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Abstract

The rapid growth of industrialization and urbanization has significantly impacted our natural resources, such as air, water and soil. Many
problems have been brought about by these changes, such as drought, more frequent flooding, pollution, climate change, biodiversity
loss, the extinction of numerous plant and animal species, changes in land cover and usage and deterioration of the land. Extensive
research has been conducted to understand how these physical changes affect natural resources, particularly using the hydrological
models. As a result, a trustworthy hydrological model that can provide outcomes in line with observable parameters is essential. This
comprehensive analysis highlights the vital role of hydrological modelling plays in forecasting floods, managing water supplies and
simulating ecosystems. This review explains the mathematical underpinnings and applicability of hydrological models for various system
aspects by classifying them into empirical, conceptual and physically-based frameworks. To furnish details with a comprehensive
understanding of model robustness and dependability, this study encompasses calibration methodologies and uncertainty analysis
frameworks. Furthermore, it meticulously elucidates the diverse sources of uncertainty inherent in hydrological modelling, thereby
providing a nuanced perspective on the subject. It also presents a summary of well-known global hydrological models, emphasising their
goals, history and contributions to our knowledge of biogeochemical cycles, climate change effects and water shortage dynamics.
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Furthermore, there are ramifications for coastal
eutrophication and climate due to the strong relationship
between global hydrology and the carbon cycle (6, 7).

Introduction

The field of hydrology encompasses a wide range of
applications, including water resource planning, flood
prediction and design and integrated modelling of hydrologic
and environmental systems, such as climate-land surface
interactions and water-energy nexus. These applications rely
heavily on hydrological models, but are often limited by the
availability of spatial-temporal data due to resource
constraints and measurement techniques. As a result, it
becomes essential to extrapolate data from current
observations over time and location and to evaluate the
possible hydrological effects of future system reactions, such
as modifications to the climate and land management. Over
the centuries, numerous attempts have been made to

These interconnected global cycles ultimately affect
society and the economy, with globalization's influence on
food security and the world water cycle leading to the
growing significance of virtual water trading (8). The impact
of climate on hydrology has been a topic of interest within the
scientific community for a long time, but recently there has
been a growing focus on the feedback mechanisms involved.
This has led to the concept of a "Global Water System™ (9,10),
which considers the interconnectedness of water flow with
other systems, including physical, institutional and economic
aspects. Human actions like the storing and withdrawing of

measure and forecast water flow and storage in hydrology,
advancing our understanding of the dynamics of water
systems. Regional and global climate patterns are
significantly shaped by variations in soil moisture content and
terrestrial evapotranspiration. Studies have demonstrated
the important effects of changes in land use and climate on
water systems (1-3). Furthermore, research has revealed the
downstream effects of land use changes on water quality and
hydrology across hundreds of kilometres, indicating that river
discharge directly impacts marine features (4, 5).

water further complicate this network (11). Although there
have been reviews of hydrological modelling in the past, an
updated examination of the capabilities and limits of
modelling is currently required (12-14). This is a result of the
field's fast evolution, which includes developments in
distributed modelling, managing uncertainty, simulating
ungauged basins and dealing with non-stationarity.
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Hydrological modelling

This model is a simplified representation of a real-
world system (15). The most effective model is one that uses
the fewest parameters and model complexity while still
producing results that closely resemble reality. Models are
primarily used to understand various hydrological processes
and predict system behaviour. A model is defined by various
parameters, such as rainfall, soil type and vegetation cover,
which determine its characteristics and behaviour. A runoff
model comprises formulas that help estimate the runoff
based on various factors describe the characteristics of a
watershed. Critical inputs for all models include the drainage
area and rainfall data. Additionally, watershed attributes such
as soil composition, vegetation cover, geography, soil
moisture content and groundwater aquifer features are also
taken into consideration. Modern water and environmental
resources management relies heavily on the use of
hydrological models. Although hydrological models are
useful resources for comprehending and forecasting the
behaviour of water systems, it is critical to remember that
they are not perfect representations of reality. This is because
hydrological processes are dynamic and complicated,
changing over time and in all three geographical dimensions.
Consequently, one cannot confidently predict the actual
system's responses, such as water levels, flow rates, or
quality, to various environmental or human-induced factors
(16). Studying all five sources of variation (randomness, time
and the three spatial dimensions) simultaneously is difficult
and has only been achieved under highly idealized
conditions. Hydrological models usually consider only one or
two causes of variations in real-world applications.
Notwithstanding these drawbacks, hydrological models offer
insightful information and are frequently expressed by
particular equations that accurately reflect the fundamental
dynamics of the system.

o=f(l,P,t)+¢ Eqg. (1)
Where,
0: n x k matrix of hydrologic responses to be modelled
f: collection of functional relationships

I : n x m matrix of inputs

P: vector of p parameters
t: n x k matrix of errors
€: number of data points
k: number of responses

m:  the number of inputs

The relationship between hydrological inputs,
parameters, errors and responses as defined in Equation (1).
The inputs and parameters influence the outputs of
hydrological models, highlighting the sources of variability
and errors in the modelling process (Fig. 1). Stand-alone
hydrological models are typically utilized for smaller
catchment areas and basins. These models possess specific
characteristics that necessitate regional estimation or
calibration. The stand-alone models include the Hydrological
Simulation Program-Fortran (HSPF;), the Soil and Water
Assessment Tool such as SWAT; and the Hydrologiska Byrans
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Fig. 1. Schematic representation of system operation.

Vattenbalansavdelning HBV (17-19). These models are
designed to be used at a smaller scale and require careful
estimation and calibration at the regional level to ensure
accurate results.

Types of models

Scientists have made multiple attempts to classify
hydrological models in the past, with various categorization
systems proposed by different researchers. Hydrological
models can be classified based on their input parameters and
the extent to which they rely on physical representations of
hydrological processes (20). Hydrological models are
categorized into three types: joint stochastic-deterministic,
which combines statistical and physical approaches to
simulate hydrological processes; purely stochastic models,
which rely on probabilistic methods; and deterministic
models, which use physical laws and equations to describe
processes in a defined system (21). Additionally, three other
categories of deterministic models exist: conceptual,
empirical and physically-based models. This classification
system can be applied to both single-component models,
such as groundwater models and watershed models.
However, it is important to note that this categorization is not
precise and certain model codes may not fit neatly into these
classifications. Different categories of classification are
represented in Fig. 2.

Empirical models (Metric models)

Metric models describe how a system behaves by using
observable data. Sherman's unit hydrograph theory, which is
applied to catchment-scale modelling based on events,
serves as one illustration. Because of their simplicity, these
empirical models may be used to apply regional analysis to
ungauged catchments. They connect the simple properties of
the model, such as "unit hydrograph," which is a graphical
representation of the direct runoff response of a catchment
to a unit of rainfall over a specific duration, as well as time to
peak and percentage runoff, to the catchment’s physical and
meteorological variables. However, it is important to note
that metric models heavily rely on the available data. While
they are useful for predicting extreme situations or ungauged
catchments, their findings often lack a clear statement of
confidence bounds.

Recent advancements in metric modelling that have
captured interest include Artificial Neural Networks (ANN)
and Data Based Mechanistic (DBM) modelling. The ANN
approach involves learning about the behaviour of rainfall-
runoff systems by using existing rainfall and runoff data.
Typically, an artificial neural network consists of three layers:
the input layer (e.g., rainfall), the hidden layer of neurons and
the output layer (e.g., stream flow). This type of model adjusts
the network’s link weights to ensure that the network
response closely resembles the real response, a process
known as “training,” to understand the relationship between
input and output.
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Fig. 2. Classification of the hydrologic model (16).
Conceptual methods (Parametric models)

Conceptual models are constructed based on two key criteria
(12). First, the structure of the model was established prior to
modelling activities. Second, not all of the parameters of the
model can be directly interpreted physically, meaning they
are not independently measurable. Consequently, it becomes
necessary to estimate at least some conceptual model
parameters by calibrating them against observable data.
Conceptual models typically encompass every significant
component of hydrological activity thought to be involved in
input-output connections at the catchment scale (22). These
models can vary greatly in complexity and often incorporate a
framework centred on the extensive use of schematic
storages, collectively providing a conceptual representation
of the key hydrological aspects.

The structure of a model can vary from a simple
representation with a few basic components to a highly
intricate depiction. Using a complex model structure without
sufficient data support or employing a simple model that fails
to capture the complexity of the rainfall-runoff response can
present challenges (22). To effectively develop a model, it is
essential to strike a balance between the available knowledge
and the model’s complexity. Techniques such as identification
statistics, sensitivity analysis, holding insensitive parameters
constant, or formal model restructuring can be employed to
appropriately reduce model complexity (23-27).

Physically based models

Physically based models capture different hydrological
processes such as evapotranspiration, infiltration, overflow
and flow in both saturated and unsaturated zones. This is
achieved by using the fundamental equations of motion,
often expressed as non-linear partial differential equations
derived from continuum mechanics. These equations can
have analytical solutions, but most often, finite difference or
finite element spatial discretisation techniques are used to
solve them numerically (12). Because they are characterised
by completely observable properties, physics-based models
have the ability to continually simulate runoff response
without the need for calibration (27). Although these models

are suitable to capture key hydrological processes, such as
surface and subsurface flow and energy balance, they also
come with significant challenges.

The use of simplified physics and mechanics is
sometimes employed to represent complex physical
processes in order to reduce computational burden and data
requirements. However, this approach, such as using
simplified St. Venant equations or the Green-Ampt equation,
may lead to a departure from the true physical basis and
introduce further ambiguity. Even when material qualities are
parameterized, including variations across different
geographic locations, they may not fully capture the
heterogeneity of a catchment. While the NSRI database and
calibration procedures can be utilized to estimate local-scale
properties, the resulting uncertainties are significant and may
lead to a wide range of potential process responses.

The characteristics of models based on process
description have been shown in Table 1.

Deterministic model

A deterministic hydrological model generates consistent
outputs for a given set of input values and does not consider
randomness. (16). This type of model is used to make
predictions and can be categorized into hydrological models
that account for constant flow and those that accommodate
unstable flow.

Stochastic model

Stochastic hydrological models can produce various output
values for a given set of input parameters (16). These models
exhibit a degree of randomness in their output. Forecasts
generated by stochastic models can be categorized as space-
correlated, space-independent, or time-independent. Based
on geographic representation, the deterministic hydrological
model is divided into two categories:

1) Lumped Model
2) Model of Semi-Distribution

3) Distributed Framework
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Table 1. Characteristics of three models (20)

S.No. Particulars Empirical Model Conceptual Model Physically Based Model
1. Description Data-driven or black-box model A semi-empirical or hybrid model A mechanistic or white-box model
Uses mathematical equationsto  Based on reservoir modeling and Based on spatial distribution,
2. Mathematical Basis derive values from includes semi-empirical equations  analyzing criteria that describe
accessible time series with a physical basis physical attributes
3 Consideration of Minimal attention to system Parameters are obtained through  Requires data on the catchment's
’ System Features functions and characteristics calibration and field data morphology and initial state
Low explanatory depth, high Simple to incorporate into Complex, requires computational
4, Model Characteristics prediction power, not computer code, reguires power and expertise, faces scaling
extendable to other catchments significant hydrological and issues
6. Domain Limited to a specified domain Calibration involves curve fitting Applicable to a wide range of

for physical interpretation situations

The two main types of hydrological models are lumped
and distributed models. Lumped models use average values
for the whole catchment region and show the catchment as a
single entity. They are often described by differential or
empirical algebraic equations and do not take into account the
spatial variability of inputs, processes, boundary conditions
and geometric aspects of the system. Distributed models, on
the other hand, compute state variables for each of the smaller
pieces, or grid squares, that make up the catchment. With this
method, predictions may be made that are dispersed spatially
and take into consideration local differences in boundary
conditions, watershed characteristics, processes and inputs.
Consequently, the geographical variation within catchment
regions can be partially addressed by distributed models.

In distributed models, data availability often leads to
the averaging of parameters over numerous grid squares.
These models utilize average variables and parameters at
element or grid sizes. A proposed alternative, semi-distributed
models, aims to combine the advantages of both spatial
representations. Instead of trying to represent a continuous
spatial distribution of state variables, this model type employs
a series of lumped models to discretize the catchment to a
relevant extent. A semi-distributed model can effectively
capture the significant characteristics of a watershed while
requiring fewer data and processing resources compared to
distributed models (28). The characteristics of models based on
geographic representation have been shown in Table 2.

Identification of Hydrological models
Calibration of hydrological models

Calibrating hydrological models involves selecting appropriate
parameter values to accurately simulate the hydrological
processes of a specific catchment area (14, 29). These
parameters generally fall into two categories: process
parameters and physical parameters (30). Physical parameters,
such as watershed size and surface slope, provide insights into
the physical characteristics of the catchment and can be
quantified. However, certain watershed characteristics, like the
average depth of water storage capacity and the coefficient of
nonlinearity governing discharge rates from different storage
areas, are often challenging to measure directly (31). Although
some physical properties, such as porosity and hydraulic
conductivity, can be theoretically quantified, they are difficult
to measure in practice and thus are often calibrated. This
calibration can be automated, manual, or a combination of
both.

Manual Calibration

Manual calibration involves the modeller adjusting the
parameters of the model by trial and error until the output
closely matches the observed data. This process, known as
manual calibration, can be time-consuming and may produce
different results depending on the familiarity of the modeller
with the model structure and the catchment being studied
(22,30). Determining the "best fit" or the optimal calibration
solution can be challenging, leading to variability in the
results produced by different modellers. Another drawback of
this method is the extensive time required. Formally

Table 2. Characteristics of lumped model, semi-distributed model and distributed model (16)

S.No. Lumped Model Semi-Distributed Model Distributed Model
1 Input parameters are spatially constant  Allows for some spatial variation in input User can select the resolution for fully
: within the basin parameters fluctuating input parameters
7. Valuatgjt?lroovsmi'ﬁguc;rcfﬁéggpi:;sed on Assesses response by dividing the basin  Divides the basin into smaller sub-basins to
. into multiple sub-basins evaluate response
sub-basin responses
3. Not suitable for event-based processes Suitable for event-based processes
Parameters do not represent physical . Considers hydrologic processes at various
4. hydrologic features; uses area-weighted Parametgirztl;iebgeé\éveregéggped and spatial points, defining model variables based
averages on spatial dimensions
5. Requires fewer data Less data-lnterr:gvdeetl?an distributed Requires large amounts of data
6. Easy to use Requires expert use
7. Predicts results only at the outlet Predicts results at any location and time
8. Simple, minimal computational time Complex, high computational time
9 Example: SCS-CN based models, IHACRES, Example: SWMM, HEC HMS, TOPMODEL, Example: HYDROTEL, MIKE11/SHE, WAIFLOOD,
: WATBAL, etc. etc. etc.
10 Does not consider governing processes Meticulously models every controlling
: during predictions physical mechanism
1L Not very accurate Highest accuracy achievable with adequate

data
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analysing uncertainty is particularly difficult, if not
impossible, because the process may yield minimal or no
information from prior parameter modifications.

Automatic Calibration

The need to accelerate the calibration process and improve
computational efficiency has led to the development of
computer-based methods for automating hydrological model
calibration. Automated calibration methods aim to reduce the
subjective human judgment involved in manual techniques
and provide consistent performance (32). These methods also
strive to enhance impartiality and reduce the need for
extensive model-specific knowledge (31). However, designing
objective functions and optimization algorithms that
accurately replicate human judgment remains a challenge, so
automated techniques have not fully replaced manual
methods. Therefore, combining automatic calibration with
manual procedures is often most effective.

A typical automated parameter estimation
methodology comprises four primary components: calibration
data, the optimization technique, termination criteria and the
selected objective function (or performance measure) (30).The
aim of automated calibration is to identify the parameter
values that optimize the objective function's numerical value,
either by maximizing or minimizing it.

Objective functions

An objective function, or goodness of fit, is a numerical
representation of the discrepancy between the model's
simulated output and the actual catchment output (33). In
hydrology, objective functions are often based on maximum
likelihood and conventional least squares techniques. One
popular objective function is the Nash-Sutcliffe Efficiency
(NSE), which indicates the proportion of data variance
explained by the model (34). While NSE captures the time to
peak and linear correlation with measured flow well, it under-
represents flow variability and mean (33, 35, 36). The Kling-
Gupta Efficiency (KGE) was developed to address some of
NSE's shortcomings, maintaining a good linear relationship
between observed and modelled data while matching flow
variability, peak and mean well in limited studies.

Multi objective analysis

The choice of objective functions is crucial for certain
modelling tasks, such as flood predictions, irrigation system
design and hydroelectric power generation. Using single-
objective functions can skew the results towards specific
hydrograph characteristics (37). Balancing conflicting
objectives often requires compromising on several factors
and a parameter set that meets one criterion is rarely the
same as one that meets another (38). The multi-objective
approach addresses this issue by considering multiple
aspects of the performance of the model simultaneously. This
approach helps identify the shortcomings of the model in
achieving multiple performance objectives at once and aids
the modeller in choosing the performance trade-off that best
meets the requirements of the application (39). A common
technique involves combining multiple objectives into a
single criterion and optimizing for the best fit value, with the
final result significantly influenced by how the objectives are
weighted or combined (37).

Optimization algorithms

Hydrological modelling makes extensive use of random
search techniques. A specific model parameter distribution is
used to generate sets of random values. These values are
then included into the model equations to produce
corresponding sets of outputs. This distribution often makes
the assumption that the parameters are independent when
the joint probability is unknown in advance (40). Other
methods for global optimisation include set coverage
approaches, pure random search, adaptive and controller
random search, multiple local searches, simulated annealing
and tabu search. Shuffled Complex Evolution (SCE), AMALGAM,
DREAM, Multi-Objective COMplex evolution (MOCOM) and Multi
-Objective Shuffled Complex Evolution Metropolis (MOSCEM-
UA) are examples of genetic and evolutionary algorithms used
in hydrological modelling (37, 41-44).

Verification

Following calibration, the model is subjected to verification,
often referred to as validation, in order to assess its
performance on data that was not utilised in the calibration
process. Model verification seeks to detect biases in the
calibrated parameters and validates the model's capacity to
precisely describe the watershed's hydrological response
(39). Split sample studies, in which one set of data is used for
model calibration and another set is used to confirm the
model predictions, are frequently employed (45). Numerous
tests have been proposed for split sampling, proxy catchment
and proxy catchment split sample. A proxy catchment may
have discharge data and other variables that may be used to
assess the model's predictions, but during the model
estimate phase, it is regarded as ungauged. The following
tests were proposed in a previous study (46) and were also
extended in another report (47):

3 simple split-sample test,

. different split-sample test,

3 proxy-catchment test and

. Different proxy-catchment test.

Sensitivity analysis

Sensitivity analysis is the process of evaluating how
modifications to a model's inputs, initial conditions, or
parameters affect the its output (31). The region around the
optimal parameter estimates, when the function value
deviates from the optimal by a small amount, is known as the
zone of indifference. The relationships between parameters
can be found using sensitivity analysis when two or more are
changed simultaneously. A sensitivity analysis entails
examining the model parameter space and visually or
numerically illustrating how sampled parameters affect the
intended model output (48). Other examples are found
in other studies (40, 49).

The nominal range and differential analysis
approaches are two methods for performing local sensitivity
studies (50). Conversely, global sensitivity analysis seeks to
investigate the whole parameter space within predefined
attainable parameter ranges (51). A statistic is used to
quantify the total variability of the objective function over the
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space, or a sub-dimension of the space. For instance, the
Kolmogorov-Smirnov test, can be used to gauge the extent to
which the response surface deviates from the uniform value
of the objective function. (52). The literature has identified a
number of methods for performing global sensitivity analysis,
such as variance-based approaches, regression-based
approaches, regional sensitivity analysis and Bayesian
sensitivity analysis (53-57).

Sources of Hydrological model uncertainties

Uncertainties in hydrological models can arise from various
factors, including parameters, model structure, input data,
calibration (observation) and initial or boundary conditions.
Additionally, initial and boundary conditions of the model can
also contribute to uncertainty, although these are not
considered in this assessment. Hydrological models often use
effective parameters, which are simplifications of actual
processes. The inability to accurately quantify or predict
these effective parameters can lead to parameter uncertainty
(27, 58). The accurate representation of a hydrological system
is challenging due to the lack of a unifying theory, incomplete
information and numerical and procedural simplifications.
These limitations create structural uncertainty in the model.

Other conceptualizations, like subsurface hydro-
stratigraphy or the discretization of surface and process
characteristics, may also contribute to model structural
uncertainty (59-61). Model architectures significantly
influence model performance (62). Structural uncertainty is
crucial because it has the potential to invalidate the model
and the measurement of other uncertainties (63-65). A
comparison of structural and parameter uncertainty revealed
that structural uncertainty is more prevalent, particularly
when the model is applied outside of its calibration range.
Additionally, up to 30% of the prediction error might be
attributed to structural uncertainty (66). The largest
contributor to prediction uncertainty is model structure, as
demonstrated using the variance decomposition of stream
flow estimates (67).

Hydrological model uncertainty analysis

Six general classes of uncertainty analysis methods have
been identified: (i) Monte Carlo sampling; (ii) response surface
-based schemes, which include machine learning and
polynomial chaos expansion; (i)  multi-modelling
approaches; (iv)Bayesian statistics; (v) multi-objective
analysis; and (vi) least square-based inverse modelling. The
classification of hydrological model uncertainties into four
major sources: parameter, input, structural and observation
uncertainty. It highlights common techniques for addressing
these uncertainties, such as Bayesian statistics, Monte Carlo
analysis and multi-model approaches. Parameter uncertainty
involves advanced methods such as inverse modelling and
response surface schemes, while input and structural
uncertainties rely on techniques, namely multipliers and
multi-model analysis (Fig. 3).

Parameter uncertainty

Parameter uncertainty, unlike other types of uncertainty, is
addressed using various strategies. One popular technique
for dealing with parameter uncertainty is the Generalized
Likelihood Uncertainty Estimation (GLUE), which takes into
account the equifinality hypothesis. The equifinality
hypothesis highlights the presence of numerous parameter
settings that describe hydrological processes indiscriminately
or lead to the same outcome. GLUE improves Monte Carlo
simulations by adding a behavioural threshold measure that
separates viable and unfeasible parameters and structures.
However, GLUE has been criticized for its subjectivity in
selecting a behavioural threshold and its lack of a rigorous
statistical basis, despite its widespread usage due to its
simple conceptualization and execution. Another method,
although not as popular as GLUE, has been used in various
studies. One factor limiting its implementation is the absence
of measures that account for the degree of input and output
uncertainty and their interactions (68).

Input uncertainty

Accurate hydro climatic input data is crucial for hydrological
models, particularly for precipitation and associated
uncertainty. Traditional methods involve using a multiplication

Sources of Hydrological Model
Uncertainty

A

-

Parameter Uncertainty

2

Input Uncertainty

$

~

Observation Uncertainty

$

Structural Uncertainty

$

Fig. 3. Sources of hydrological model uncertainty and broad technique (76).
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factor to address input uncertainty, often determined by model
parameters or expert judgment. However, there is a lack of
formal processes for determining this multiplication factor.
More robust options, such as Bayesian statistics and Monte
Carlo methods like GLUE, offer better solutions. Isolating input
uncertainty from model parameters can be achieved by
adopting a distribution for "true" precipitation, thus reducing
other uncertainties (68). Nevertheless, determining the "true"
input distribution presents challenges. In order to deal with
structural uncertainties, input uncertainty is simultaneously
evaluated with model parameters using the Bayesian Total
Error Analysis (BATEA) (69) and the Integrated Bayesian
Uncertainty Estimator (IBUNE) (70). These methods can,
however, be computationally taxing, especially for distributed
models that need inputs that fluctuate across time and space
and they may result in fluctuating input uncertainty as model
topologies change.

Structural uncertainty

The use of ensemble approaches and multi-model averaging
has helped to quantify and reduce structural uncertainty by
combining several model structures. The effectiveness of multi-
model averaging depends on dependability, consistency and
error compensation (71). Statistical evidence and empirical
large-sample data have demonstrated why a multi-model
average outperforms a single model (72). Ensemble predictions
are aggregated using weights that are either performance-
based or equal. Equal weighting is advantageous as reported in
a previous study (73). Performance-based weighted
multimodel predictions have also been reported in several
studies (62, 43, 74). A comparison of many alternative model
averaging methods is provided in a study (75). When
component models perform similarly and there is no model
weighting or discriminating criteria, equal weighting is
preferable. However, employing variable weights yields
better forecasts when the models' performances differ
noticeably and each model is focused on modelling a
particular aspect of the hydrological processes.

Existing Global Hydrological Models:

Twelve global hydrological models developed between 1989
and 2010, focusing on their objectives, developers and key
applications, are highlighted and summarised in Table 3.
These models address critical challenges such as global water
availability, climate change impacts and nutrient transport.
They employ advanced techniques to enhance water
balance, vegetation dynamics and energy modelling across
diverse spatial and temporal scales.

Conclusion

The notable developments in hydrological modelling since
the establishment of the initial Hydrological Research Unit
(HRU) at Wallingford in the 1960s have not occurred in
isolation. They have coincided with rapid technological
advancement. Complex mathematical computations that
take hours or days to complete on a PC or laptop can now be
performed in seconds. New instruments and data recording
tools allow for more precise and frequent observations.
Recent significant flood occurrences have led to the

development of real-time flood forecasting systems with
sophisticated data processing algorithms, real-time updating
of model parameters and the estimation of prediction
uncertainty. These systems use data from multi-parameter
weather radars. Hydrological models need to be part of a
broader, multidisciplinary approach to flood management.
This approach should involve planners, asset managers
responsible for engineered infrastructure such as flood
defences and barriers and stakeholders in flood-affected
areas who possess valuable local knowledge. Additionally,
software tools can facilitate the visualization and analysis of
various flood risk assessment options, enabling more
informed decision-making. This awareness has grown
alongside more realistic expectations for the accuracy of
model predictions.

Acknowledgements

The authors would like to thank the Department of Remote
sensing and GIS and Centre for Water and Geospatial Studies,
Tamil Nadu Agricultural University, for providing the
necessary facilities and support to write this paper. We also
extend our gratitude to our colleagues and reviewers who
provided valuable feedback and suggestions to improve the
manuscript.

Authors' contributions

HM conducted an extensive literature review and contributed
to drafting sections on hydrological model types and their
mathematical frameworks, as well as assisting in the
preparation of tables and figures. PS conceptualized and
supervised the review, provided critical insights into the
structure and scope of the manuscript and reviewed and
edited all sections to ensure coherence and quality. MD
focused on collecting and analysing data related to calibration
and uncertainty analysis and contributed to drafting sections
on global hydrological models and their applications. SS
compiled information on global hydrological model
applications, emphasizing case studies and contributed to
revising and enhancing the technical content. SAP conducted a
detailed review of uncertainty sources and methods and
prepared illustrations and figures to visually represent
classifications and uncertainties. RKP provided support in data
visualization, prepared supplementary materials and assisted
in the final proofreading of the manuscript.

Compliance with ethical standards

Conflict of interest: The authors declare that they have no
conflict of interest regarding the publication of this paper

Ethical issues: None

Al Declaration : During the preparation of this work, the
author(s) used Chat GPT by Open Al to enhance language
clarity and readability. After using this tool/service, the
author(s) reviewed and edited the content as needed and
take(s) full responsibility for the publication's content.

Plant Science Today, ISSN 2348-1900 (online)



HARISH ET AL 8

Table 3. Existing Global Hydrological Models - Detail

S.No. Year Model Developed by Objectives Applications

1. Comparison of PET methods on US
watersheds-WBM (77)

2. Using GHM in an application of isotope

HDTM 1.0 _ Study global tracers at the continental scale in hydrological
(HydroDynamic Model) o biogeochemical cycles; modelling (78)
] WBMplus / WBM-WTM University of New linked to Terrestrial 3. Calculation of variability and uncertainty in
1 1989 ‘\ater Balance Model - Hampshire, Ecosystem Modeland  the global irrigation water demand-WBMplus
Water Transport USA Trace Gas Model via soil (79)
Model) moisture and 4. Analysis of the effect of climate and
evapotranspiration.  hydrological alteration in the hydrological cycle
to study nutrient transport (7)
5. Using GHM to calibrate remote sensing signal
to discharge (80)

. .. . 1. Validation of the weather forecasting models,

MPI-HM (Max Planck Mhélfexéfé?gcilé'l(&sgfgtl;ggk Defflpoen:actslr;z;ilnvlitértgow European Centre for Medium-Range Weather
2 1998 Institute - 5 Forecasts Re-Analysis (ERA) and National Center

Institute for Meteorology), - oceans, linking with a for Environmental Prediction Re-Analysis (NRA)

Hydrology Model) Germany GCM (ECHAM). o
1. Estimation of water scarcity for eastern and
Centre for Ecology & Study progression of southern
3 1999 GWA\,&A\/Q?ILO&EL Water Hydrology global water scarcity due Africa (82)
Assessment m)c/>del) (formerly Institute of to populationincrease 2. Measurement of the impact of climate and
Hydrology), UK and climate change. land use
change (83)

Develop a macro-scale 1. Measurement of uncertainty in an ensemble

Macro-PDM (Macro global model; initially, ~with 21 GCMs at a global scale using a campus
4 1998 Probability University of Reading, UK only WBM existed. Uses wide computer grid (84)
Distribution Model) VIC principles on a global 2. Study of the impact of climate change on
scale. river flow regimes (85)

1. Estimation of global soil moisture content

Improve previous models (86)
VIC (Variable Infiltration |, . . . by adding sub-grid 2. Prediction of discharge of the world’s rivers
5 2001 Capacity Unlverg;;;tc;{e\/VSssfxngton, heterogeneity for (87)
model) ’ vegetation and multiple 3. Evaluation of the Atmospheric Model
soil layers. Intercomparison

Project (AMIP 11) (88)

National Oceanic and

Atmospheric 1. lllustrating an approach of land model
: Administration Enhance energy and evaluation with
6 2002 LAD (L;noddgl);namlc (NOAA) / Geophysical Fluid water balance modeling precipitation uncertainty (89)
Dynamics Laboratory, of older models. 2. Measurement of the inter-annual variation in
Princeton, New Jersey, river discharges (90)
USA

1. Measurement of the skill of seasonal
predictability of river discharge for different
European rivers (91)

2. Analysis of the depletion of global
roundwater resources (92)

3. Modelling methane (CH4) emissions of boreal
and arctic wetlands (93)

4. Analysis of future global runoff changes (94)
5. Calculation of global water stress (95, 96)
6. Study of the impact of human abstraction of
surface water and gro(un;:iwater on streamflow
97

Add advanced routines
for grid heterogeneity,
surface runoff, inter-flow,
groundwater and lateral
heat transport.

PCR-GLOBWB (PCRaster
7 2004  Global Water Balance
model)

Utrecht University, The
Netherlands

1. Calculation of green water flows-LPJ (98)
2. Measurement of global carbon fluxes and
pools (99)

- - 3. Checking the uncertainty of the terrestrial

. Simulate spatial and - -
Potsdam Institute for - carbon and water cycle at different spatial
LPJmL (Lund-Potsdam- Climate temporal dynamics of resolutions using the LPJDynamic Global

8 2007  Jenamanaged Land global vegetation and its : -
model) Impact Research (PIK), impact on hydrological Vegetation Model (LPJ-DGVM) (100)

Germany 4. Studying human alteration of the terrestrial
and carbon cycles. water cycle through land management (11)
5. Calculation of global-scale water withdrawal,
allocations and consumptive use for surface
water and groundwater (101)
Complement existing 1. Comparison of two flow network-response
WASMOD-M (Water And Sgeer??;mA??tv(\?;tE:rr;:d global modelsand  functions to evaluate the improvement in runoff
9 2007 Snow balance Modelling  Landscape Sciences, establish minimum - routing (102)
system) Upbsala Universit parameters for gauged 2. Comparison of two precipitation datasets
Y PP Sweden Ys and ungauged river (TRMM and WATCH Forcing Data) in southern
basins. Africa (103)
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National Institute of

Assess global water

1. Calculation of national agriculture water
withdrawals and locating water-stressed
regions (104)

10 2008 HO08 (H07) Environmental Studies, availability at sub-annual 2. Estimation of global virtual water flows (105)

University of Tokyo, Japan time-scales. 3. Analysis of scenarios for different socio-

economic conditions to calculate water
availability and scarcity (106)
1. Identification of regions in which water
resources have higher sensitivity to global
change-critical regions (.107)
WaterGAP (Water -Global  University of Kassel; ava(i:lgg}ﬁ'l;eza\rgvgtirzage - GIOb‘:’l rrggﬂierlg%%g{;(rll%asﬁloj Wéter
11 2003  Analysis and Prognosis  University of Frankfurt, ~based on structural and 3. Calculation of wat(%g;/allablllty indicators
model) Germany techngﬁggczlsglobal 4. Integration of Gravity Recovery and Climate
ges. Experiment (GRACE) data into global
hydrological models (110)
5. Analysis of river flow alterations due to water
withdrawals and reservoirs (111)
ISBA-TRIP (Interactions .
i . Measure continent-level
12 2010 Zitdwgfrgs:'hfr':ﬁggf Cené;ecwg;cé?]gil de terrestrial water storage 1. Measurement of terrestrial water storage and
Runoﬁlr?te ratin Météorologiaues. France and validate it with its seasonal and inter-annual variability (112)
Pathwa%S) & glques, GRACE data.
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