Protein- Beta-ionone (D) PPARG Protein-
Dodecanoic acid (E) PPARG Protein- Kaempferol (F) PPARG Protein- Myristic acid (G) PPARG Protein- Tetradecanoic acid (H) PPARG Protein- Biguanide. Visualized

using Biovia Discovery studio tool.
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? &

Fig. 4. DFT results: (A) LUMO- Kaempferol (B) HOMO- Kaempferol (C) LUMO-
Beta-ionone (D) HOMO- Beta-ionone (E) LUMO- Biguanide (F) HOMO-
Biguanide. The positive and negative electron densities are connoted by red &
blue color.

Normal mode analysis (NMA)

Using the iMODS server to quantify the B-factor (a protein's
atom disorder), calculate eigenvalue and monitor structural
deformability, the normal mode analysis method was utilized
to determine the PPARG protein's substantial movement and
stability. Fig. 6 gives the results of NMA. In Fig. 6 (A), the
Deformability B-factor is viewed and found with lesser no. of
peaks and in Fig. 6 (B), the Mobility B-factor is viewed and
obtained that the NMR structure taken for the study does not
vary with the NMA structure. Fig. 6 (C) gives the Eigenvalue
value of 2.382481e-04. In Fig. 6 (D), the variance is illustrated. In
Fig. 6 (E), the covariance matrix is embellished with the
pictograph adumbration (via white, red and blue colours).
Colour modulation insinuates the analogous, differentiable
and anti-parallel couplets of amino acid residues. Fig. 6 (F)
gives the elastic network model and springs of atomic
acquaintance are ordained as grey dots in the miniature,
where the callousness of reciprocal action to the acclivity of the
grey colour.

Assessment of molecular dynamics simulation trajectories

The highly complex MD algorithm addressed the relationships
between atoms and molecules in a system of physical
relationships between macromolecular elements and their

PRDM16

SREBF1

Fig. 5. Interaction network of PPARG protein with other proteins.

roles. The multifaceted evolution of the system was apparent
in permitting the atoms and molecules to interact for an
allocated amount of time. A 100 ns molecular dynamics
simulation, including structural rearrangements of molecules
and receptors, was undertaken to assess the docked complex's
stability. The dynamics and stability of Apo and Holo systems
(PPARG: Apo; Holol: PPARG-Kaempferol complex, Holo2:
PPARG -Biguanide complex were evaluated using Desmond
suit, to figure out the dynamic behaviour and bonding
mechanism. For PPARG protein, the dynamic rigidity of both
systems (Apo and Holo) was evaluated by adopting the RMSD
profile of the backbone atoms at 100 ns. Fig. 7 displays results.
The backbone RMSD graph of Holo1 state: PPARG - Kaempferol
complex revealed a stable RMSD during ~35 to 70 ns compared
to its Apo state with values between ~2.8 to ~4.0 A in the initial
stage and after that second stable RMSD found during ~75 ns to
85 ns with its value between ~3.0 to 4.0 defining a stable
configuration throughout 100 ns simulation process, whereas
in Holo2: PPARG -Biguanide complex conveyed smaller stable
RMSD during ~75 to 85 ns and rest unstable avenues
throughout the simulation cycle upon comparison to its Apo
state MD simulations with higher fluctuation picks defining the
instability nature. The backbone atoms' RMSD profile at 100 ns
is presented in Fig. 7, illustrating the dynamic stability of both
the Apo and Holo systems for ligands establishing complexes
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with the PPARG protein. Taking together the RMSD values of all
2 Holo states in the case of PPARG, Holol revealed minor
deviations and a stable trajectory, followed by Holo2. This
depicts that the compound Kaempferol could inhibit the
PPARG and aid in maintaining rigidity by tailoring its molecular
framework compared to Biguanide.

Further validation for the RMSD result emerged from
root mean square fluctuation (RMSF), which quantifies residue
variability. The dispersion among various residues has been
monitored in each state implementing RMSF plots. Thus,
comparable to the Holo states, the Apo state observed more
extensive fluctuations for PPARG protein, demonstrating the
simulation's constrained motions. For Holol, the amino acid
residues between 45 to 75 and 130 to 145 displayed significant
variations within their Ca atoms contrary to alternate
locations. For Holo2, a constant variation was observed
between 25 to 30, 70 to 80 and 125 to 140. The fluctuations
could be due to various interactions. Protein residues that
interact with the ligand are marked with green-colour vertical
bars. The findings confirm that ligand binding could render
residues in the Holo state more stationary than in the Apo
state. Fig. 8 depicts the RMSF results.

H-bond analysis

Schrédinger Release 2022-4 was utilized in MD simulations to
illustrate intermolecular hydrogen bonds, identifying variables
and determining the stability of the drug-target complex. The
intermolecular hydrogen bonds of the Holo states were
tracked. The stacked bar chart of Holo1l in Fig. 9 (A) shows that
amino acid residues of Post MD PPARG-Kaempferol complex
intermolecular Hydrogen bonds formed with Leu255, Glu259,
Arg280, GIn283, lle341, Glu343, Gly344 and Gly346 may play a
vital role in the binding and regulation of the protein. In the
case of the Holo2 state in Fig. 9 (B) for PPARG-Biguanide Post
MD complex intermolecular Hydrogen bonds formed with
Glu291, Glu295 and Glu343, which defines Biguanide has less
stability with PPARG. Fig. 9 depicts the results.

The simulation of the Holol state (PPARG-Kaempferol
complex) represented a consistent number and intensified
intermolecular hydrogen bonds throughout the simulation
with lesser deviation, whereas the Holo2 state (PPARG-
Biguanide complex) has inconsistent H-bonds. Fig. 10 shows
the results for the stabilized hydrogen bonding interactions in
post MD protein-ligand interaction of all the Holo states.
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Discussion

Hyperglycaemia is a medical disorder associated with
diabetes, which is characterized by elevated blood sugar levels.
People from both industrialized and developing nations suffer
from T2DM (36) and its implications, which is a universal public
health burden. PPARG protein is currently of interest to
researchers due to its association as the vital target for T2DM
therapeutics (1). Metformin (Biguanide) is the most prescribed
drug around the globe as first-line drug well known for
managing T2DM by decreasing hepatic glucose production, but
it has no role in uprooting T2DM. The genetic linkage of the
PPARG gene with other genes may lead to complications and
make way for the initiation of other associated diseases inside
the human body. Therefore, researchers are on their way to
explore potential compounds from natural sources, including
C. cuspidatus, which is regarded as an insulin plant, for better
pharmacotherapeutics in T2DM (7). Concerning the
importance of insulin plant, the current investigation implied
computer-assisted  drug discovery process, involving
combinatorial approach of pharmacokinetic studies,
molecular docking and DFT analysis, to explore effective anti-
diabetic phytochemicals. The In-silico, pharmacokinetic studies
revealed 7 compounds, namely alpha-ionone, ascorbic acid,
beta-ionone, dodecanoic acid, kaempferol, myristic acid and
tetradecanoic acid. Subsequently, the molecular docking
studies depicted Kaempferol and Beta-ionone with better
docking scores compared to others. This finding is well aligned
with the existing reports, where Kaempferol has been well
appreciated as an anti-diabetic drug and its complications (37).
The binding energy of Kaempferol proves its potency to act as a

better drug against the PPARG gene and can reduce blood
sugar levels by helping the pancreatic Beta-cells for more
amount of insulin production.

With its broadened processing power over traditional
approaches, quantum computing has the potential to
fundamentally change an extensive variety of scientific fields,
including medicine. However, proof-of-concept studies have
been the main use of quantum computer technology for drug
discovery. Through the quantum chemical calculation study,
the DFT method was applied to study the reactivity, where
screened natural molecules showed the highest reactivity due
to lower band gap energy, which defined their faster rate
reaction in the side body with better efficacy. The 2 high-
scoring compounds Kaempferol and Beta-ionone have the
lowest band energy as compared to the other natural
compounds and the standard drug Biguanide. The low energy
gap of Kaempferol also defines the higher stability of the
molecule and strength of binding to the target protein PPARG.

Subsequently, on the other hand, the Normal mode
analysis method was applied to check the PPARG protein’s
stability, flexibility and correlation with Kaempferol. In
molecular dynamic simulation, the Kaempferol-PPARG
complex resulted highly stable trajectory with higher number
of H-bonding residues in post MD simulation interaction
defining its stronger attachment than the standard drug. The
findings of this in-silico study could be employed as evidence
for further in-vitro and in-vivo assessments that are required to
validate anti-diabetic medication potency and effectiveness of
the compounds against PPARG protein.
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Conclusion

The number of patients with T2DM is increasing daily and
specific proteins like PPARG play an essential role in rapid
growth. In the current study in silico drug design process is
applied to search for a better phytochemical from C. cuspidatus.
Here, the compounds Kaempferol and Beta-ionone scored
better with reactivity. This computational investigation leads
these molecules to further in vitro analysis and development of
possible drug candidates to manage T2DM.
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