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Introduction 

The field of hydrology encompasses a wide range of 

applications, including water resource planning, flood 

prediction and design and integrated modelling of hydrologic 

and environmental systems, such as climate-land surface 

interactions and water-energy nexus. These applications rely 

heavily on hydrological models, but are often limited by the 

availability of spatial-temporal data due to resource 

constraints and measurement techniques. As a result, it 

becomes essential to extrapolate data from current 

observations over time and location and to evaluate the 

possible hydrological effects of future system reactions, such 

as modifications to the climate and land management. Over 

the centuries, numerous attempts have been made to 

measure and forecast water flow and storage in hydrology, 

advancing our understanding of the dynamics of water 

systems. Regional and global climate patterns are 

significantly shaped by variations in soil moisture content and 

terrestrial evapotranspiration. Studies have demonstrated 

the important effects of changes in land use and climate on 

water systems (1-3). Furthermore, research has revealed the 

downstream effects of land use changes on water quality and 

hydrology across hundreds of kilometres, indicating that river 

discharge directly impacts marine features (4, 5). 

Furthermore, there are ramifications for coastal 

eutrophication and climate due to the strong relationship 

between global hydrology and the carbon cycle (6, 7). 

 These interconnected global cycles ultimately affect 

society and the economy, with globalization's influence on 

food security and the world water cycle leading to the 

growing significance of virtual water trading (8). The impact 

of climate on hydrology has been a topic of interest within the 

scientific community for a long time, but recently there has 

been a growing focus on the feedback mechanisms involved. 

This has led to the concept of a "Global Water System" (9,10), 

which considers the interconnectedness of water flow with 

other systems, including physical, institutional and economic 

aspects. Human actions like the storing and withdrawing of 

water further complicate this network (11).  Although there 

have been reviews of hydrological modelling in the past, an 

updated examination of the capabilities and limits of 

modelling is currently required (12-14). This is a result of the 

field's fast evolution, which includes developments in 

distributed modelling, managing uncertainty, simulating 

ungauged basins and dealing with non-stationarity. 
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Abstract  

The rapid growth of industrialization and urbanization has significantly impacted our natural resources, such as air, water and soil. Many 
problems have been brought about by these changes, such as drought, more frequent flooding, pollution, climate change, biodiversity 

loss, the extinction of numerous plant and animal species, changes in land cover and usage and deterioration of the land. Extensive 

research has been conducted to understand how these physical changes affect natural resources, particularly using the hydrological 
models. As a result, a trustworthy hydrological model that can provide outcomes in line with observable parameters is essential. This 

comprehensive analysis highlights the vital role of hydrological modelling plays in forecasting floods, managing water supplies and 

simulating ecosystems. This review explains the mathematical underpinnings and applicability of hydrological models for various system 

aspects by classifying them into empirical, conceptual and physically-based frameworks. To furnish details with a comprehensive 
understanding of model robustness and dependability, this study encompasses calibration methodologies and uncertainty analysis 

frameworks. Furthermore, it meticulously elucidates the diverse sources of uncertainty inherent in hydrological modelling, thereby 

providing a nuanced perspective on the subject.  It also presents a summary of well-known global hydrological models, emphasising their 

goals, history and contributions to our knowledge of biogeochemical cycles, climate change effects and water shortage dynamics.  
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Hydrological modelling 

This model is a simplified representation of a real-

world system (15).  The most effective model is one that uses 

the fewest parameters and model complexity while still 

producing results that closely resemble reality. Models are 

primarily used to understand various hydrological processes 

and predict system behaviour. A model is defined by various 

parameters, such as rainfall, soil type and vegetation cover, 

which determine its characteristics and behaviour. A runoff 

model comprises formulas that help estimate the runoff 

based on various factors describe the characteristics of a 

watershed. Critical inputs for all models include the drainage 

area and rainfall data. Additionally, watershed attributes such 

as soil composition, vegetation cover, geography, soil 

moisture content and groundwater aquifer features are also 

taken into consideration. Modern water and environmental 

resources management relies heavily on the use of 

hydrological models. Although hydrological models are 

useful resources for comprehending and forecasting the 

behaviour of water systems, it is critical to remember that 

they are not perfect representations of reality. This is because 

hydrological processes are dynamic and complicated, 

changing over time and in all three geographical dimensions. 

Consequently, one cannot confidently predict the actual 

system's responses, such as water levels, flow rates, or 

quality, to various environmental or human-induced factors 

(16). Studying all five sources of variation (randomness, time 

and the three spatial dimensions) simultaneously is difficult 

and has only been achieved under highly idealized 

conditions.  Hydrological models usually consider only one or 

two causes of variations in real-world applications. 

Notwithstanding these drawbacks, hydrological models offer 

insightful information and are frequently expressed by 

particular equations that accurately reflect the fundamental 

dynamics of the system.  

  O = f (I, P, t) + ɛ  Eq. (1) 

Where, 

O : n × k matrix of hydrologic responses   to be modelled 

f  : collection of functional relationships 

I  : n × m matrix of inputs 

P : vector of p parameters 

t : n × k matrix of errors 

ɛ : number of data points 

k : number of responses 

m : the number of inputs 

 The relationship between hydrological inputs, 

parameters, errors and responses as defined in Equation (1). 

The inputs and parameters influence the outputs of 

hydrological models, highlighting the sources of variability 

and errors in the modelling process (Fig. 1). Stand-alone 

hydrological models are typically utilized for smaller 

catchment areas and basins. These models possess specific 

characteristics that necessitate regional estimation or 

calibration. The stand-alone models include the Hydrological 

Simulation Program-Fortran (HSPF;), the Soil and Water 

Assessment Tool such as SWAT; and the Hydrologiska Byrans 

Vattenbalansavdelning HBV (17-19). These models are 

designed to be used at a smaller scale and require careful 

estimation and calibration at the regional level to ensure 

accurate results. 

Types of models 

Scientists have made multiple attempts to classify 

hydrological models in the past, with various categorization 

systems proposed by different researchers. Hydrological 

models can be classified based on their input parameters and 

the extent to which they rely on physical representations of 

hydrological processes (20). Hydrological models are 

categorized into three types: joint stochastic-deterministic, 

which combines statistical and physical approaches to 

simulate hydrological processes; purely stochastic models, 

which rely on probabilistic methods; and deterministic 

models, which use physical laws and equations to describe 

processes in a defined system (21). Additionally, three other 

categories of deterministic models exist: conceptual, 

empirical and physically-based models. This classification 

system can be applied to both single-component models, 

such as groundwater models and watershed models. 

However, it is important to note that this categorization is not 

precise and certain model codes may not fit neatly into these 

classifications. Different categories of classification are 

represented in Fig. 2. 

Empirical models (Metric models) 

Metric models describe how a system behaves by using 

observable data. Sherman's unit hydrograph theory, which is 

applied to catchment-scale modelling based on events, 

serves as one illustration. Because of their simplicity, these 

empirical models may be used to apply regional analysis to 

ungauged catchments. They connect the simple properties of 

the model, such as "unit hydrograph," which is a graphical 

representation of the direct runoff response of a catchment 

to a unit of rainfall over a specific duration, as well as time to 

peak and percentage runoff, to the catchment’s physical and 

meteorological variables. However, it is important to note 

that metric models heavily rely on the available data. While 

they are useful for predicting extreme situations or ungauged 

catchments, their findings often lack a clear statement of 

confidence bounds. 

 Recent advancements in metric modelling that have 

captured interest include Artificial Neural Networks (ANN) 

and Data Based Mechanistic (DBM) modelling. The ANN 

approach involves learning about the behaviour of rainfall-

runoff systems by using existing rainfall and runoff data. 

Typically, an artificial neural network consists of three layers: 

the input layer (e.g., rainfall), the hidden layer of neurons and 

the output layer (e.g., stream flow). This type of model adjusts 

the network’s link weights to ensure that the network 

response closely resembles the real response, a process 

known as “training,” to understand the relationship between 

input and output. 

Fig. 1. Schematic representation of system operation. 
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Conceptual methods (Parametric models) 

Conceptual models are constructed based on two key criteria 

(12). First, the structure of the model was established prior to 

modelling activities. Second, not all of the parameters of the 

model can be directly interpreted physically, meaning they 

are not independently measurable. Consequently, it becomes 

necessary to estimate at least some conceptual model 

parameters by calibrating them against observable data. 

Conceptual models typically encompass every significant 

component of hydrological activity thought to be involved in 

input-output connections at the catchment scale (22).  These 

models can vary greatly in complexity and often incorporate a 

framework centred on the extensive use of schematic 

storages, collectively providing a conceptual representation 

of the key hydrological aspects.  

 The structure of a model can vary from a simple 
representation with a few basic components to a highly 

intricate depiction. Using a complex model structure without 

sufficient data support or employing a simple model that fails 

to capture the complexity of the rainfall-runoff response can 

present challenges (22). To effectively develop a model, it is 

essential to strike a balance between the available knowledge 

and the model’s complexity. Techniques such as identification 

statistics, sensitivity analysis, holding insensitive parameters 

constant, or formal model restructuring can be employed to 

appropriately reduce model complexity (23-27). 

Physically based models 

Physically based models capture different hydrological 

processes such as evapotranspiration, infiltration, overflow 

and flow in both saturated and unsaturated zones. This is 

achieved by using the fundamental equations of motion, 

often expressed as non-linear partial differential equations 

derived from continuum mechanics. These equations can 

have analytical solutions, but most often, finite difference or 

finite element spatial discretisation techniques are used to 

solve them numerically (12). Because they are characterised 

by completely observable properties, physics-based models 

have the ability to continually simulate runoff response 

without the need for calibration (27).  Although these models 

are suitable to capture key hydrological processes, such as 

surface and subsurface flow and energy balance, they also 

come with significant challenges.  

 The use of simplified physics and mechanics is 

sometimes employed to represent complex physical 

processes in order to reduce computational burden and data 

requirements. However, this approach, such as using 

simplified St. Venant equations or the Green-Ampt equation, 

may lead to a departure from the true physical basis and 

introduce further ambiguity. Even when material qualities are 

parameterized, including variations across different 

geographic locations, they may not fully capture the 

heterogeneity of a catchment. While the NSRI database and 

calibration procedures can be utilized to estimate local-scale 

properties, the resulting uncertainties are significant and may 

lead to a wide range of potential process responses. 

 The characteristics of models based on process 

description have been shown in Table 1. 

Deterministic model 

A deterministic hydrological model generates consistent 

outputs for a given set of input values and does not consider 

randomness. (16). This type of model is used to make 

predictions and can be categorized into hydrological models 

that account for constant flow and those that accommodate 

unstable flow. 

Stochastic model 

Stochastic hydrological models can produce various output 

values for a given set of input parameters (16). These models 

exhibit a degree of randomness in their output. Forecasts 

generated by stochastic models can be categorized as space-

correlated, space-independent, or time-independent. Based 

on geographic representation, the deterministic hydrological 

model is divided into two categories:  

1) Lumped Model  

2) Model of Semi-Distribution  

3) Distributed Framework 

 

Fig. 2. Classification of the hydrologic model (16). 
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 The two main types of hydrological models are lumped 

and distributed models. Lumped models use average values 

for the whole catchment region and show the catchment as a 

single entity. They are often described by differential or 

empirical algebraic equations and do not take into account the 

spatial variability of inputs, processes, boundary conditions 

and geometric aspects of the system. Distributed models, on 

the other hand, compute state variables for each of the smaller 

pieces, or grid squares, that make up the catchment. With this 

method, predictions may be made that are dispersed spatially 

and take into consideration local differences in boundary 

conditions, watershed characteristics, processes and inputs. 

Consequently, the geographical variation within catchment 

regions can be partially addressed by distributed models. 

 In distributed models, data availability often leads to 

the averaging of parameters over numerous grid squares. 

These models utilize average variables and parameters at 

element or grid sizes. A proposed alternative, semi-distributed 

models, aims to combine the advantages of both spatial 

representations. Instead of trying to represent a continuous 

spatial distribution of state variables, this model type employs 

a series of lumped models to discretize the catchment to a 

relevant extent. A semi-distributed model can effectively 

capture the significant characteristics of a watershed while 

requiring fewer data and processing resources compared to 

distributed models (28). The characteristics of models based on 

geographic representation have been shown in Table 2. 

 

 

Identification of Hydrological models 

Calibration of hydrological models 

Calibrating hydrological models involves selecting appropriate 

parameter values to accurately simulate the hydrological 

processes of a specific catchment area (14, 29). These 

parameters generally fall into two categories: process 

parameters and physical parameters (30). Physical parameters, 

such as watershed size and surface slope, provide insights into 

the physical characteristics of the catchment and can be 

quantified. However, certain watershed characteristics, like the 

average depth of water storage capacity and the coefficient of 

nonlinearity governing discharge rates from different storage 

areas, are often challenging to measure directly (31). Although 

some physical properties, such as porosity and hydraulic 

conductivity, can be theoretically quantified, they are difficult 

to measure in practice and thus are often calibrated. This 

calibration can be automated, manual, or a combination of 

both. 

Manual Calibration 

Manual calibration involves the modeller adjusting the 

parameters of the model by trial and error until the output 

closely matches the observed data. This process, known as 

manual calibration, can be time-consuming and may produce 

different results depending on the  familiarity of the modeller 

with the model structure and the catchment being studied 

(22,30). Determining the "best fit" or the optimal calibration 

solution can be challenging, leading to variability in the 

results produced by different modellers. Another drawback of 

this method is the extensive time required. Formally 

S.No. Lumped Model Semi-Distributed Model Distributed Model 

1. Input parameters are spatially constant 
within the basin 

Allows for some spatial variation in input 
parameters 

User can select the resolution for fully 
fluctuating input parameters 

2. 
Evaluates production or reaction based on 

outflow without considering  
sub-basin responses 

Assesses response by dividing the basin 
into multiple sub-basins 

Divides the basin into smaller sub-basins to 
evaluate response 

3. Not suitable for event-based processes   Suitable for event-based processes 

4. 
Parameters do not represent physical 

hydrologic features; uses area-weighted 
averages 

Parameters lie between lumped and 
distributed models 

Considers hydrologic processes at various 
spatial points, defining model variables based 

on spatial dimensions 

5. Requires fewer data Less data-intensive than distributed 
models 

Requires large amounts of data 

6. Easy to use   Requires expert use 
7. Predicts results only at the outlet   Predicts results at any location and time 
8. Simple, minimal computational time   Complex, high computational time 

9. Example: SCS-CN based models, IHACRES, 
WATBAL, etc. 

Example: SWMM, HEC HMS, TOPMODEL, 
etc. 

Example: HYDROTEL, MIKE11/SHE, WAIFLOOD, 
etc. 

10. 
Does not consider governing processes 

during predictions 
  

Meticulously models every controlling  
physical mechanism 

11. Not very accurate   Highest accuracy achievable with adequate 
data 

Table 2. Characteristics of lumped model, semi-distributed model and  distributed model  (16)  

S.No. Particulars Empirical Model Conceptual Model Physically Based Model 

1. Description Data-driven or black-box model A semi-empirical or hybrid model A mechanistic or white-box model 

2. Mathematical Basis 
Uses mathematical equations to 

derive values from  
accessible time series 

Based on reservoir modeling and 
includes semi-empirical equations 

with a physical basis 

Based on spatial distribution,  
analyzing criteria that describe 

physical attributes 

3. 
Consideration of  
System Features 

Minimal attention to system 
functions and characteristics 

Parameters are obtained through 
calibration and field data 

Requires data on the catchment's 
morphology and initial state 

4. Model Characteristics 
Low explanatory depth, high 

prediction power, not  
extendable to other catchments 

Simple to incorporate into 
computer code, requires 

significant hydrological and 

Complex, requires computational 
power and expertise, faces scaling 

issues 

6. Domain Limited to a specified domain 
Calibration involves curve fitting 

for physical interpretation 
Applicable to a wide range of  

situations 

Table 1. Characteristics of three models (20)  
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analysing uncertainty is particularly difficult, if not 

impossible, because the process may yield minimal or no 

information from prior parameter modifications. 

Automatic Calibration 

The need to accelerate the calibration process and improve 

computational efficiency has led to the development of 

computer-based methods for automating hydrological model 

calibration. Automated calibration methods aim to reduce the 

subjective human judgment involved in manual techniques 

and provide consistent performance (32). These methods also 

strive to enhance impartiality and reduce the need for 

extensive model-specific knowledge (31). However, designing 

objective functions and optimization algorithms that 

accurately replicate human judgment remains a challenge, so 

automated techniques have not fully replaced manual 

methods. Therefore, combining automatic calibration with 

manual procedures is often most effective. 

 A typical automated parameter estimation 

methodology comprises four primary components: calibration 

data, the optimization technique, termination criteria and the 

selected objective function (or performance measure) (30).The 

aim of automated calibration is to identify the parameter 

values that optimize the objective function's numerical value, 

either by maximizing or minimizing it. 

Objective functions 

An objective function, or goodness of fit, is a numerical 

representation of the discrepancy between the model's 

simulated output and the actual catchment output (33). In 

hydrology, objective functions are often based on maximum 

likelihood and conventional least squares techniques. One 

popular objective function is the Nash-Sutcliffe Efficiency 

(NSE), which indicates the proportion of data variance 

explained by the model (34). While NSE captures the time to 

peak and linear correlation with measured flow well, it under-

represents flow variability and mean (33, 35, 36). The Kling-

Gupta Efficiency (KGE) was developed to address some of 

NSE's shortcomings, maintaining a good linear relationship 

between observed and modelled data while matching flow 

variability, peak and mean well in limited studies. 

Multi objective analysis 

The choice of objective functions is crucial for certain 

modelling tasks, such as flood predictions, irrigation system 

design and hydroelectric power generation. Using single-

objective functions can skew the results towards specific 

hydrograph characteristics (37). Balancing conflicting 

objectives often requires compromising on several factors 

and a parameter set that meets one criterion is rarely the 

same as one that meets another (38). The multi-objective 

approach addresses this issue by considering multiple 

aspects of the performance of the model simultaneously. This 

approach helps identify the shortcomings of the model in 

achieving multiple performance objectives at once and aids 

the modeller in choosing the performance trade-off that best 

meets the requirements of the application (39). A common 

technique involves combining multiple objectives into a 

single criterion and optimizing for the best fit value, with the 

final result significantly influenced by how the objectives are 

weighted or combined (37). 

Optimization algorithms 

Hydrological modelling makes extensive use of random 

search techniques. A specific model parameter distribution is 

used to generate sets of random values. These values are 

then included into the model equations to produce 

corresponding sets of outputs. This distribution often makes 

the assumption that the parameters are independent when 

the joint probability is unknown in advance (40). Other 

methods for global optimisation include set coverage 

approaches, pure random search, adaptive and controller 

random search, multiple local searches, simulated annealing 

and tabu search. Shuffled Complex Evolution (SCE), AMALGAM, 

DREAM, Multi-Objective COMplex evolution (MOCOM) and Multi

-Objective Shuffled Complex Evolution Metropolis (MOSCEM-

UA) are examples of genetic and evolutionary algorithms used 

in hydrological modelling (37, 41-44). 

Verification 

Following calibration, the model is subjected to verification, 

often referred to as validation, in order to assess its 

performance on data that was not utilised in the calibration 

process. Model verification seeks to detect biases in the 

calibrated parameters and validates the model's capacity to 

precisely describe the watershed's hydrological response 

(39). Split sample studies, in which one set of data is used for 

model calibration and another set is used to confirm the 

model predictions, are frequently employed (45). Numerous 

tests have been proposed for split sampling, proxy catchment 

and proxy catchment split sample. A proxy catchment may 

have discharge data and other variables that may be used to 

assess the model's predictions, but during the model 

estimate phase, it is regarded as ungauged. The following 

tests were proposed in a previous study   (46) and were also 

extended in another report (47):  

•  simple split-sample test,  

•  different split-sample test,  

•  proxy-catchment test and 

•  Different proxy-catchment test. 

Sensitivity analysis 

Sensitivity analysis is the process of evaluating how 

modifications to a model's inputs, initial conditions, or 

parameters affect the its output (31). The region around the 

optimal parameter estimates, when the function value 

deviates from the optimal by a small amount, is known as the 

zone of indifference. The relationships between parameters 

can be found using sensitivity analysis when two or more are 

changed simultaneously. A sensitivity analysis entails 

examining the model parameter space and visually or 

numerically illustrating how sampled parameters affect the 

intended model output (48). Other examples are found 

in other studies (40, 49).  

 The nominal range and differential analysis 

approaches are two methods for performing local sensitivity 

studies (50). Conversely, global sensitivity analysis seeks to 

investigate the whole parameter space within predefined 

attainable parameter ranges (51). A statistic is used to 

quantify the total variability of the objective function over the 
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space, or a sub-dimension of the space. For instance, the 

Kolmogorov-Smirnov test, can be used to gauge the extent to 

which the response surface deviates from the uniform value 

of the objective function. (52). The literature has identified a 

number of methods for performing global sensitivity analysis, 

such as variance-based approaches, regression-based 

approaches, regional sensitivity analysis and Bayesian 

sensitivity analysis (53-57). 

Sources of Hydrological model uncertainties 

Uncertainties in hydrological models can arise from various 

factors, including parameters, model structure, input data, 

calibration (observation) and initial or boundary conditions. 

Additionally, initial and boundary conditions of the model can 

also contribute to uncertainty, although these are not 

considered in this assessment. Hydrological models often use 

effective parameters, which are simplifications of actual 

processes. The inability to accurately quantify or predict 

these effective parameters can lead to parameter uncertainty 

(27, 58). The accurate representation of a hydrological system 

is challenging due to the lack of a unifying theory, incomplete 

information and numerical and procedural simplifications. 

These limitations create structural uncertainty in the model.  

 Other conceptualizations, like subsurface hydro-

stratigraphy or the discretization of surface and process 

characteristics, may also contribute to model structural 

uncertainty (59-61). Model architectures significantly 

influence model performance (62). Structural uncertainty is 

crucial because it has the potential to invalidate the model 

and the measurement of other uncertainties (63-65). A 

comparison of structural and parameter uncertainty revealed 

that structural uncertainty is more prevalent, particularly 

when the model is applied outside of its calibration range. 

Additionally, up to 30% of the prediction error might be 

attributed to structural uncertainty (66). The largest 

contributor to prediction uncertainty is model structure, as 

demonstrated using the variance decomposition of stream 

flow estimates (67). 

 

 

Hydrological model uncertainty analysis 

Six general classes of uncertainty analysis methods have 

been identified: (i) Monte Carlo sampling; (ii) response surface

-based schemes, which include machine learning and 

polynomial chaos expansion; (iii) multi-modelling 

approaches; (iv)Bayesian statistics; (v) multi-objective 

analysis; and (vi) least square-based inverse modelling. The 

classification of hydrological model uncertainties into four 

major sources: parameter, input, structural and observation 

uncertainty. It highlights common techniques for addressing 

these uncertainties, such as Bayesian statistics, Monte Carlo 

analysis and multi-model approaches. Parameter uncertainty 

involves advanced methods such as inverse modelling and 

response surface schemes, while input and structural 

uncertainties rely on techniques, namely multipliers and 

multi-model analysis (Fig. 3). 

Parameter uncertainty 

Parameter uncertainty, unlike other types of uncertainty, is 

addressed using various strategies. One popular technique 

for dealing with parameter uncertainty is the Generalized 

Likelihood Uncertainty Estimation (GLUE), which takes into 

account the equifinality hypothesis. The equifinality 

hypothesis highlights the presence of numerous parameter 

settings that describe hydrological processes indiscriminately 

or lead to the same outcome. GLUE improves Monte Carlo 

simulations by adding a behavioural threshold measure that 

separates viable and unfeasible parameters and structures. 

However, GLUE has been criticized for its subjectivity in 

selecting a behavioural threshold and its lack of a rigorous 

statistical basis, despite its widespread usage due to its 

simple conceptualization and execution. Another method, 

although not as popular as GLUE, has been used in various 

studies. One factor limiting its implementation is the absence 

of measures that account for the degree of input and output 

uncertainty and their interactions (68). 

Input uncertainty 

Accurate hydro climatic input data is crucial for hydrological 

models, particularly for precipitation and associated 

uncertainty. Traditional methods involve using a multiplication 

 

Fig. 3. Sources of hydrological model uncertainty and broad technique (76). 
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factor to address input uncertainty, often determined by model 

parameters or expert judgment. However, there is a lack of 

formal processes for determining this multiplication factor. 

More robust options, such as Bayesian statistics and Monte 

Carlo methods like GLUE, offer better solutions. Isolating input 

uncertainty from model parameters can be achieved by 

adopting a distribution for "true" precipitation, thus reducing 

other uncertainties (68). Nevertheless, determining the "true" 

input distribution presents challenges. In order to deal with 

structural uncertainties, input uncertainty is simultaneously 

evaluated with model parameters using the Bayesian Total 

Error Analysis (BATEA) (69) and the Integrated Bayesian 

Uncertainty Estimator (IBUNE) (70). These methods can, 

however, be computationally taxing, especially for distributed 

models that need inputs that fluctuate across time and space 

and they may result in fluctuating input uncertainty as model 

topologies change. 

Structural uncertainty 

The use of ensemble approaches and multi-model averaging 

has helped to quantify and reduce structural uncertainty by 

combining several model structures. The effectiveness of multi-

model averaging depends on dependability, consistency and 

error compensation (71). Statistical evidence and empirical 

large-sample data have demonstrated why a multi-model 

average outperforms a single model (72). Ensemble predictions 

are aggregated using weights that are either performance-

based or equal. Equal weighting is advantageous as reported in 

a previous study (73). Performance-based weighted 

multimodel predictions have also been reported in several 

studies (62, 43, 74). A comparison of many alternative model 

averaging methods is provided in a study (75). When 

component models perform similarly and there is no model 

weighting or discriminating criteria, equal weighting is 

preferable. However, employing variable weights yields 

better forecasts when the models' performances differ 

noticeably and each model is focused on modelling a 

particular aspect of the hydrological processes. 

Existing Global Hydrological Models: 

Twelve global hydrological models developed between 1989 

and 2010, focusing on their objectives, developers and key 

applications, are highlighted and summarised in Table 3. 

These models address critical challenges such as global water 

availability, climate change impacts and nutrient transport. 

They employ advanced techniques to enhance water 

balance, vegetation dynamics and energy modelling across 

diverse spatial and temporal scales.  

 

Conclusion  

The notable developments in hydrological modelling since 

the establishment of the initial Hydrological Research Unit 

(HRU) at Wallingford in the 1960s have not occurred in 

isolation. They have coincided with rapid technological 

advancement. Complex mathematical computations that 

take hours or days to complete on a PC or laptop can now be 

performed in seconds. New instruments and data recording 

tools allow for more precise and frequent observations. 

Recent significant flood occurrences have led to the 

development of real-time flood forecasting systems with 

sophisticated data processing algorithms, real-time updating 

of model parameters and the estimation of prediction 

uncertainty. These systems use data from multi-parameter 

weather radars. Hydrological models need to be part of a 

broader, multidisciplinary approach to flood management. 

This approach should involve planners, asset managers 

responsible for engineered infrastructure such as flood 

defences and barriers and stakeholders in flood-affected 

areas who possess valuable local knowledge. Additionally, 

software tools can facilitate the visualization and analysis of 

various flood risk assessment options, enabling more 

informed decision-making. This awareness has grown 

alongside more realistic expectations for the accuracy of 

model predictions.  
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 Table 3. Existing Global Hydrological Models - Detail 

S.No. Year Model Developed by Objectives Applications 

1 1989 

HDTM 1.0 
(HydroDynamic Model) 
/ WBMplus / WBM-WTM 
(Water Balance Model - 

Water Transport 
Model) 

University of New 
Hampshire, 

USA 

Study global 
biogeochemical cycles; 

linked to Terrestrial 
Ecosystem Model and 

Trace Gas Model via soil 
moisture and 

evapotranspiration. 

1. Comparison of PET methods on US 
watersheds-WBM (77) 

2. Using GHM in an application of isotope 
tracers at the continental scale in hydrological 

modelling (78)  
3. Calculation of variability and uncertainty in 
the global irrigation water demand-WBMplus 

(79)  
4. Analysis of the effect of climate and 

hydrological alteration in the hydrological cycle 
to study nutrient transport (7)  

5. Using GHM to calibrate remote sensing signal 
to discharge (80) 

2 1998 
MPI-HM (Max Planck 

Institute - 
Hydrology Model) 

Max-Planck-Institut für 
Meteorologie (Max Planck 
Institute for Meteorology), 

Germany 

Define lateral water flow 
from continents to 

oceans, linking with a 
GCM (ECHAM). 

1. Validation of the weather forecasting models, 
European Centre for Medium-Range Weather 

Forecasts Re-Analysis (ERA) and National Center 
for Environmental Prediction Re-Analysis (NRA) 

(81) 

3 1999 
GWAVA (Global Water 

Availability 
Assessment model) 

Centre for Ecology & 
Hydrology 

(formerly Institute of 
Hydrology), UK 

Study progression of 
global water scarcity due 

to population increase 
and climate change. 

1. Estimation of water scarcity for eastern and 
southern 

Africa (82)  
2. Measurement of the impact of climate and 

land use 
change (83) 

4 1998 
Macro-PDM (Macro 

Probability 
Distribution Model) 

University of Reading, UK 

Develop a macro-scale 
global model; initially, 

only WBM existed. Uses 
VIC principles on a global 

scale. 

1. Measurement of uncertainty in an ensemble 
with 21 GCMs at a global scale using a campus 

wide computer grid (84)  
2. Study of the impact of climate change on 

river flow regimes (85) 

5 2001 
VIC (Variable Infiltration 

Capacity 
model) 

University of Washington, 
Seattle, USA 

Improve previous models 
by adding sub-grid 
heterogeneity for 

vegetation and multiple 
soil layers. 

1. Estimation of global soil moisture content 
(86)  

2. Prediction of discharge of the world’s rivers 
(87)  

3. Evaluation of the Atmospheric Model 
Intercomparison 

Project (AMIP II) (88) 

6 2002 LAD (Land Dynamic 
model) 

National Oceanic and 
Atmospheric 

Administration 
(NOAA) / Geophysical Fluid 

Dynamics Laboratory, 
Princeton, New Jersey, 

USA 

Enhance energy and 
water balance modeling 

of older models. 

1. Illustrating an approach of land model 
evaluation with 

precipitation uncertainty (89)  
2. Measurement of the inter-annual variation in 

river discharges (90) 

7 2004 
PCR-GLOBWB (PCRaster 

Global Water Balance 
model) 

Utrecht University, The 
Netherlands 

Add advanced routines 
for grid heterogeneity, 

surface runoff, inter-flow, 
groundwater and lateral 

heat transport. 

1. Measurement of the skill of seasonal 
predictability of river discharge for different 

European rivers (91)  
2. Analysis of the depletion of global 

groundwater resources (92)  
3. Modelling methane (CH4) emissions of boreal 

and arctic wetlands (93)  
4. Analysis of future global runoff changes (94)  

5. Calculation of global water stress (95, 96)  
6. Study of the impact of human abstraction of 
surface water and groundwater on streamflow 

(97) 

8 2007 
LPJmL (Lund-Potsdam-

Jena managed Land 
model) 

Potsdam Institute for 
Climate 

Impact Research (PIK), 
Germany 

Simulate spatial and 
temporal dynamics of 

global vegetation and its 
impact on hydrological 

and carbon cycles. 

1. Calculation of green water flows-LPJ (98)  
2. Measurement of global carbon fluxes and 

pools (99)  
3. Checking the uncertainty of the terrestrial 

carbon and water cycle at different spatial 
resolutions using the LPJDynamic Global 

Vegetation Model (LPJ-DGVM) (100)  
4. Studying human alteration of the terrestrial 

water cycle through land management (11)  
5. Calculation of global-scale water withdrawal, 

allocations and consumptive use for surface 
water and groundwater (101) 

9 2007 
WASMOD-M (Water And 

Snow balance Modelling 
system) 

Department of Earth 
Sciences, Air, Water and 

Landscape Sciences, 
Uppsala University, 

Sweden 

Complement existing 
global models and 
establish minimum 

parameters for gauged 
and ungauged river 

basins. 

1. Comparison of two flow network-response 
functions to evaluate the improvement in runoff 

routing (102)  
2. Comparison of two precipitation datasets 

(TRMM and WATCH Forcing Data) in southern 
Africa (103) 
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